The petrogenesis and tectonic significance of the latest Late Cretaceous arc igneous rocks in Sumdo area, Tibet
-
摘要:
新特提斯洋在晚白垩世末期(68Ma左右)的构造演化一直饱受争议。西藏松多地区晚白垩世末期弧岩浆岩包括花岗斑岩和二长花岗岩。锆石定年结果显示,二长花岗岩和花岗斑岩年龄均为68Ma。松多花岗斑岩和二长花岗岩的SiO2含量为68.5%~80.6%,K2O含量为4.1%~6.5%,P2O5含量为0.011%~0.058%。花岗斑岩Mg#值较低,为11.3~19.0,二长花岗岩Mg#值为24.2~43.5。花岗斑岩和二长花岗岩样品均显示轻稀土元素富集、重稀土元素亏损和明显的Eu(δEu=0.15~1.21)负异常。两者均富集大离子亲石元素Rb、Th、U、K、Pb等,亏损高场强元素Nb、Ta、Ti。花岗斑岩εHf(t)值为-0.9~+2.9,二阶段模式年龄TDMC在955~1196Ma之间; 二长花岗岩εHf(t)值为-17.1~+7.9(只有1个点为负值),二阶段模式年龄在633~2219Ma之间。最终认为,松多地区晚白垩世末期二长花岗岩和花岗斑岩岩浆源区为新生下地壳,但花岗斑岩更靠近古老下地壳。结合区域资料,认为新特提斯洋在晚白垩世末期68Ma左右属于洋脊俯冲结束阶段。
Abstract:The tectonic evolution of the Neo-Tethys Ocean in the last phase of Late Cretaceous around 68Ma has been controversial. This paper firstly reports the last phase of Late Cretaceous arc igneous rocks in the Sumdo area of Tibet. They consist of granite porphyry and monzogranite. Zircon dating results show that the age of granite porphyry and monzogranite is 68Ma. The granite porphyry and monzogranite have the data SiO2(68.5%~80.6%), K2O (4.1%~6.5%), and P2O5 (0.011%~0.058%). The granite porphyry contains low Mg# values (11.3~19.0), and the monzogranite has high Mg# values (24.2~43.5). The granite porphyry and monzogranite show light REE enrichment, heavy REE depletion, and obvious negative Eu anomalies. They both are enriched in large-ion lithophile elements such as Rb, Th, U, K and Pb, and depleted in high-field-strength elements such as Nb, Ta and Ti. The granite porphyry has εHf(t) values ranging between -0.9 and +2.9, corresponding to TDMC model ages 955~1196Ma. The εHf(t) values of the monzogranite are -17.1~+7.9, with only one point being negative, corresponding to TDMC model ages 633~2219Ma. The authors have thus drawn the conclusion that the magma source of the granite porphyry and monzogranite in the Songdo area was new lower crust, but the granite porphyry was closer to the ancient lower crust. Combined with regional data, the authors hold that the Neo-Tethys Ocean belongs to the end stage of ocean ridge subduction in the last phase of Late Cretaceous around 68Ma.
-
-
图 1 冈底斯岩浆岩带构造地质简图(据参考文献[24]修改)
Figure 1.
图 5 松多地区花岗斑岩和二长花岗岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化数据据参考文献[53])
Figure 5.
图 7 松多地区花岗斑岩和二长花岗岩YbN-(La/Yb)N(a)和Y-Sr/Y(b)图解[54]
Figure 7.
图 9 松多地区花岗斑岩与二长花岗岩SiO2- MgO(a)、SiO2-V(b)、SiO2-TFe2O3(c)、SiO2-Co(d)、Sr-Ba(e)、Sr-Rb/Sr(f)和SiO2- Al2O3(g)图解[68]
Figure 9.
表 1 松多地区花岗斑岩和二长花岗岩主量、微量和稀土元素测试结果
Table 1. Major, trace and rare earth element data for granite porphyry and monzogranite from Sumdo area
样品号 S16T44H1 S16T44H2 S16T44H3 S16T44H4 S16T44H5 S16T44H6 S16T88H1 S16T88H2 S16T88H3 S16T88H4 S16T88H5 岩性 花岗斑岩 二长花岗岩 SiO2 76.12 78.10 80.57 72.94 68.45 76.24 76.38 74.68 75.57 77.79 77.23 TiO2 0.04 0.03 0.03 0.04 0.04 0.03 0.18 0.25 0.15 0.11 0.06 Al2O3 13.81 12.68 9.67 15.71 18.32 13.20 13.06 13.80 13.68 12.98 12.86 TFe2O3 1.50 1.26 1.12 1.58 1.59 1.19 0.88 1.37 0.92 0.48 0.38 MnO 0.06 0.05 0.06 0.07 0.06 0.06 0.07 0.06 0.05 0.02 0.09 MgO 0.13 0.08 0.06 0.16 0.12 0.09 0.29 0.41 0.24 0.10 0.05 CaO 0.32 0.05 0.36 0.49 0.89 0.56 0.99 1.09 0.89 0.87 0.37 Na2O 2.23 2.79 2.99 2.58 3.96 3.36 3.30 3.39 3.66 3.52 3.44 K2O 5.75 4.94 5.12 6.40 6.53 5.25 4.83 4.88 4.79 4.11 5.50 P2O5 0.02 0.02 0.02 0.03 0.04 0.02 0.03 0.06 0.04 0.01 0.01 Mg# 17.25 12.17 11.34 19.05 14.85 14.83 43.45 41.36 37.76 33.01 24.23 烧失量 1.52 1.06 1.13 1.70 1.70 1.24 0.46 0.63 0.51 5.85 0.20 Li 20.48 17.94 11.32 15.57 11.40 10.12 18.26 17.93 16.82 25.18 18.24 Sc 7.56 7.24 5.73 4.85 3.64 4.24 4.14 3.74 2.69 2.61 5.43 V 4.68 3.33 3.14 2.37 2.08 2.35 11.98 10.94 6.16 5.03 2.09 Cr 1.69 1.87 2.98 1.56 0.92 1.28 2.41 1.19 2.49 1.22 3.50 Co 0.40 0.42 0.59 0.37 0.38 0.38 1.43 1.41 0.73 0.48 0.33 Ni 1.25 1.16 1.64 1.30 0.71 0.56 2.25 0.87 0.72 0.78 2.60 Ga 18.91 18.57 18.52 17.13 15.65 16.45 14.58 9.10 8.09 9.99 13.44 Rb 245.8 214.2 254.0 242.2 212.6 215.4 192.1 119.6 104.2 87.5 231.4 Sr 16.25 26.38 29.28 18.47 25.45 30.09 128.06 87.50 69.46 54.90 19.36 Y 39.96 39.12 35.08 33.16 24.90 29.46 20.70 9.25 12.62 10.38 29.90 Zr 83.03 99.04 93.10 73.39 86.34 72.54 89.60 62.76 48.76 58.59 56.30 Nb 20.25 20.23 22.19 17.85 17.74 17.27 16.56 7.62 7.02 7.50 11.69 Cs 6.45 3.95 5.35 6.92 4.23 4.94 17.00 6.38 5.38 6.29 8.79 Ba 170.9 159.8 163.3 207.8 175.9 197.0 458.8 240.4 205.8 178.6 27.0 La 22.72 22.02 22.44 21.16 17.93 19.30 19.91 15.78 9.00 9.81 11.29 Ce 49.90 48.54 54.12 45.50 41.10 43.38 42.68 31.26 18.68 17.32 19.97 Pr 6.03 5.90 5.95 5.58 4.68 5.13 4.66 3.43 2.13 1.93 2.13 Nd 22.74 22.20 22.46 21.36 17.74 19.45 15.55 11.71 7.49 6.53 6.75 Sm 6.37 6.18 6.18 5.84 4.78 5.30 3.28 2.18 1.72 1.37 1.40 Eu 0.35 0.34 0.31 0.31 0.24 0.26 0.54 0.37 0.29 0.55 0.16 Gd 6.69 6.49 6.33 6.33 5.00 5.64 2.94 1.79 1.70 1.42 1.62 Tb 1.12 1.09 1.03 1.01 0.78 0.89 0.48 0.27 0.30 0.24 0.40 Dy 6.94 6.84 6.38 6.58 5.04 5.81 2.97 1.60 1.97 1.61 3.75 Ho 1.40 1.39 1.27 1.35 1.01 1.18 0.62 0.32 0.43 0.35 1.10 Er 4.06 4.05 3.67 3.66 2.74 3.22 1.88 0.98 1.36 1.15 4.23 Tm 0.57 0.57 0.51 0.54 0.40 0.47 0.30 0.15 0.21 0.18 0.74 Yb 3.64 3.68 3.25 3.47 2.52 3.05 2.13 1.06 1.42 1.25 5.63 Lu 0.52 0.52 0.45 0.52 0.38 0.46 0.32 0.16 0.22 0.19 0.87 Hf 2.34 2.59 2.62 2.18 2.34 2.11 2.21 1.57 1.22 1.59 1.67 Ta 1.14 1.17 1.28 1.15 1.13 1.10 1.03 0.44 0.44 0.45 0.69 Pb 44.16 40.54 38.86 74.04 65.95 56.21 23.68 11.32 11.18 18.13 20.90 Th 22.60 22.82 23.64 29.19 25.21 27.87 16.96 9.89 8.19 10.58 13.41 U 6.27 6.47 7.02 10.70 10.69 10.22 2.98 1.41 1.66 2.73 3.62 注:主量元素含量单位为%,微量和稀土元素为10-6 表 2 松多地区花岗斑岩和二长花岗岩LA-ICP-MS锆石U-Th-Pb同位素测试结果
Table 2. LA-ICP-MS zircon U-Th-Pb isotopic data for granite porphyry and monzogranite from Sumdo area
点号 元素含量/10-6 Th/U 同位素比值(±1σ) 年龄/Ma(±1σ) Th U Pb 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U ST44-01 978 2364 26.76 0.41 0.05049 0.07497 0.01077 218 73 69.1 ST44-02 298 306 3.97 0.98 0.05038 0.07492 0.01078 213 73 69.1 ST44-03 767 2146 23.99 0.36 0.05043 0.07494 0.01077 215 73 69.1 ST44-04 743 2161 24.37 0.34 0.04868 0.0715 0.01065 132 70 68.3 ST44-05 728 2274 24.91 0.32 0.04883 0.07151 0.01062 140 70 68.1 ST44-06 472 1149 13.29 0.41 0.05067 0.07531 0.01078 226 74 69.1 ST44-07 710 1530 20.22 0.46 0.04945 0.06893 0.01011 169 68 64.8 ST44-08 82 165 26.80 0.49 0.07691 1.50328 0.14174 1119 932 854 ST44-09 2675 4117 60.57 0.65 0.04697 0.06289 0.00971 48 62 62.3 ST44-10 577 1604 18.26 0.36 0.04909 0.0732 0.01081 152 72 69.3 ST44-12 818 1241 15.31 0.66 0.04698 0.06891 0.01064 48 68 68.2 ST44-13 318 444 5.54 0.71 0.04718 0.0697 0.01071 58 68 68.7 ST44-15 976 1856 23.37 0.53 0.05175 0.07449 0.01044 274 73 66.9 ST44-17 291 849 9.61 0.34 0.05123 0.07459 0.01056 251 73 67.7 ST44-18 798 1719 20.01 0.46 0.05023 0.07693 0.0111 206 75 71.2 ST44-19 870 1478 17.87 0.59 0.04863 0.0729 0.01087 130 71 69.7 ST44-20 449 1082 12.60 0.41 0.0473 0.07183 0.01101 65 70 70.6 ST88-01 2310 1821 25.74 1.27 0.04501 0.06733 0.01085 -19 66 69.6 ST88-02 343 615 7.51 0.56 0.04752 0.07121 0.01087 75 70 70 ST88-03 670 673 9.08 1.00 0.04744 0.07062 0.01079 71 69 69.2 ST88-04 224 414 5.04 0.54 0.04741 0.07103 0.01086 70 70 70 ST88-05 312 431 5.44 0.72 0.04728 0.07048 0.01081 63 69 69 ST88-06 687 829 10.73 0.83 0.04733 0.06995 0.01072 66 69 69 ST88-07 249 422 5.17 0.59 0.05174 0.07585 0.01063 274 74 68 ST88-08 358 676 8.14 0.53 0.04753 0.07117 0.01086 76 70 69.6 ST88-09 349 405 5.40 0.86 0.04734 0.07074 0.01083 66 69 69 ST88-10 674 1009 11.32 0.67 0.04762 0.06219 0.00947 80 61 60.8 ST88-11 238 284 3.78 0.84 0.04714 0.07076 0.01088 56 69 70 ST88-12 335 448 5.75 0.75 0.04756 0.07147 0.0109 77 70 70 ST88-13 306 562 6.87 0.55 0.04746 0.07098 0.01084 72 70 69.5 ST88-14 261 393 4.92 0.66 0.04746 0.0706 0.01079 72 69 69 ST88-16 161 243 2.95 0.66 0.04789 0.06939 0.01051 94 68 67 ST88-17 181 530 5.94 0.34 0.04721 0.06886 0.01058 60 68 68 ST88-18 265 483 5.62 0.55 0.04727 0.06726 0.01032 63 66 66 ST88-19 636 729 9.12 0.87 0.04891 0.07273 0.01078 144 71 69.1 ST88-20 591 732 9.43 0.81 0.04648 0.06824 0.01064 23 67 68.2 表 3 松多地区花岗斑岩和二长花岗岩锆石Hf同位素测试结果
Table 3. Zircon Hf isotopic data for granite porphyry and monzogranite from Sumdo area
No. 年龄/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) εHf(t)' 2σ TDM/Ma TDMC/Ma fLu/Hf 花岗斑岩(S16T44) S16T44-1 68 0.069947 0.000398 0.002207 0.000016 0.282743 0.000014 0.282740 -1.0 0.4 0.9 0.5 746 1113 -0.93 S16T44-2 68 0.155669 0.006944 0.003912 0.000145 0.282708 0.000017 0.282703 -2.2 -0.9 -0.3 0.6 836 1196 -0.88 S16T44-3 68 0.064932 0.001864 0.001924 0.000047 0.282813 0.000015 0.282810 1.4 2.9 3.4 0.5 639 955 -0.94 S16T44-4 68 0.056115 0.000799 0.001757 0.000020 0.282777 0.000015 0.282775 0.2 1.6 2.1 0.5 688 1036 -0.95 S16T44-5 68 0.054526 0.000254 0.001709 0.000011 0.282780 0.000014 0.282778 0.3 1.7 2.2 0.5 683 1029 -0.95 二长花岗岩(S16T88) S16T88-1 68 0.038688 0.000547 0.001284 0.000019 0.282248 0.000024 0.282247 -18.5 -17.1 -16.3 0.8 1428 2219 -0.96 S16T88-1 68 0.038688 0.000547 0.001284 0.000019 0.282248 0.000024 0.282247 -18.5 -17.1 -16.3 0.8 1428 2219 -0.96 S16T88-3 68 0.043073 0.000823 0.001484 0.000023 0.282946 0.000023 0.282944 6.1 7.6 8.4 0.8 440 653 -0.96 S16T88-4 68 0.034688 0.000824 0.001210 0.000029 0.282897 0.000022 0.282896 4.4 5.9 6.6 0.8 506 763 -0.96 S16T88-5 68 0.067824 0.001599 0.002260 0.000052 0.282932 0.000022 0.282930 5.7 7.1 7.8 0.8 469 686 -0.93 -
[1] 莫宣学, 董国臣, 赵志丹, 等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
[2] Wang R, Richards J P, Hou Z Q, et al. Zircon U-Pb age and Sr-Nd-Hf-O isotope geochemistry of the Paleocene-Eocene igneous rocks in western Gangdese:Evidence for the timing of Neo-Tethyan slab breakoff[J]. Lithos, 2015, 224/225:179-194. doi: 10.1016/j.lithos.2015.03.003
[3] Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of Southern Tibet[J]. Geology, 2006, 34(9):745. doi: 10.1130/G22725.1
[4] Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and hf isotopic constraints on petrogenesis of the Gangdese batholith, Southern Tibet[J]. Chemical Geology, 2009, 62(3/4):229-245. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.chemgeo.2009.01.020/
[5] Mo X, Niu Y L, Dong G, et al. Contribution of syncollisional felsic magmatism to continental crust growth:a case study of the paleogene linzizong volcanic succession in Southern Tibet[J]. Chemical Geology, 2008, 250(1/4):49-67. http://linkinghub.elsevier.com/retrieve/pii/S0009254108000582
[6] 管琪, 朱弟成, 赵志丹, 等, 西藏南部冈底斯带东段晚白垩世埃克岩:新特提斯洋脊俯冲的产物?[J].岩石学报, 2010, 26(7):2165-2179. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007018
[7] 孟繁一, 赵志丹, 朱弟成, 等.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因[J].岩石学报, 2010, 26(7):2180-2192. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007019
[8] Wen D R, Chung S L, Song B, et al. Late cretaceous gangdese intrusions of adakitic geochemical characteristics, Tibet:petrogenesis and tectonic implications[J]. Lithos, 2008, 105(1):1-11.
[9] Ma L, Wang Q, Wyman D.A, et al. Late cretaceous(100-89 Ma) magnesian charnockites with adakitic affinities in the milin area, eastern gangdese:partial melting of subducted oceanic crust and implications for crustal growth in Southern Tibet[J]. Lithos, 2013, 175/176(8):315-332.
[10] Zhang Q, Jin W, Li C, et al. Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents:index[J]. Acta Petrologica Sinica, 2010, 26(4):985-1015. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201004002.htm
[11] Mo X X, Hou Z, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision:evidence from cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1):225-242. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.lithos.2006.10.005/
[12] 李才, 程立人, 胡克, 等.西藏羌塘南部地区的冰海杂砾岩及其成因[J].吉林大学学报, 1995, (4):368-374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500183653
[13] 李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011
[14] 李才, 李永铁, 林源贤, 等.西藏双湖地区蓝闪片岩原岩Sm-Nd同位素定年[J].中国地质, 2002, 29(4):355-359. doi: 10.3969/j.issn.1000-3657.2002.04.004
[15] 李才, 翟庆国, 董永胜, 等.青藏高原羌塘中部榴辉岩的发现及其意义[J].科学通报, 2006, 51(1):70-74. doi: 10.3321/j.issn:0023-074X.2006.01.014
[16] 李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].吉林大学学报:地球科学版, 1987, (2):155-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001164867
[17] 李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评, 2008, 54(1):105-119. doi: 10.3321/j.issn:0371-5736.2008.01.012
[18] 王立全, 潘桂棠, 李才, 等.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄—兼论原-古特提斯洋的演化[J].地质通报, 2008, 27(12):2045-2056. doi: 10.3969/j.issn.1671-2552.2008.12.010 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20081210&flag=1
[19] 潘桂棠.东特提斯地质构造形成演化[M].北京:地质出版社, 1997.
[20] 潘桂棠, 郑海翔, 徐跃荣, 等.初论班公湖-怒江结合带[C]//青藏高原地质文集.北京: 地质出版社, 1983: 229-242.
[21] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
[22] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-cenozoic evolution of the Tibetan plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
[23] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth & Planetary Sciences, 2000, 28(28):211-280. http://www.annualreviews.org/doi/10.1146/annurev.earth.28.1.211
[24] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa terrane:record of a microcontinent and its histories of drift and growth[J]. Earth & Planetary Science Letters, 2011, 301(1/2):241-255. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.epsl.2010.11.005/
[25] Harris N B W, Inger S, Ronghua X. Cretaceous plutonism in central Tibet:an example of post-collision magmatism?[J]. Journal of Volcanology & Geothermal Research, 1990, 44(1):21-32. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0377-0273(90)90009-5/
[26] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth & Planetary Science Letters, 1986, 79(3):281-302. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(86)90186-X/
[27] Lee H Y, Chung S L, Lo C H, et al. Eocene neotethyan slab breakoff in southern Tibet inferred from the linzizong volcanic record[J]. Tectonophysics, 2009, 477(1):20-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211361861
[28] Pearce J A, Mei H. Volcanic rocks of the 1985 Tibet geotraverse:Lhasa to golmud[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):169-201. doi: 10.1098/rsta.1988.0125
[29] Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37(1):45-71. doi: 10.1093/petrology/37.1.45
[30] Zhu D C, Zhao Z D, Niu Y, et al. Cambrian bimodal volcanism in the Lhasa terrane, southern Tibet:record of an early paleozoic andean-type magmatic arc in the australian proto-tethyan margin[J]. Chemical Geology, 2012, 328(11):290-308. https://linkinghub.elsevier.com/retrieve/pii/S0009254112000034
[31] 刘敏.青藏高原中部聂荣微陆块侏罗纪早期富碱侵入岩的岩石成因及构造意义[D].中国地质大学(北京)博士学位论文, 2012.
[32] 董彦辉, 许继峰, 曾庆高, 等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J].岩石学报, 2006, 22(3):661-668. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603015
[33] Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of early cretaceous igneous rocks along an east-west traverse throughout the central Lhasa terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4):298-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211291457
[34] Zhu D C, Pan G T, Zhao Z D, et al. Early Cretaceous subductionrelated adakite-like rocks in the Gangdese, south Tibet:Products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences, 2009, 34(3):298-309. doi: 10.1016/j.jseaes.2008.05.003
[35] 董国臣, 莫宣学, 赵志丹, 等.拉萨北部林周盆地林子宗火山岩层序新议[J].地质通报, 2005, 24(6):549-557. doi: 10.3969/j.issn.1671-2552.2005.06.012 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200506109&flag=1
[36] 董国臣.林周盆地林子宗火山岩及其所含的印度-欧亚大陆碰撞信息研究[D].中国地质大学(北京)博士学位论文, 2002.
[37] 周肃, 莫宣学, 董国臣, 等.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J].科学通报, 2004, 49(20):2095-2103. doi: 10.3321/j.issn:0023-074X.2004.20.014
[38] Miller C, Schuster R, Klötzli U, et al. Post-collisional potassic and ultrapotassic magmatism in sw Tibet:geochemical and Sr-Nd-PbO isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40(9):699-715.
[39] 朱弟成, 赵志丹, 牛耀龄, 等.拉萨地体的起源和古生代构造演化[J].高校地质学报, 2012, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
[40] 张泽明, 王金丽, 赵国春, 等.马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化[J].岩石学报, 2008, 24(7):1477-1487. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807005
[41] Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in the Lhasa block(Tibet):a geochronological study[J]. Journal of Geology, 1985, 93(1):41-57. doi: 10.1086/628918
[42] 何世平, 李荣社, 王超, 等.青藏高原冈底斯北缘嘉玉桥群形成时代的确定[J].中国地质, 2012, 39(1):21-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201201003
[43] 解超明, 李才, 范建军, 等.青藏高原羌塘中部中-上奥陶统达瓦山组的建立及意义[J].地质通报, 2015, 34(10):1812-1820. doi: 10.3969/j.issn.1671-2552.2015.10.005 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20151004&flag=1
[44] 于红.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D].中国地质大学(北京)博士学位论文, 2011.
[45] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research 2004, 28:353-370. doi: 10.1111/ggr.2004.28.issue-3
[46] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1):59-79. https://www.sciencedirect.com/science/article/pii/S000925410200195X
[47] Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, Berkeley, No.4.7. 2003.
[48] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
[49] Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth & Planetary Science Letters, 2008, 273(1/2):48-57. https://www.deepdyve.com/lp/elsevier/the-lu-hf-and-sm-nd-isotopic-composition-of-chur-constraints-from-BgXIQd5Lar
[50] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica Et Cosmochimica Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9
[51] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4):325-343. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0009-2541(77)90057-2/
[52] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00384745/
[53] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[54] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294):662-665. doi: 10.1038/347662a0
[55] Hu X, Garzanti E, Wang J, et al. The timing of india-asia collision onset-facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160:264-299. doi: 10.1016/j.earscirev.2016.07.014
[56] 王强, 赵振华.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002
[57] Joseph B. Whalen, Kenneth L. Currie, Bruce W. Chappell. Atype granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4):407-419. https://link.springer.com/article/10.1007%2FBF02831067
[58] Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989:261-280. http://d.old.wanfangdata.com.cn/Periodical/kxtb-e200523013
[59] Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys:insight from late Jurassic intrusive rocks from Bangongtso in western Tibet[J]. Lithos, 2014, 205(9):284-297.
[60] Li X H, Li W X, Li Z X. On the genetic classification and tectonic implications of the early Yanshanian granitoids in the nanling range, south China[J]. Chinese Science Bulletin, 2007, 52(14):1873-1885. doi: 10.1007/s11434-007-0259-0
[61] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46:535-551. doi: 10.1016/S0024-4937(98)00086-3
[62] Green T H, Watson E B. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to 'orogenic' rock series[J]. Contributions to Mineralogy and Petrology, 1982, 79(1):96-105. doi: 10.1007/BF00376966
[63] Watson E B. Apatite saturation in basic to intermediate magmas[J]. Geophysical Research Letters, 1979, 6(12):937-940. doi: 10.1029/GL006i012p00937
[64] Watson E B, Capobianco C J. Phosphorus and the rare earth elements in felsic magmas:an assessment of the role of apatite[J]. Geochimica Et Cosmochimica Acta, 1981, 45(12):2349-2358. doi: 10.1016/0016-7037(81)90088-0
[65] Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts:an experimental study of solubilities and mechanisms[J]. Geochimica Et Cosmochimica Acta, 1994, 58(19):4127-4145. doi: 10.1016/0016-7037(94)90269-0
[66] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61(1/2):1-18. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025210617/
[67] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[68] Liu J H, Xie C M, Li C, et al. Early Carboniferous adakite-like and I-type granites in central Qiangtang, northern Tibet:Implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean[J]. Lithos, 2018. 296/299:265-280. doi: 10.1016/j.lithos.2017.11.005
[69] 张旗, 潘国强, 李承东, 等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报, 2007, 23(11):2683-2698. doi: 10.3969/j.issn.1000-0569.2007.11.002
[70] 吴浩.青藏高原羌塘中部375-200 Ma多期次岩浆作用[D].吉林大学博士学位论文, 2016.
[71] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265. doi: 10.1029/95RG00262
[72] 唐功建, 王强.高镁安山岩及其地球动力学意义[J].岩石学报, 2010, 26(8):2495-2512. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008021
[73] 王金丽, 张泽明, 石超.拉萨地体东南缘的多期深熔作用及动力学[J].岩石学报, 2008, 24(7):1539-1551 http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807011
[74] Kamei A. An adakitic pluton on Kyushu island, southwest Japan arc[J]. Journal of Asian Earth Sciences, 2004, 24(1):43-58. doi: 10.1016/j.jseaes.2003.07.001
[75] 赵振华, 王强, 熊小林, 等.新疆北部的富镁火成岩[J].岩石学报, 2007, 23(7):1696-1707. doi: 10.3969/j.issn.1000-0569.2007.07.015
[76] Geng H, Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U*-Pb-Hf isotopic studies of Late Carboniferous magmatism in the west Junggar, Xinjiang:implications for ridge subduction?[J]. Chemical Geology, 2009, 266(3/4):364-389. https://www.researchgate.net/publication/232205578_Geochemical_Sr-Nd_and_zircon_U-Pb-Hf_isotopic_studies_of_Late_Carboniferous_magmatism_in_the_West_Junggar_Xinjiang_Implications_for_ridge_subduction
[77] Tang G, Wang Q, Wyman D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt:evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China)[J]. Chemical Geology, 2010, 277(3/4):281-300.
[78] 胡洋, 王居里, 王建其, 等.新疆西准噶尔庙尔沟岩体的地球化学及年代学研究[J].岩石学报, 2015, 31(2):505-522. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201502016
[79] Cole R B, Nelson S W, Layer P W, et al. Eocene volcanism above a depleted mantle slab window in southern Alaska[J]. Geological Society of America Bulletin, 2006, 118(1):140-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ027973447
[80] Kinoshita O. Possible manifestations of slab window in Cretaceous southwest Japan[J]. Tectonophysics, 2002, 344(1):1-13. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0040-1951(01)00262-1/
-