藏北羌塘中部日湾茶卡地区晚三叠世安山岩与闪长质包体岩石成因及地质意义

吴浩, 李才, 解超明, 范建军, 陈景文. 藏北羌塘中部日湾茶卡地区晚三叠世安山岩与闪长质包体岩石成因及地质意义[J]. 地质通报, 2018, 37(8): 1428-1438.
引用本文: 吴浩, 李才, 解超明, 范建军, 陈景文. 藏北羌塘中部日湾茶卡地区晚三叠世安山岩与闪长质包体岩石成因及地质意义[J]. 地质通报, 2018, 37(8): 1428-1438.
WU Hao, LI Cai, XIE Chaoming, FAN Jianjun, CHEN Jingwen. The petrogenesis and geological significance of the Late Triassic andesite and dioritic xenolith in the Riwanchaka area, central Qiangtang, northern Tibet[J]. Geological Bulletin of China, 2018, 37(8): 1428-1438.
Citation: WU Hao, LI Cai, XIE Chaoming, FAN Jianjun, CHEN Jingwen. The petrogenesis and geological significance of the Late Triassic andesite and dioritic xenolith in the Riwanchaka area, central Qiangtang, northern Tibet[J]. Geological Bulletin of China, 2018, 37(8): 1428-1438.

藏北羌塘中部日湾茶卡地区晚三叠世安山岩与闪长质包体岩石成因及地质意义

  • 基金项目:
    中国博士后科学基金《西藏多不扎地区下白垩统去申拉组的发现与地质意义探讨》(编号:2016M600353)和江苏省青年基金项目《西藏中部拉布错蛇绿岩中斜长石的形成时代、岩石成因与大地构造意义》(编号:BK20170877)
详细信息
    作者简介: 吴浩(1989-), 男, 博士后, 从事青藏高原岩浆作用与构造演化研究。E-mail:wuhaojlu@126.com
  • 中图分类号: P534.51;P588.1

The petrogenesis and geological significance of the Late Triassic andesite and dioritic xenolith in the Riwanchaka area, central Qiangtang, northern Tibet

  • 龙木错-双湖-澜沧江缝合带将羌塘板块划分为南、北2个次级板块,在缝合带两侧大规模发育晚三叠世岩浆作用,并伴随大量的高压超高压变质岩。在缝合带以南的日湾茶卡地区识别出一套安山岩,其中发育大量的暗色闪长质捕虏体,锆石U-Pb测年结果在安山岩中获得了364.7±1.9Ma和223.9±1.3Ma两组年龄信息,锆石原位Hf同位素测试结果εHft)分别为+7.22~+8.69和-5.94~-4.14。结合羌塘中部已有的研究成果,认为闪长质捕虏体形成于晚泥盆世洋壳俯冲背景,是地幔楔部分熔融底侵至地壳的产物;而安山岩形成于晚三叠世碰撞后伸展背景,是深部板片断离机制下深俯冲陆壳边缘一侧熔体混染晚泥盆世新生地壳的产物。安山岩中闪长质捕虏体的发现支持了俯冲带作为大陆生长的重要场所的观点。

  • 加载中
  • 图 1  藏北羌塘中部日湾茶卡地区地质简图(a)及岩石样品野外和镜下照片(b~d)

    Figure 1. 

    图 2  安山岩与闪长质捕虏体锆石206Pb/238U年龄和阴极发光(CL)图像

    Figure 2. 

    图 3  安山岩与闪长质捕虏体地球化学判别图解

    Figure 3. 

    图 4  安山岩与闪长质捕虏体球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(原始地幔、球粒陨石和上地壳数据据参考文献[23])

    Figure 4. 

    图 5  安山岩与闪长质捕虏体年龄-εHf(t)协变图

    Figure 5. 

    表 1  LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS zircon isotopic U-Th-Pb analyses

    点号 元素含量/10-6 207Pb/206Pb 同位素比值(±1σ) 年龄/Ma(±1σ)
    Th U Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    晚三叠世结晶锆石
    02 171 300 12.0 0.05058 0.00314 0.24521 0.01517 0.03516 0.00067 222 107 223 12 223 4
    05 159 202 8.53 0.05063 0.00407 0.24920 0.01983 0.03570 0.00076 224 141 226 16 226 5
    06 143 212 8.97 0.05064 0.00414 0.25176 0.02042 0.03606 0.00076 224 145 228 17 228 5
    09 203 320 13.2 0.05056 0.00293 0.25087 0.01441 0.03599 0.00071 221 96 227 12 228 4
    10 132 154 6.43 0.05030 0.00539 0.23480 0.02491 0.03386 0.00080 209 195 214 20 215 5
    11 98.0 671 23.9 0.05063 0.00214 0.24713 0.01042 0.03540 0.00064 224 64 224 8 224 4
    12 195 326 13.1 0.05040 0.00330 0.24389 0.01581 0.03510 0.00070 213 111 222 13 222 4
    13 85.3 688 23.7 0.05051 0.00232 0.24153 0.01112 0.03468 0.00061 219 74 220 9 220 4
    20 153 237 9.75 0.05061 0.00343 0.25083 0.01692 0.03594 0.00067 223 120 227 14 228 4
    21 179 304 11.8 0.05331 0.00260 0.25590 0.01244 0.03481 0.00063 342 77 231 10 221 4
    23 342 406 17.6 0.05075 0.00202 0.25227 0.01001 0.03605 0.00063 229 59 228 8 228 4
    晚泥盆世继承锆石
    01 118 132 9.33 0.05351 0.00458 0.42418 0.03583 0.05750 0.00132 350 150 359 26 360 8
    03 126 123 9.27 0.05406 0.00410 0.44639 0.03357 0.05989 0.00124 374 133 375 24 375 8
    04 232 193 15.0 0.05391 0.00356 0.43661 0.02867 0.05874 0.00114 367 113 368 20 368 7
    07 359 226 19.4 0.05402 0.00328 0.44510 0.02671 0.05976 0.00122 372 98 374 19 374 7
    08 190 174 13.2 0.05387 0.00458 0.42974 0.03634 0.05786 0.00118 366 155 363 26 363 7
    14 119 148 10.4 0.05402 0.00331 0.43548 0.02642 0.05846 0.00116 372 101 367 19 366 7
    15 435 261 21.6 0.05393 0.00257 0.42919 0.02040 0.05772 0.00105 368 74 363 14 362 6
    16 170 155 11.5 0.05379 0.00309 0.42446 0.02425 0.05723 0.00109 362 94 359 17 359 7
    17 122 110 8.26 0.05387 0.00336 0.43547 0.02681 0.05863 0.00120 366 102 367 19 367 7
    19 185 145 10.9 0.05385 0.00343 0.42072 0.02661 0.05666 0.00111 365 107 357 19 355 7
    22 245 197 14.8 0.05355 0.00269 0.42109 0.02096 0.05703 0.00106 352 79 357 15 358 6
    24 219 199 14.9 0.05391 0.00245 0.43442 0.01962 0.05844 0.00106 367 69 366 14 366 6
    25 152 162 11.8 0.05379 0.00278 0.43958 0.02255 0.05926 0.00109 362 82 370 16 371 7
    注:测试单位为中国地质大学(北京)地学实验中心
    下载: 导出CSV

    表 2  安山岩与闪长质捕虏体主量和微量元素分析结果

    Table 2.  Major and trace element compositions of andesites and dioritic xenoliths

    元素 R3T4H11 R3T4H12 R3T4H13 R3T4H14 R3T4H18 R3T6H1 R3T6H2 R3T6H4 R3T6H5 R3T6H6 R3T6H7 R3T6H9 R3T6H10 R3T6H11 R3T6H12 R3T6H13
    安山岩 安山岩 闪长质捕虏体
    SiO2 53.0 57.6 52.5 49.3 54.9 57.3 55.5 61.2 56.2 55.7 55.5 46.6 49.6 47.3 53.0 51.0
    TiO2 1.13 1.01 0.90 0.93 0.87 1.01 1.08 0.74 1.03 1.05 1.05 0.97 0.94 1.40 1.09 1.26
    Al2O3 16.5 15.0 16.3 19.3 16.0 16.9 17.1 14.6 16.8 17.1 17.1 19.3 18.4 17.2 16.1 17.6
    TFe2O3 8.87 7.95 8.35 8.20 8.04 7.23 7.97 6.66 7.84 7.85 8.11 9.25 8.83 10.59 8.93 10.41
    MnO 0.13 0.11 0.11 0.10 0.11 0.10 0.10 0.09 0.09 0.10 0.10 0.13 0.12 0.18 0.16 0.18
    MgO 5.49 4.71 6.88 4.05 5.05 3.04 3.14 3.55 3.14 3.14 3.11 6.23 5.81 4.08 3.74 5.59
    CaO 6.65 5.95 9.37 8.57 8.53 5.81 5.79 6.89 6.08 5.86 5.88 9.70 8.85 5.40 4.43 2.12
    Na2O 3.18 3.04 2.41 4.92 2.56 3.87 4.28 2.72 3.90 4.10 4.12 2.91 2.68 7.93 7.26 6.43
    K2O 1.87 1.73 0.64 0.81 1.14 1.90 1.98 1.04 1.81 1.83 1.90 1.24 1.26 0.38 0.25 0.65
    P2O5 0.25 0.22 0.17 0.17 0.19 0.26 0.21 0.16 0.21 0.21 0.22 0.22 0.22 0.47 0.42 0.44
    烧失量 1.94 1.94 1.50 2.56 1.79 1.95 1.90 1.75 1.99 2.07 1.96 2.18 2.18 4.05 3.82 3.43
    总计 99.1 99.3 99.1 98.9 99.1 99.4 99.1 99.4 99.1 99.1 99.1 98.8 98.9 99.0 99.2 99.1
    Cr 96.2 91.1 154 98.7 109 20.8 22.0 59.6 17.1 18.7 19.2 118 111 69.8 71.7 75.3
    Co 30.6 29.0 35.5 23.3 31.9 20.8 18.0 22.1 17.8 18.4 18.0 29.5 31.0 23.8 25.5 27.7
    Ni 92.1 87.9 121.6 24.5 83.8 11.8 10.2 35.4 8.4 9.2 11.2 87.8 80.1 24.0 35.3 35.9
    Cu 94.1 86.8 54.4 49.3 79.1 121.8 116.4 55.2 39.1 132.0 33.3 73.1 62.8 62.9 43.8 31.1
    Zn 86.1 76.4 69.8 73.4 77.8 88.3 67.5 76.9 67.1 69.6 68.5 63.4 69.5 85.3 91.9 96.9
    Ga 19.1 17.9 16.9 17.7 18.8 22.2 19.0 18.1 18.6 19.3 18.5 17.3 19.0 21.3 17.5 21.1
    Rb 37.4 33.5 11.4 17.3 25.3 36.0 35.2 20.8 30.9 32.2 33.1 23.1 27.0 6.9 5.0 13.4
    Sr 636 635 475 1054 645 786 835 701 743 811 774 616 648 259 282 356
    Y 21.0 19.9 16.1 16.3 14.9 21.5 19.0 15.3 19.2 19.5 19.1 14.0 15.6 21.4 19.3 21.5
    Zr 126 120 72.8 79.3 66.3 124 118 85.7 125 127 125 62.9 69.5 116 115 112
    Nb 7.29 6.90 4.72 4.27 3.67 7.86 6.04 4.27 6.07 6.14 6.04 3.35 3.75 6.53 6.50 6.31
    Cs 1.76 1.59 1.07 1.31 2.35 3.20 2.52 1.78 2.48 2.98 2.97 2.20 2.81 0.29 0.32 1.08
    Ba 543 636 250 236 424 664 563 366 581 596 561 398 453 151 103 244
    La 15.9 15.1 8.91 11.6 9.1 17.0 15.2 11.7 15.5 15.4 15.3 8.79 9.76 15.9 15.9 16.7
    Ce 33.5 31.8 19.6 24.6 20.1 35.7 31.6 24.5 32.1 32.2 31.9 19.2 21.3 33.9 34.0 34.8
    Pr 4.25 4.04 2.62 3.15 2.67 4.42 3.96 3.15 4.05 4.03 4.02 2.56 2.84 4.41 4.32 4.45
    Nd 17.9 17.1 11.6 13.5 12.0 18.7 16.6 13.5 16.9 16.9 16.8 11.5 12.7 19.1 18.1 18.6
    Sm 4.10 3.90 2.89 3.17 2.88 4.26 3.77 3.13 3.87 3.88 3.84 2.78 3.08 4.36 3.98 4.07
    Eu 1.38 1.33 1.10 1.10 1.12 1.36 1.25 1.15 1.27 1.28 1.25 1.07 1.16 1.43 1.09 1.14
    Gd 4.22 3.98 3.12 3.25 3.04 4.39 3.86 3.21 3.89 3.95 3.92 2.92 3.23 4.49 3.96 4.15
    Tb 0.63 0.59 0.47 0.48 0.45 0.68 0.57 0.46 0.57 0.58 0.57 0.43 0.48 0.64 0.57 0.63
    Dy 3.90 3.69 3.05 3.03 2.82 4.01 3.54 2.89 3.59 3.65 3.58 2.69 2.99 4.01 3.54 3.96
    Ho 0.79 0.75 0.62 0.61 0.57 0.84 0.72 0.59 0.73 0.74 0.72 0.54 0.60 0.81 0.72 0.81
    Er 2.30 2.18 1.80 1.80 1.64 2.37 2.08 1.69 2.12 2.14 2.13 1.55 1.73 2.31 2.12 2.34
    Tm 0.32 0.31 0.25 0.25 0.23 0.34 0.29 0.23 0.30 0.30 0.29 0.21 0.24 0.32 0.29 0.33
    Yb 2.12 2.03 1.62 1.65 1.46 2.23 1.94 1.52 1.98 1.97 1.94 1.42 1.54 2.08 2.01 2.11
    Lu 0.31 0.30 0.24 0.24 0.22 0.34 0.28 0.22 0.29 0.29 0.28 0.20 0.23 0.31 0.30 0.31
    Hf 3.14 2.99 1.85 2.06 1.73 3.01 3.12 2.17 3.15 3.21 3.16 1.65 1.80 2.84 2.79 2.71
    Ta 0.54 0.65 0.38 0.28 0.25 0.63 0.39 0.26 0.38 0.43 0.38 0.20 0.23 0.38 0.38 0.57
    Pb 4.67 4.61 2.39 4.80 2.99 6.56 5.52 3.56 5.60 5.60 5.52 2.88 2.84 6.67 7.81 9.03
    Th 2.70 2.60 0.81 1.64 0.89 2.52 2.40 1.36 2.47 2.49 2.47 0.90 1.01 1.33 1.37 1.26
    U 0.61 0.61 0.21 0.47 0.22 0.70 0.60 0.33 0.61 0.63 0.61 0.22 0.24 0.37 0.43 0.42
    Mg# 59 58 66 53 59 49 48 55 48 48 47 61 61 47 49 56
    注:测试单位为中国地质大学(北京)地学实验中心;主量元素含量单位为%,微量元素为10-6
    下载: 导出CSV

    表 3  锆石Lu-Hf同位素组成

    Table 3.  Lu-Hf isotopes of zircons

    点号 年龄/Ma 176Hf/177Hf 176Lu/177Hf 176Yb/177Hf εHf(0) εHf(t) TDM1 TDMC fLu/Hf
    晚三叠世结晶锆石
    3 224 0.282520 0.000010 0.001193 0.000013 0.030494 0.000317 8.92 0.63 4.18 0.65 1041 1358 0.96
    6 224 0.282491 0.000011 0.000413 0.000008 0.010748 0.000166 -9.93 0.65 -5.07 0.67 1059 1407 -0.99
    7 224 0.282519 0.000010 0.000625 0.000006 0.015140 0.000123 -8.96 0.61 -4.14 0.63 1027 1356 -0.98
    8 224 0.282466 0.000010 0.000339 0.000009 0.008516 0.000179 -10.8 0.62 -5.94 0.64 1092 1456 -0.99
    9 224 0.282487 0.000011 0.000598 0.000010 0.015723 0.000218 -10.1 0.64 -5.26 0.66 1071 1418 -0.98
    12 224 0.282515 0.000009 0.000357 0.000006 0.009421 0.000188 -9.08 0.61 -4.21 0.62 1025 1360 -0.99
    13 224 0.282515 0.000011 0.000452 0.000007 0.011811 0.000166 -9.09 0.64 -4.23 0.66 1027 1361 -0.99
    16 224 0.282511 0.000011 0.000401 0.000001 0.010006 0.000043 -9.23 0.65 -4.37 0.66 1032 1368 -0.99
    晚泥盆世继承锆石
    1 365 0.282800 0.000013 0.003308 0.000058 0.087865 0.001951 1.00 0.69 8.23 0.72 682 780 -0.90
    2 365 0.282797 0.000010 0.001363 0.000008 0.034879 0.000216 0.88 0.63 8.59 0.65 651 761 -0.96
    4 365 0.282808 0.000012 0.002762 0.000017 0.073217 0.000460 1.28 0.67 8.64 0.69 660 757 -0.92
    5 365 0.282805 0.000013 0.002723 0.000112 0.072180 0.002972 1.16 0.69 8.53 0.73 664 763 -0.92
    10 365 0.282781 0.000010 0.002795 0.000032 0.074081 0.001359 0.33 0.63 7.69 0.66 700 811 -0.92
    11 365 0.282801 0.000014 0.002343 0.000016 0.063670 0.000697 1.01 0.71 8.48 0.73 664 767 -0.93
    14 365 0.282760 0.000011 0.001583 0.000030 0.041726 0.000676 -0.43 0.65 7.22 0.68 709 837 -0.95
    15 365 0.282804 0.000016 0.001943 0.000009 0.052127 0.000289 1.12 0.76 8.69 0.78 652 755 -0.94
    下载: 导出CSV
  • [1]

    李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报, 1987, 2:155-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001164867

    [2]

    李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评, 2008, 1:105-119. doi: 10.3321/j.issn:0371-5736.2008.01.012

    [3]

    李才, 程立人, 胡克, 等.西藏龙木错-双湖古特提斯缝合带研究[M].北京:地质出版社, 1995.

    [4]

    吴彦旺.龙木错-双湖-澜沧江洋历史记录——寒武纪-二叠纪的蛇绿岩[D].吉林大学博士学位论文, 2013.

    [5]

    Jiang Q Y, Li C, Su L, et al. Carboniferous arc magmatism in the Qiangtang area, northern Tibet:Zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 100:132-144. doi: 10.1016/j.jseaes.2015.01.012

    [6]

    邓万明.青藏古特提斯蛇绿岩带与-冈瓦纳古陆北界‖[C]//张旗.蛇绿岩与地球动力学研究.北京: 地质出版社, 1996, 172-176.http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=255120

    [7]

    邓万明.青藏高原北部新生代板内火山岩[M].北京:地质出版社, 1999.

    [8]

    潘桂棠, 李兴振.青藏高原及邻区大地构造单元初步划分[J].地质通报, 2002, 21(11):701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=2002011160&flag=1

    [9]

    潘桂棠, 王立全, 朱弟成.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报, 2004, 23(1):12-19. doi: 10.3969/j.issn.1671-2552.2004.01.007 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20040108&flag=1

    [10]

    潘桂棠, 朱弟成, 王立全, 等.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘, 2004, 11(4):371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004

    [11]

    李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 4:136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011

    [12]

    Kapp P, Yin A, Manning C E, et al. Tectonic evolution of the early Mesozoic blueschist bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4):1043-1053. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2002TC001383/

    [13]

    李才, 翟庆国, 董永胜, 等.青藏高原羌塘中部榴辉岩的发现及其意义[J].科学通报, 2006, 1:70-74. doi: 10.3321/j.issn:0023-074X.2006.01.014

    [14]

    李才, 翟庆国, 陈文, 等.青藏高原羌塘中部榴辉岩Ar-Ar定年[J].岩石学报, 2006, 12:2843-2849. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612003

    [15]

    Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the PaleoTethys Ocean[J]. Geology, 2008, 36:351-354. doi: 10.1130/G24435A.1

    [16]

    Wu H, Xu W, Li C, et al. Partial melting of subducted Southern Qiangtang crust in northern Tibet:evidence from the geochemistry and geochronology of the Riwanchaka granodiorite porphyry in Central Qiangtang[J]. International Geology Review, 2018, 17:1-16. http://cn.bing.com/academic/profile?id=6f6e118ba8cdf4ead0646f6075b2de69&encoded=0&v=paper_preview&mkt=zh-cn

    [17]

    Zhai Q G, Zhang R Y, John B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China:petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125:173-189. doi: 10.1016/j.lithos.2011.02.004

    [18]

    Zhai Q G, Jahn B M, Zhang R Y, et al. Triassic subduction of the Paleo-Tethys in northern Tibet, China:evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block[J]. Journal of Asian Earth Sciences, 2011, 42:1356-1370. doi: 10.1016/j.jseaes.2011.07.023

    [19]

    Wu H, Li C, Chen J, et al. Late Triassic tectonic framework and evolution of Central Qiangtang, Tibet, SW China[J]. Lithosphere, 2016, 8(2):141-149. doi: 10.1130/L468.1

    [20]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-342. doi: 10.1016/0009-2541(77)90057-2

    [21]

    Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007, 48:2341-2357. doi: 10.1093/petrology/egm062

    [22]

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanicrocks from Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745

    [23]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 528-548.http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=specpubgsl&resid=42/1/313

    [24]

    Wang B, Wang L, Chen J, et al. Petrogenesis of Late DevonianEarly Carboniferous volcanic rocks in northern Tibet:New constraints on the Paleozoic tectonic evolution of the Tethyan Ocean[J]. Gondwana Research, 2017, 41:142-156. doi: 10.1016/j.gr.2015.09.007

    [25]

    Anderson A T. Magma mixing:petrological process and volcanological tool[J]. Journal of Volcanology and Geothermal Research, 1976, 1(1):3-33. doi: 10.1016/0377-0273(76)90016-0

    [26]

    Patchett P J. Hafnium isotope results from mid-ocean ridges and kerguelen[J]. Lithos, 1983, 16(1):47-51. doi: 10.1016/0024-4937(83)90033-6

    [27]

    Cherniak D J. Diffusion in Zircon[J]. Physics and Chemistry of Minerals, 2003, 53(53):113-143. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0009-2541(96)00098-8/

    [28]

    彭虎.青藏高原羌塘中部下石炭统日湾茶卡组的物源分析及构造属性探讨[D].吉林大学硕士学位论文, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10183-1015594709.htm

    [29]

    Zhang T Y, Fan J J, Li C, et al. Early Carboniferous ophiolite in central Qiangtang, northern Tibet:record of an oceanic back-arc system in the Palaeo-Tethys Ocean[J]. International Geology Review, 2017, 60(4):449-463. http://cn.bing.com/academic/profile?id=ffe86f3eb8df9adf0ff8b6a393eff06c&encoded=0&v=paper_preview&mkt=zh-cn

    [30]

    施建荣, 董永胜, 王生云.藏北羌塘中部果干加年山斜长花岗岩定年及其构造意义[J].地质通报, 2009, 9:1236-1243. doi: 10.3969/j.issn.1671-2552.2009.09.011 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20090911&flag=1

    [31]

    Chen S S, Shi R D, Yi G D, et al. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet):Geochronology, petrogenesis, and tectonic implications[J]. Tectonophysics, 2016, 666:90-102. doi: 10.1016/j.tecto.2015.10.017

    [32]

    李才, 翟庆国, 董永胜, 等.青藏高原羌塘中部果干加年山上三叠统望湖岭组的建立及意义[J].地质通报, 2007, 26(8):1003-1008. doi: 10.3969/j.issn.1671-2552.2007.08.012 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200708161&flag=1

    [33]

    宋春彦, 王剑, 付修根, 等.青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义[J].吉林大学学报(地球科学版), 2012, 2:526-535. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201202030

    [34]

    Fu X G, Wang J, Tan F W, et al. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet(China):Age and tectonic implications[J]. Gondwana Research, 2010, 17(1):135-144. doi: 10.1016/j.gr.2009.04.010

    [35]

    Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    [36]

    Eby G N. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    [37]

    Bonin B. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(s1/2):1-29. http://cn.bing.com/academic/profile?id=962e707b4f4e3838ef575fe70fdbae37&encoded=0&v=paper_preview&mkt=zh-cn

    [38]

    李才.西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J].科学通报, 1997, 42(4):488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700343420

    [39]

    Kapp P, Yin A, Manning C E, et al. Blueschist-bearing metamorphic core complexes in Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28(1):19-22. doi: 10.1130/0091-7613(2000)28<19:BMCCIT>2.0.CO;2

    [40]

    Blanckenburg F, Davies J H. Slab breakoff:A model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14:120-131. doi: 10.1029/94TC02051

    [41]

    Davies J H, Blanckenburg F. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129:85-102. doi: 10.1016/0012-821X(94)00237-S

    [42]

    Hunen J V, Allen M B. Continental collision and slab break-off:a comparison of 3-D numerical models with observation[J]. Earth and Planetary Science Letters, 2011, 302(1/2):27-37. http://cn.bing.com/academic/profile?id=6400db630f96b6289dbd76a1ae299926&encoded=0&v=paper_preview&mkt=zh-cn

    [43]

    张修政, 董永胜, 李才, 等.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据[J].岩石学报, 2014, 10:2821-2834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003

    [44]

    Zhai Q G, Jahn B M, Su L, et al. Triassic arc magmatism in the Qiangtang area, northern Tibet:Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 63:162-178. doi: 10.1016/j.jseaes.2012.08.025

    [45]

    Taylor S R. The origin and growth of continents[J]. Tectonophysics, 1967, 4(1):17-34. doi: 10.1016/0040-1951(67)90056-X

    [46]

    Taylor S R. Island arc models and the composition of the continental crust[C]//Talwani M, Pitman Ⅲ W C. Island arcs, deep sea trenches, and back-arc basins. Maurice Ewing Series, vol. 1. AGU, Washington, D.C, 1977: 325-335.http://ci.nii.ac.jp/naid/10008801216

  • 加载中

(5)

(3)

计量
  • 文章访问数:  671
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2018-03-12
修回日期:  2018-04-10
刊出日期:  2018-08-15

目录