藏北多龙矿集区地壳基底性质、演化及其对成矿的制约——来自波龙火山-侵入岩中继承锆石U-Pb年龄的信息

李兴奎, 李才, 王明, 刘金恒, 罗安波. 藏北多龙矿集区地壳基底性质、演化及其对成矿的制约——来自波龙火山-侵入岩中继承锆石U-Pb年龄的信息[J]. 地质通报, 2018, 37(8): 1439-1449.
引用本文: 李兴奎, 李才, 王明, 刘金恒, 罗安波. 藏北多龙矿集区地壳基底性质、演化及其对成矿的制约——来自波龙火山-侵入岩中继承锆石U-Pb年龄的信息[J]. 地质通报, 2018, 37(8): 1439-1449.
LI Xingkui, LI Cai, WANG Ming, LIU Jinheng, LUO Anbo. Nature and evolution of crustal basement beneath the Duolong ore concentration area, northern Tibet, and their constraints on the metallogenesis: Insights from U-Pb ages of inherited zircons from the Bolong volcanic-intrusive rocks[J]. Geological Bulletin of China, 2018, 37(8): 1439-1449.
Citation: LI Xingkui, LI Cai, WANG Ming, LIU Jinheng, LUO Anbo. Nature and evolution of crustal basement beneath the Duolong ore concentration area, northern Tibet, and their constraints on the metallogenesis: Insights from U-Pb ages of inherited zircons from the Bolong volcanic-intrusive rocks[J]. Geological Bulletin of China, 2018, 37(8): 1439-1449.

藏北多龙矿集区地壳基底性质、演化及其对成矿的制约——来自波龙火山-侵入岩中继承锆石U-Pb年龄的信息

  • 基金项目:
    中国地质调查局项目《西藏改则多不扎1:5万4幅区调》(编号:12120113036700)
详细信息
    作者简介: 李兴奎(1990-), 男, 在读博士生, 矿床地球化学专业。E-mail:lixk010@126.com
    通讯作者: 李才(1953-), 男, 教授, 博士生导师, 从事青藏高原大地构造与区域地质研究。E-mail:licai010@126.com
  • 中图分类号: P618.41;P597+.3

Nature and evolution of crustal basement beneath the Duolong ore concentration area, northern Tibet, and their constraints on the metallogenesis: Insights from U-Pb ages of inherited zircons from the Bolong volcanic-intrusive rocks

More Information
  • 地壳基底性质及其演化对区域金属成矿类型和成矿潜力具有重要影响。藏北多龙矿集区是目前中国规模最大的斑岩-浅成低温热液型铜多金属矿集区之一,其地壳基底性质与演化缺少研究,制约了对区内铜多金属成矿构造背景和成矿物质来源的全面认识。多龙矿集区内波龙火山-侵入岩中继承锆石LA-ICP-MS U-Pb测年结果显示,14颗继承锆石具有新太古代-古元古代年龄(2581~1670Ma),这些锆石多为自形-半自形颗粒,具有原地来源的特征,表明多龙矿集区深部存在新太古代-古元古代结晶基底。该基底应该是南羌塘中心地区古老基底向南延伸的一部分。该基底在中元古代-早古生代遭受多次构造-岩浆热事件改造,尤以泛非期-早古生代最强烈。进入晚中生代后,由于年轻地幔物质的加入,多龙地壳发生明显的垂向生长,形成富含金属和成矿组分的新生下地壳,该新生下地壳在早白垩世发生活化,为多龙成矿体系提供大量的金属及其他幔源有用组分。多龙矿集区是一个"两期岩浆叠加成矿"的典型例子。

  • 加载中
  • 图 1  青藏高原大地构造纲要图(a)、南羌塘-保山板块西南缘晚中生代岩浆带分布图(b)和多龙矿集区地质简图(c)(据参考文献[16, 23-25]修改)

    Figure 1. 

    图 2  波龙火山-侵入岩中代表性锆石阴极发光(CL)图像及U-Pb年龄值(白色线圈代表测点位置;年龄大于1000Ma的锆石采用207Pb/206Pb年龄;年龄小于1000Ma的锆石采用206Pb/238U年龄)

    Figure 2. 

    图 3  波龙火山-侵入岩锆石U-Pb谐和图

    Figure 3. 

    图 4  多龙矿集区早白垩世中酸性岩中继承锆石U-Pb年龄频谱图(数据来源见表 1;年龄大于1000Ma的锆石采用207Pb/206Pb年龄;对于年龄小于1000Ma的锆石采用206Pb/238U年龄)

    Figure 4. 

    表 1  多龙矿集区早白垩世中酸性岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS U-Th-Pb isotopic analytical data for zircons from the Early Cretaceous intermediate-felsic rocks in the Duolong ore concentration area

    点号 元素含量/10-6 207Pb/206Pb 同位素比值 年龄/Ma
    Pb 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    DT15T10
    01 42 38 326 0.12 0.0662 0.0014 1.2297 0.0214 0.1347 0.0015 813 45 814 10 815 9
    02 71 299 964 0.31 0.0564 0.0008 0.5841 0.0084 0.0751 0.0009 467 15 467 5 467 5
    03 19 135 246 0.55 0.0609 0.0012 0.6230 0.0125 0.0742 0.0009 635 23 492 8 462 5
    04 81 176 351 0.50 0.0905 0.0013 2.8032 0.0395 0.2248 0.0026 1435 12 1356 11 1307 14
    05 8 59 122 0.49 0.0542 0.0018 0.4648 0.0153 0.0622 0.0008 379 50 388 11 389 5
    06 15 145 195 0.74 0.0559 0.0013 0.5396 0.0125 0.0700 0.0009 448 30 438 8 436 5
    07 22 291 292 0.99 0.0567 0.0012 0.5042 0.0102 0.0645 0.0008 479 24 415 7 403 5
    08 59 104 119 0.88 0.1518 0.0021 9.2124 0.1275 0.4400 0.0051 2367 11 2359 13 2350 23
    09 24 156 208 0.75 0.0750 0.0013 1.0368 0.0181 0.1003 0.0012 1068 17 722 9 616 7
    10 75 403 768 0.53 0.0592 0.0008 0.7665 0.0109 0.0940 0.0011 573 14 578 6 579 6
    11 133 571 942 0.61 0.0660 0.0010 1.1995 0.0175 0.1318 0.0015 806 14 800 8 798 9
    12 91 132 291 0.45 0.1025 0.0014 4.2074 0.0572 0.2976 0.0034 1670 11 1675 11 1680 17
    13 76 64 220 0.29 0.1146 0.0015 5.3272 0.0733 0.3372 0.0039 1873 11 1873 12 1873 19
    14 42 121 412 0.29 0.0609 0.0009 0.8698 0.0132 0.1035 0.0012 637 15 635 7 635 7
    15 21 384 242 1.59 0.0554 0.0012 0.5199 0.0113 0.0681 0.0008 428 28 425 8 425 5
    16 77 822 885 0.93 0.0634 0.0024 0.6371 0.0229 0.0729 0.0009 720 83 501 14 454 5
    17 12 118 276 0.43 0.0539 0.0013 0.3302 0.0076 0.0444 0.0006 366 30 290 6 280 3
    18 74 59 175 0.34 0.1454 0.0029 7.8648 0.1256 0.3924 0.0046 2292 35 2216 14 2134 21
    19 74 324 1188 0.27 0.0575 0.0008 0.5114 0.0073 0.0646 0.0007 509 15 419 5 403 4
    20 318 636 776 0.82 0.1566 0.0020 7.8624 0.1040 0.3640 0.0041 2420 10 2215 12 2001 19
    21 12 121 100 1.20 0.0655 0.0017 0.8833 0.0220 0.0977 0.0012 791 31 643 12 601 7
    22 225 188 631 0.30 0.1174 0.0015 5.6348 0.0750 0.3479 0.0039 1918 11 1921 11 1925 19
    23 188 191 512 0.37 0.1149 0.0015 5.7490 0.0772 0.3628 0.0041 1879 11 1939 12 1995 19
    24 3 72 168 0.43 0.0486 0.0024 0.1291 0.0062 0.0193 0.0003 128 81 123 6 123 2
    25 64 535 672 0.80 0.0577 0.0008 0.6663 0.0097 0.0837 0.0010 519 15 518 6 518 6
    DT15T23
    01 21 468 552 0.85 0.0519 0.0009 0.2463 0.0044 0.0344 0.0004 282 20 224 4 218 3
    02 19 557 300 1.86 0.0522 0.0011 0.3375 0.0071 0.0469 0.0006 292 25 295 5 296 4
    03 117 690 3164 0.22 0.0530 0.0007 0.2874 0.0042 0.0393 0.0005 329 15 257 3 249 3
    04 33 99 408 0.24 0.0582 0.0008 0.6924 0.0108 0.0864 0.0011 535 16 534 6 534 6
    05 204 89 610 0.15 0.1174 0.0015 5.5950 0.0789 0.3455 0.0043 1918 11 1915 12 1913 20
    06 22 160 159 1.01 0.0625 0.0010 1.0587 0.0179 0.1228 0.0016 692 17 733 9 747 9
    07 318 235 805 0.29 0.1332 0.0017 7.0794 0.0992 0.3854 0.0047 2141 11 2121 12 2101 22
    08 24 173 208 0.83 0.0612 0.0010 0.8833 0.0152 0.1047 0.0013 645 18 643 8 642 8
    09 270 249 508 0.49 0.1724 0.0022 11.5225 0.1618 0.4847 0.0060 2581 10 2566 13 2548 26
    10 31 64 91 0.71 0.1094 0.0016 4.6153 0.0717 0.3060 0.0039 1789 13 1752 13 1721 19
    11 9 124 228 0.54 0.0628 0.0027 0.3133 0.0129 0.0362 0.0005 700 95 277 10 229 3
    12 32 245 147 1.67 0.0717 0.0011 1.6187 0.0261 0.1638 0.0021 977 15 977 10 978 11
    13 36 147 197 0.75 0.0722 0.0011 1.6628 0.0269 0.1670 0.0021 992 15 994 10 995 12
    14 110 140 338 0.41 0.1080 0.0014 4.6902 0.0672 0.3150 0.0039 1766 12 1765 12 1765 19
    15 17 185 356 0.52 0.0522 0.0010 0.3304 0.0067 0.0459 0.0006 292 24 290 5 290 4
    16 108 504 695 0.73 0.0666 0.0009 1.3121 0.0188 0.1428 0.0018 826 13 851 8 860 10
    17 13 39 94 0.41 0.0665 0.0013 1.2609 0.0247 0.1375 0.0018 822 21 828 11 830 10
    18 14 282 353 0.80 0.0508 0.0012 0.2602 0.0060 0.0372 0.0005 231 30 235 5 235 3
    19 10 176 258 0.68 0.0509 0.0013 0.2560 0.0063 0.0365 0.0005 234 33 231 5 231 3
    20 12 228 245 0.93 0.0542 0.0012 0.3267 0.0074 0.0437 0.0006 379 28 287 6 276 4
    21 71 157 168 0.93 0.1220 0.0017 6.0723 0.0900 0.3610 0.0045 1985 12 1986 13 1987 21
    22 3 36 147 0.25 0.0511 0.0042 0.1386 0.0112 0.0197 0.0003 246 152 132 10 126 2
    23 122 109 230 0.47 0.1685 0.0022 11.2299 0.1584 0.4833 0.0059 2543 11 2542 13 2542 26
    24 20 96 253 0.38 0.0573 0.0010 0.6360 0.0116 0.0805 0.0010 503 20 500 7 499 6
    25 2 45 109 0.41 0.0515 0.0042 0.1383 0.0110 0.0195 0.0004 263 147 132 10 124 2
    DT13T2-2*(继承锆石)
    18 7 51 299 0.17 0.0493 0.0041 0.1718 0.0143 0.0253 0.0005 161 148 161 12 161 3
    25 4 55 126 0.44 0.0497 0.0079 0.2045 0.0322 0.0299 0.0008 179 279 189 27 190 5
    DT13T8*(继承锆石)
    01 19 181 377 0.48 0.0461 0.0038 0.2390 0.0193 0.0376 0.0006 181 218 16 238 4
    15 22 35 36 0.98 0.1636 0.0076 10.3543 0.4717 0.4589 0.0085 2493 52 2467 42 2435 38
    16 6 72 235 0.31 0.0520 0.0077 0.1701 0.0250 0.0237 0.0005 285 287 160 22 151 3
    19 4 66 135 0.49 0.0496 0.0074 0.1818 0.0270 0.0266 0.0006 174 272 170 23 169 4
    22 6 63 192 0.33 0.0473 0.0056 0.1609 0.0189 0.0247 0.0005 62 242 152 17 157 3
    23 7 68 114 0.60 0.0530 0.0039 0.3897 0.0282 0.0533 0.0011 331 128 334 21 335 7
    24 18 129 593 0.22 0.0513 0.0028 0.2042 0.0109 0.0289 0.0005 253 91 189 9 184 3
    DT13T12*(继承锆石)
    05 107 246 297 0.83 0.0994 0.0028 3.8954 0.1119 0.2842 0.0043 1613 31 1613 23 1612 22
    09 26 456 584 0.78 0.0507 0.0042 0.2561 0.0209 0.0367 0.0007 226 149 232 17 232 4
    12 73 277 406 0.68 0.0709 0.0024 1.4689 0.0505 0.1503 0.0024 953 45 918 21 903 13
    18 24 88 97 0.91 0.0795 0.0038 2.1506 0.1019 0.1961 0.0034 1186 66 1165 33 1154 18
    DT15T11**(继承锆石)
    01 8 61 104 0.59 0.0563 0.0019 0.5820 0.0193 0.0749 0.0011 466 12 466 6
    02 7 73 285 0.25 0.0542 0.0017 0.1749 0.0055 0.0234 0.0003 164 5 149 2
    04 29 139 341 0.41 0.0576 0.0010 0.6616 0.0119 0.0833 0.0010 516 7 516 6
    05 7 87 268 0.33 0.0493 0.0019 0.1785 0.0069 0.0263 0.0004 167 6 167 2
    06 2 45 99 0.45 0.0489 0.0053 0.1538 0.0165 0.0228 0.0005 145 14 145 3
    08 13 251 268 0.93 0.0518 0.0014 0.3121 0.0084 0.0437 0.0006 276 6 276 4
    09 10 125 144 0.87 0.0542 0.0015 0.4497 0.0125 0.0601 0.0008 377 9 376 5
    DL02***(继承锆石)
    02 3 31 136 0.23 0.0492 0.0023 0.1704 0.0078 0.0251 0.0004 157 80 160 7 160 2
    09 4 51 147 0.35 0.0588 0.0027 0.2288 0.0105 0.0282 0.0004 558 75 209 9 179 3
    注:*据参考文献[16];**据参考文献[55];***为笔者未刊数据
    下载: 导出CSV
  • [1]

    Griffin W L, Begg G C, O'Reilly S Y, et al. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6:905-911. doi: 10.1038/ngeo1954

    [2]

    Mole D R, Fiorentini M L, Thebaud N, et al. Archean komatiite volcanism controlled by the evolution of early continents[J]. PNAS, 2014, 111:10083-10088. doi: 10.1073/pnas.1400273111

    [3]

    Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits:products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37:247-250. doi: 10.1130/G25451A.1

    [4]

    Hou Z Q, Duan L F, Lu Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110:1541-1575. doi: 10.2113/econgeo.110.6.1541

    [5]

    Romer R L, Kroner U. Phanerozoic tin and tungsten mineralization-Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana Research, 2016, 31:60-95. doi: 10.1016/j.gr.2015.11.002

    [6]

    唐菊兴, 王勤, 杨欢欢, 等.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报, 2017, 38(5):571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002

    [7]

    唐菊兴, 宋扬, 王勤, 等.西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床[J].地球学报, 2016, 37(6):663-690. http://d.old.wanfangdata.com.cn/Periodical/dqxb201606003

    [8]

    李光明, 段志明, 刘波, 等.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义[J].地球通报, 2011, 30(8):1256-1260. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201108012

    [9]

    Li J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-HfO isotope characteristics[J]. Lithos, 2013, 160/161:216-227. doi: 10.1016/j.lithos.2012.12.015

    [10]

    Li J X, Qin K Z, Li G M, et al. The Nadun Cu-Au mineralization, central Tibet:Root of a high sulfidation epithermal deposits[J]. Ore Geology Reviews, 2016, 78:371-387. doi: 10.1016/j.oregeorev.2016.04.019

    [11]

    曲晓明, 辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报, 2006, 25(7):792-799. doi: 10.3969/j.issn.1671-2552.2006.07.004 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200607144&flag=1

    [12]

    陈华安, 祝向平, 马东方, 等.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J].地质学报, 2013, 87(10):1593-1611. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201310009

    [13]

    祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报, 2011, 27(7):2159-2164. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107023

    [14]

    陈红旗, 曲晓明, 范淑芳.西藏改则县多龙矿集区斑岩型铜金矿床的地质特征与成矿-找矿模型[J].矿床地质, 2015, 34(2):321-332. http://d.old.wanfangdata.com.cn/Periodical/kcdz201502008

    [15]

    段志明, 李光明, 张晖, 等.西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束[J].地质通报, 2013, 32(5):742-750. doi: 10.3969/j.issn.1671-2552.2013.05.007 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20130507&flag=1

    [16]

    Li X K, Li C, Sun Z M, et al. Origin and tectonic setting of the giant Duolong Cu-Au deposit, South Qiangtang Terrane, Tibet:Evidence from geochronology and geochemistry of Early Cretaceous intrusive rocks[J]. Ore Geology Reviews, 2017, 80:61-78. doi: 10.1016/j.oregeorev.2016.06.025

    [17]

    Zheng J P, Griffin W L, O'Reilly S Y, et al. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 2006, 34:417-420. doi: 10.1130/G22282.1

    [18]

    郑建平, Griffin W L, 汤华云, 等.西部华夏地区深部可能存在与华北和扬子大陆相似的太古代基底[J].高校地质学报, 2008, 14(4):549-557. doi: 10.3969/j.issn.1006-7493.2008.04.008

    [19]

    Gao S, Rudnick L L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432:892-897. doi: 10.1038/nature03162

    [20]

    丁兴, 周新民, 孙涛.华南陆壳基底的幕式生长——来自广东古寨花岗闪长岩中锆石LA-ICPMS定年的信息[J].地质论评, 2005, 51(4):382-392. doi: 10.3321/j.issn:0371-5736.2005.04.004

    [21]

    于津海, 王丽娟, O'Reilly S Y, 等.赣南存在古元古代基底:来自上犹陡水煌斑岩中捕虏锆石的U-Pb-Hf同位素证据[J].科学通报, 2009, 54(7):898-905. http://lib.cqvip.com/qk/81668X/200001/30088997.html

    [22]

    赵越, 宋彪, 张拴宏, 等.北京西山侏罗纪南大岭组玄武岩的继承锆石年代学及其含义[J].地学前缘, 2006, 13(2):184-190. doi: 10.3321/j.issn:1005-2321.2006.02.016

    [23]

    Li J X, Qin K Z, Li G M, et al. Petrogenesis of diabase from accretionary prism in the southern Qiangtang terrane, central Tibet:Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-HfOisotope characteristics[J]. Island Arc, 2015, 24:232-244. doi: 10.1111/iar.2015.24.issue-2

    [24]

    Li S M, Zhu D C, Wang Q, et al. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156±2 Ma from the north of Gerze, central Tibet:Records of the Bangong-Nujiang oceanic ridge subduction during the Late Jurassic[J]. Lithos, 2016, 262:456-469. doi: 10.1016/j.lithos.2016.07.029

    [25]

    董宇超, 李才, 王明, 等.西藏改则县多不扎地区上侏罗统对望山组的建立及意义[J].地质通报, 2016, 35(8):1263-1270. doi: 10.3969/j.issn.1671-2552.2016.08.007 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20160807&flag=1

    [26]

    王伟, 李才, 范建军, 等.西藏多龙矿集区发现早白垩世流纹岩夹层[J].地质通报, 2016, 35(8):1255-1262. doi: 10.3969/j.issn.1671-2552.2016.08.006 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20160806&flag=1

    [27]

    韦少港, 唐菊兴, 宋扬, 等.西藏班公湖-怒江缝合带美日切错组中酸性火山岩锆石U-Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义[J].地质学报, 2017, 91(1):132-150. doi: 10.3969/j.issn.0001-5717.2017.01.008

    [28]

    王勤, 唐菊兴, 方向, 等.西藏多龙矿集区铁格隆南铜(金银)矿床荣那矿段安山岩成岩背景:来自锆石U-Pb年代学、岩石地球化学的证据[J].中国地质, 2015, 42(5):1324-1336. doi: 10.3969/j.issn.1000-3657.2015.05.011

    [29]

    Wei S G, Tang J X, Song Y, et al. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet:Record of slab breakoff that triggered ca. 108-113 Ma magmatism in the western Qiangtang terrane[J]. Journal of Asian Earth Sciences, 2017, 138:588-607. doi: 10.1016/j.jseaes.2016.12.010

    [30]

    林彬, 唐菊兴, 宋扬, 等.藏北多龙矿集区尕尔勤枕状玄武岩地球化学及SHRIMP测年[J].地球学报, 2017, 38(5):702-710. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705010

    [31]

    段瑶瑶, 李亚林, 段志明.西藏羌塘地体南部多龙增生杂岩早三叠世辉长岩的发现及其地质意义[J].地质通报, 2016, 35(6):887-893. doi: 10.3969/j.issn.1671-2552.2016.06.006 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20160606&flag=1

    [32]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28:353-370. doi: 10.1111/ggr.2004.28.issue-3

    [33]

    Anderson, T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    [34]

    Ludwig K R. Isoplot 3.00: a geochronological toolkit for Microsoft Excel[M]. Special Publication No. 4, Berkeley Geochronology Center, 2003: 1-70.

    [35]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [36]

    王成善, 伊海生, 李勇, 等.西藏羌塘盆地地质演化与油气远景评价[M].北京:地质出版社, 2001:1-59.

    [37]

    王国芝, 王成善.西藏羌塘基底变质岩系的解体和时代厘定[J].中国科学(D辑), 2001, 31(增刊):77-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200101277821

    [38]

    黄继钧.羌塘盆地基底构造特征[J].地质学报, 2001, 75(3):333-337. doi: 10.3321/j.issn:0001-5717.2001.03.006

    [39]

    鲁兵, 刘池阳, 刘忠, 等.羌塘盆地的基底组成、结构特征及其意义[J].地震地质, 2001, 23(4):581-587. doi: 10.3969/j.issn.0253-4967.2001.04.012

    [40]

    李才, 王天武, 杨德明, 等.西藏羌塘中部都古尔花岗质片麻岩同位素年代学研究[J].长春科技大学学报, 2000, 30(2):105-109. doi: 10.3969/j.issn.1671-5888.2000.02.001

    [41]

    李才, 王天武, 杨德明, 等.西藏羌塘中央隆起区物质组成与构造演化[J].长春科技大学学报, 2001, 31(1):25-31. doi: 10.3969/j.issn.1671-5888.2001.01.005

    [42]

    李才.羌塘基底质疑[J].地质论评, 2003, 49(1):5-9. http://d.old.wanfangdata.com.cn/Periodical/dzlp200301002

    [43]

    李才, 翟庆国, 程立人, 等.青藏高原羌塘地区几个关键地质问题的思考[J].地质通报, 2005, 24(4):295-301. doi: 10.3969/j.issn.1671-2552.2005.04.001 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20050460&flag=1

    [44]

    李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评, 2008, 54(1):105-119. doi: 10.3321/j.issn:0371-5736.2008.01.012

    [45]

    李才, 翟刚毅, 王立全, 等.认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序)[J].地质通报, 2009, 28(9):1169-1177. doi: 10.3969/j.issn.1671-2552.2009.09.001 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20090901&flag=1

    [46]

    Wang M, Li C, Xie C M. Dating of detrital zircons from the Dabure clastic rocks:the discovery of Neoproterozoic strata in southern Qiangtang, Tibet[J]. International Geology Review, 2016, 58:216-227. doi: 10.1080/00206814.2015.1065207

    [47]

    李才, 程立人, 张以春, 等.西藏羌塘南部发现奥陶纪-泥盆纪地层[J].地质通报, 2004, 23(5/6):602-604. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200405107&flag=1

    [48]

    程立人, 陈寿铭, 张以春, 等.藏北羌塘南部发现早古生代地层及意义[J].地球科学, 2007, 32(1):59-62. doi: 10.3321/j.issn:1000-2383.2007.01.008

    [49]

    Liu Y M, Li C, Xie C M, et al. Cambrian granitic gneiss within the central Qiangtang terrane, Tibetan Plateau:implications for the early Palaeozoic tectonic evolution of the Gondwanan margin[J]. International Geology Review, 2016, 58:1043-1063. doi: 10.1080/00206814.2016.1141329

    [50]

    Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet:implications for the early Paleozoic tectonic evolution along the Gondwanan protoTethyan margin[J]. Lithos, 2015, 220/223:318-338. doi: 10.1016/j.lithos.2014.12.020

    [51]

    彭智敏, 耿全如, 王立全, 等.青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].科学通报, 2014, 59(26):2621-2629. http://qikan.cqvip.com/article/detail.aspx?id=662538486

    [52]

    Flowerdew M J, Chew D M, Daly J S, et al. Hidden Archaean and Palaeoproterozoic crust in NW Ireland? Evidence from zircon Hf isotopic data from granitoid intrusions[J]. Geological Magazine, 2009, 146:903-906. doi: 10.1017/S0016756809990227

    [53]

    Mole D R, Fiorentini M L, Cassidy K F, et al. Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean craton[J]. Geological Society London Special Publications, 2013, 393:23-80. http://cn.bing.com/academic/profile?id=d9394ce0daca5c0c7c782a22030dc1f3&encoded=0&v=paper_preview&mkt=zh-cn

    [54]

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005

    [55]

    Li X K, Chen J, Wang R C, et al. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet:Implications for crustal architecture, Meso-Tethyan evolution and regional mineralization[J]. Earth-Science Reviews, 2018, 185:374-396. doi: 10.1016/j.earscirev.2018.04.005

    [56]

    Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23:1429-1454. doi: 10.1016/j.gr.2012.02.002

    [57]

    李兴奎, 李才, 孙振明, 等.西藏赛角铜金矿闪长岩LA-ICP-MS锆石U-Pb年龄、Hf同位素和地球化学特征及成矿意义[J].地质通报, 2015, 34(5):908-918. doi: 10.3969/j.issn.1671-2552.2015.05.011 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20150511&flag=1

    [58]

    李兴奎, 李才.西藏多龙超大型铜金矿岩浆起源和构造背景研究[J].矿物学报, 2015, 35(S1):410-411. http://d.old.wanfangdata.com.cn/Conference/9132730

    [59]

    Hao L L, Wang Q, Wyman D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc:Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245:223-242. doi: 10.1016/j.lithos.2015.09.015

    [60]

    Li J X, Qin K Z, Li G M, et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos, 2014, 198/199:77-91. doi: 10.1016/j.lithos.2014.03.025

    [61]

    Lee C-T A, Luffi P, Chin E J, et al. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science, 2012, 336:64-68. doi: 10.1126/science.1217313

    [62]

    Core D P, Kesler S E, Essene E J. Unusually Cu-rich magmas associated with giant porphyry copper deposits:Evidence from Bingham, Utah[J]. Geology, 2006, 34:41-44. doi: 10.1130/G21813.1

    [63]

    Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43:247-250. doi: 10.1130/G36362.1

    吉林大学地质调查研究院. 西藏改则多不扎1∶5万4幅区域地质调查报告. 2016.

  • 加载中

(4)

(1)

计量
  • 文章访问数:  913
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2018-01-15
修回日期:  2018-03-13
刊出日期:  2018-08-15

目录