内蒙古赤峰地区早二叠世花岗岩LA-ICP-MS锆石U-Pb年龄及地球化学特征

李斌, 陈井胜, 刘淼, 杨帆, 李伟, 吴振, 陈敏华, 武昌胜. 内蒙古赤峰地区早二叠世花岗岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2018, 37(9): 1671-1681.
引用本文: 李斌, 陈井胜, 刘淼, 杨帆, 李伟, 吴振, 陈敏华, 武昌胜. 内蒙古赤峰地区早二叠世花岗岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2018, 37(9): 1671-1681.
LI Bin, CHEN Jingsheng, LIU Miao, YANG Fan, LI Wei, WU Zhen, CHEN Minhua, WU Changsheng. LA-ICP-MS zircon U-Pb geochronology and geochemical characteristics of the Early Permian granite in Chifeng area, Inner Mongolia[J]. Geological Bulletin of China, 2018, 37(9): 1671-1681.
Citation: LI Bin, CHEN Jingsheng, LIU Miao, YANG Fan, LI Wei, WU Zhen, CHEN Minhua, WU Changsheng. LA-ICP-MS zircon U-Pb geochronology and geochemical characteristics of the Early Permian granite in Chifeng area, Inner Mongolia[J]. Geological Bulletin of China, 2018, 37(9): 1671-1681.

内蒙古赤峰地区早二叠世花岗岩LA-ICP-MS锆石U-Pb年龄及地球化学特征

  • 基金项目:
    中国地质调查局项目《辽宁1:5万台吉、他拉皋、七道岭、十二台营子幅区域地质调查》(编号:DD20160048-05)、《内蒙古敖汉旗大黄花地区矿产地质调查》(编号:12120114055501)和《内蒙古1:5万敖汉旗、捣格朗营子、新地、铁匠营子幅区域地质矿产调查》(编号:12120113053400)
详细信息
    作者简介: 李斌(1986-), 男, 硕士, 工程师, 从事岩石学方面的研究。E-mail:717121767@qq.com
    通讯作者: 陈井胜(1983-), 男, 博士, 高级工程师, 从事岩石学方面的研究。E-mail:5202268@qq.com
  • 中图分类号: P534.46;P597+.3

LA-ICP-MS zircon U-Pb geochronology and geochemical characteristics of the Early Permian granite in Chifeng area, Inner Mongolia

More Information
  • 以赤峰地区铭山复式岩体、尖山子岩体为研究对象,通过锆石U-Pb年龄、地球化学研究,确定了其形成时代,探讨了岩石成因和岩浆源区性质及其形成的构造背景。LA-ICP-MS锆石206Pb/238U测年结果表明,铭山复式岩体中灰白色斑状黑云二长花岗岩、尖山子岩体中浅肉红色细粒正长花岗岩分别形成于284.4±7.9Ma、294.7±8.5Ma,为早二叠世。根据地质体间接触关系可知,铭山复式岩体中的二长花岗岩岩体和尖山子岩体均为复式岩体,有待进一步解体。斑状黑云二长花岗岩SiO2含量较高,K2O+Na2O含量较高,A/CNK < 1,属于高钾钙碱性I型花岗岩。细粒正长花岗岩Al2O3含量为14.32%~15.14%,Na2O/K2O=0.71~0.99,A/CNK=1.17~1.20,在标准矿物中出现刚玉分子。二者微量元素特征相似,富集大离子亲石元素,亏损高场强元素Nb、Ta,具Sr、P、Ti的负异常,表现出岛弧岩浆岩类特征。结合岩石地球化学、区域地质特征,认为赤峰地区早二叠世岩体形成于岛弧/活动大陆边缘构造背景,其形成与古亚洲洋向南俯冲有关。

  • 加载中
  • 图 1  研究区地质简图

    Figure 1. 

    图 2  二长花岗岩(a、c)和正长花岗岩(b、d)野外和显微照片

    Figure 2. 

    图 3  二长花岗岩(14CH24)和正长花岗岩(14CH10)锆石典型阴极发光(CL)图像

    Figure 3. 

    图 4  二长花岗岩(14CH24)和正长花岗岩(14CH10)锆石U-Pb谐和图

    Figure 4. 

    图 5  二长花岗岩(14CH24)和正长花岗岩(14CH10)TAS(a)和SiO2-K2O图解(b)

    Figure 5. 

    图 6  二长花岗岩(14CH24)和正长花岗岩(14CH10)稀土元素配分图(a)和微量元素蛛网图(b)

    Figure 6. 

    图 7  二长花岗岩(14CH24)和正长花岗岩(14CH10)(Zr+Nb+Ce+Y)-TFeO/MgO(a)和(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(b)

    Figure 7. 

    图 8  二长花岗岩(14CH24)和正长花岗岩(14CH10)Ta/Yb-Th/Yb图解[29]

    Figure 8. 

    图 9  二长花岗岩(14CH24)和正长花岗岩(14CH10)YbN-(La/Yb)N(a)和Y-Sr/Y图解(b)

    Figure 9. 

    图 10  二长花岗岩(14CH24)和正长花岗岩(14CH10)(Y+Nb)-Rb(a)和Rb/30-Hf-3Ta图解(b)

    Figure 10. 

    表 1  样品LA-ICP-MS锆石U-Th-Pb分析结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb data of samples

    测点编号 U Th Pb Th/U 同位素比值 年龄/Ma
    10-6 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U ±1σ
    正长花岗岩(14CH10)
    01* 332.72 212.94 25.37 0.64 0.067 0.003 0.422 0.020 0.046 0.001 288 7
    02 184.13 90.22 12.21 0.49 0.049 0.003 0.333 0.020 0.048 0.002 304 9
    03 254.02 317.53 16.26 1.25 0.050 0.002 0.309 0.010 0.045 0.001 285 7
    04 116.36 61.67 14.35 0.53 0.056 0.003 0.350 0.018 0.046 0.002 293 10
    05 452.98 231.02 28.85 0.51 0.056 0.003 0.362 0.020 0.049 0.002 306 12
    06 280.38 126.17 19.96 0.45 0.054 0.002 0.363 0.020 0.050 0.002 313 11
    07* 116.91 53.78 37.30 0.46 0.056 0.003 0.347 0.018 0.045 0.001 286 9
    08* 763.71 404.77 51.73 0.53 0.069 0.006 0.436 0.030 0.052 0.003 326 15
    09 159.26 71.67 14.58 0.45 0.053 0.002 0.331 0.014 0.045 0.001 285 8
    10 467.06 298.92 26.27 0.64 0.054 0.002 0.351 0.015 0.048 0.002 301 10
    11 265.70 127.53 16.68 0.48 0.051 0.002 0.356 0.022 0.051 0.002 319 12
    12* 264.24 224.60 10.27 0.85 0.060 0.003 0.349 0.016 0.045 0.002 280 11
    13* 145.35 68.32 18.60 0.47 0.061 0.003 0.427 0.022 0.052 0.002 324 12
    14 237.81 99.88 13.62 0.42 0.053 0.002 0.369 0.019 0.051 0.002 318 10
    15 256.28 107.64 22.85 0.42 0.053 0.003 0.358 0.022 0.049 0.002 309 11
    16* 458.85 142.24 28.63 0.31 0.063 0.003 0.386 0.019 0.045 0.001 285 6
    17* 372.73 197.55 50.37 0.53 0.034 0.002 0.240 0.017 0.051 0.002 320 10
    18* 302.52 166.39 25.71 0.55 0.071 0.004 0.430 0.021 0.044 0.001 279 6
    19 282.10 160.80 13.26 0.57 0.052 0.002 0.316 0.014 0.044 0.001 280 5
    20 117.45 68.12 19.16 0.58 0.051 0.002 0.330 0.016 0.048 0.001 299 6
    二长花岗岩(14CH24)
    01 257.82 296.49 15.10 1.15 0.057 0.003 0.338 0.019 0.043 0.001 273 5
    02 245.79 196.63 21.64 0.80 0.058 0.003 0.372 0.021 0.048 0.001 300 4
    03 175.38 140.30 9.56 0.80 0.064 0.004 0.421 0.023 0.049 0.001 307 5
    04* 826.96 512.72 53.77 0.62 0.224 0.013 2.056 0.140 0.059 0.002 370 9
    05 174.61 169.37 18.79 0.97 0.051 0.003 0.381 0.020 0.054 0.001 339 5
    06 211.53 205.18 28.09 0.97 0.065 0.004 0.384 0.022 0.043 0.001 272 4
    07* 201.92 246.34 12.17 1.22 0.074 0.003 0.530 0.028 0.050 0.001 317 6
    08* 92.45 65.64 15.86 0.71 0.147 0.018 1.121 0.137 0.053 0.001 332 8
    09 252.73 217.35 16.72 0.86 0.079 0.005 0.479 0.027 0.046 0.001 293 7
    10* 405.16 320.08 22.32 0.79 0.140 0.013 1.166 0.132 0.053 0.001 331 8
    11* 143.52 114.82 16.12 0.80 0.108 0.014 0.586 0.071 0.043 0.001 270 7
    12 173.82 161.65 18.06 0.93 0.062 0.004 0.389 0.023 0.046 0.001 293 5
    13* 49.27 43.85 17.83 0.89 0.120 0.011 0.785 0.067 0.051 0.002 320 10
    14 118.25 100.51 8.35 0.85 0.063 0.004 0.391 0.021 0.045 0.001 284 5
    15 217.34 180.39 13.19 0.83 0.069 0.004 0.440 0.028 0.047 0.001 296 5
    16 348.89 373.31 23.35 1.07 0.067 0.004 0.415 0.023 0.044 0.001 277 4
    17 373.74 370.00 17.62 0.99 0.068 0.004 0.386 0.025 0.042 0.001 264 6
    18 86.75 74.61 5.79 0.86 0.065 0.005 0.397 0.027 0.044 0.001 277 7
    19 173.91 146.08 8.72 0.84 0.064 0.005 0.404 0.033 0.044 0.001 280 9
    注:*为调谐度太大剔除样品
    下载: 导出CSV

    表 2  样品主量、微量和稀土元素分析结果

    Table 2.  Major, trace and rare earth elements compositions of the sample

    样品 14CH10 14CH11 H14C12 H14C23 14CH24 14CH25 14CH26 14CH27
    SiO2 71.05 71.44 70.74 71.32 71.42 72.59 71.51 72.02
    TiO2 0.36 0.36 0.39 0.40 0.41 0.34 0.41 0.37
    Al2O3 14.54 14.32 15.14 14.02 14.04 13.68 13.95 13.77
    TFe2O3 2.20 2.33 2.90 2.71 2.70 2.20 2.78 2.48
    FeO 1.4 1.11 1.41 1.78 2.34 1.67 2.45 1.53
    MnO 0.06 0.06 0.08 0.06 0.06 0.05 0.06 0.05
    MgO 0.47 0.47 0.51 0.78 0.76 0.63 0.79 0.68
    CaO 0.80 0.64 0.60 2.01 2.02 1.73 2.01 1.81
    Na2O 3.46 3.57 4.28 4.21 4.14 3.92 4.08 3.98
    K2O 4.87 4.54 4.32 3.74 3.75 4.13 3.68 3.96
    P2O5 0.117 0.112 0.12 0.116 0.118 0.096 0.119 0.105
    烧失量 2.05 2.05 0.91 0.63 0.57 0.63 0.6 0.76
    总计 99.97 99.89 99.99 100.0 99.98 99.99 99.99 99.99
    La 37.5 28.3 28.1 41.7 43.6 31.9 45.4 40.8
    Ce 71.5 57.2 69.3 74.1 74.5 56.8 78.1 68.7
    Pr 7.79 6.05 6.19 7.5 7.48 5.64 8.02 6.99
    Nd 27.5 22.3 22.7 25.5 24.5 19.4 26.8 24
    Sm 4.62 3.97 4.25 4.07 3.66 3.01 4.09 3.44
    Eu 0.901 0.701 0.685 0.872 0.785 0.757 0.833 0.736
    Gd 4.66 4.03 4.61 3.88 3.55 2.79 3.67 3.28
    Tb 0.596 0.583 0.663 0.52 0.465 0.381 0.523 0.445
    Dy 3.25 3.32 3.73 2.54 2.47 2.03 2.54 2.38
    Ho 0.688 0.699 0.849 0.604 0.531 0.413 0.545 0.467
    Er 1.97 2.06 2.34 1.65 1.49 1.24 1.6 1.37
    Tm 0.316 0.351 0.378 0.256 0.211 0.203 0.255 0.24
    Yb 2.14 2.37 2.62 1.79 1.62 1.42 1.73 1.51
    Lu 0.321 0.356 0.381 0.258 0.207 0.208 0.266 0.248
    Y 16.8 18.4 19.7 14.7 12.3 11.1 14.6 12.6
    Sc 4.71 4.92 5.14 4.99 4.8 3.6 4.97 4.25
    V 18 15.8 19.5 22.5 22.5 19 27.4 20.8
    Cr 5.55 6.36 5.98 6.67 5.98 5.53 4.76 8.18
    Co 2.19 2.3 2.69 3.59 3.32 2.62 3.64 3.18
    Ni 2.13 1.58 1.97 2.34 2.49 2.16 1.52 5.8
    Be 1.68 1.68 2.23 2.22 1.53 1.5 1.58 1.85
    Rb 151 150 131 98.9 88.9 89.8 89.9 92.6
    Sr 170 167 170 265 238 228 258 240
    Ba 929 918 748 747 591 783 643 829
    Li 25.3 24.6 12 17.8 15.9 9.68 18 15.4
    Zr 201 228 258 242 215 180 231 203
    Nb 11.9 13.5 13.8 12.4 11 10.4 12 11.2
    Hf 5.09 5.88 6.4 5.79 4.86 4.77 5.82 5.09
    Ta 0.966 1.04 1.21 0.907 0.852 0.825 0.944 0.956
    Th 10.9 9.18 11.7 10 9.68 10 10.8 11.5
    U 1.29 1.16 1.23 0.975 0.844 1.74 1.01 1.21
    Pb 12.2 11.9 11.8 12.5 11.3 12.2 12.1 13.1
    Ga 15.3 15.7 16.3 16.4 14.7 13.9 14.8 14.2
    Cu 4.78 7.8 4.68 2.62 2.55 1.98 2.59 2.07
    Zn 37.6 40.9 56.1 32.2 29.1 22.7 30.3 26.8
    Mo 2.33 3.46 1.93 0.714 0.907 1.26 0.448 0.817
    Cd 0.18 0.203 0.219 0.122 0.094 0.088 0.094 0.082
    In 0.047 0.05 0.039 0.024 0.02 0.018 0.023 0.016
    Sb 0.554 0.689 0.562 0.038 0.022 0.062 0.033 0.084
    Cs 7.34 9.31 6.05 1.54 1.68 1.91 1.77 1.59
    W 1.45 1.43 1.04 0.172 0.306 0.221 0.191 0.264
    Re 0.004 0.003 0.003 0.006 0.004 0.005 < 0.002 0.004
    Tl 0.932 0.982 0.956 0.527 0.436 0.431 0.462 0.428
    Bi 0.053 0.093 0.074 0.012 0.032 0.035 0.019 0.03
    注:主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV
  • [1]

    王荃, 刘雪亚, 李锦轶.中国华夏与安加拉古陆间的板块构造[M].北京:北京大学出版社, 1991:56-60.

    [2]

    徐备, 陈斌.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J].中国科学, 1997, 3:227-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700269956

    [3]

    徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001

    [4]

    Xiao W J, Windley B F, Hao J, et al. Accretion leading tocollision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22:8-1. http://onlinelibrary.wiley.com/doi/10.1029/2002TC001484/abstract

    [5]

    张栓宏, 赵越, 刘建民, 等.华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景[J].岩石矿物学杂志, 2010, 29(6):824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017

    [6]

    邵济安, 何国琦, 唐克东.华北北部二叠纪陆壳演化[J].岩石学报, 2015, 31(1):47-55. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501003

    [7]

    Tang K D. Tectonic development of paleozoicfoldbelts at the north margin of the Sino-KoreanCraton[J]. Tectonics, 1990, 9(2):249-260. http://onlinelibrary.wiley.com/doi/10.1029/TC009i002p00249/full

    [8]

    邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社, 1991.

    [9]

    洪大卫, 黄怀曾, 肖宜君, 等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报, 1994, (3):219-230. doi: 10.3321/j.issn:0001-5717.1994.03.001

    [10]

    Sengor A M C, Natalin B A, Burtman V S. Evolutionof the Altaid tectonic collage and paleozoiccrustalgrowth in Eurasia[J]. Nature, 1993, 364:299-307. doi: 10.1038/364299a0

    [11]

    曹花花.华北板块北缘东段晚古生代-早中生代火成岩的年代学与地球化学研究[D].吉林大学博士学位论文, 2013.

    [12]

    Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:Constraints on continental arc evolution and convergent marginmagmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98:1441-1467. http://link.springer.com/10.1007/s00531-008-0368-2

    [13]

    赵越, 陈斌, 张栓宏, 等.华北克拉通北缘及邻区前燕山期主要地质事件[J].中国地质, 2010, 37(4):900-915. doi: 10.3969/j.issn.1000-3657.2010.04.007

    [14]

    彭斌, 王国祺, 刘乐, 等.内蒙古赤峰地区二叠纪火山岩的发现及其地质意义[J].矿物岩石地球化学通报, 2016, 35(6):1329-1340. doi: 10.3969/j.issn.1007-2802.2016.06.23

    [15]

    Liu Y S, Hu Z C, Gao S, et al. In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1):34-43. http://cn.bing.com/academic/profile?id=f10fa454267bcd9d2c140163950f1005&encoded=0&v=paper_preview&mkt=zh-cn

    [16]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north china orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. http://petrology.oxfordjournals.org/content/51/1-2/537

    [17]

    Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1):1-23. http://www.tandfonline.com/servlet/linkout?suffix=CIT0103&dbid=16&doi=10.1080%2F00206814.2017.1377121&key=10.1111%2Fj.1751-908X.1995.tb00147.x

    [18]

    Ludwig K R. Isoplot/Ex version 3. 00: a geochronology toolkitfor microsoft excel[M]. Berkeley Geochronology Center Special Publication, California, Berkeley, 2003, 4: 1-70.

    [19]

    张旗, 王焰, 熊小林, 等.埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社, 2008.

    [20]

    李乘东, 张旗, 苗来成, 等.冀北中生代高Sr低Y和低Sr低Y型花岗岩:地球化学、成因及其与成矿作用的关系[J].岩石学报, 2004, 20(2):270-284. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402009

    [21]

    黄本宏.大兴安岭地区石炭、二叠系及植物群[M].北京:地质出版社, 1993.

    [22]

    王慧, 高荣宽.内蒙古达茂旗满都拉地区早二叠世生物地层划分对比在研究[J].内蒙古地质, 1999, 2:7-20. http://www.cnki.com.cn/Article/CJFD1999-NMGZ902.001.htm

    [23]

    马芳, 穆治国, 刘玉琳.河北滦平球状闪长岩年代学及其地质意义[J].地质论评, 2004, 50(4):360-364. doi: 10.3321/j.issn:0371-5736.2004.04.004

    [24]

    王惠初, 赵凤清, 李惠民, 等.冀北闪长质岩石的锆石SHRIMP U-Pb年龄:晚古生代岩浆弧的地质记录[J].岩石学报, 2007, 23(3):597-604. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703007

    [25]

    张拴宏, 赵越, 宋彪, 等.冀北隆化早前寒武纪高级变质区内的晚古生代片麻状闪长岩——锆石SHRIMP U-Pb年龄及其构造意义[J].岩石学报, 2004, 20(3):621-626. http://www.cqvip.com/qk/94579X/200403/10140800.html

    [26]

    Zhang S H, Zhao Y, Song B, et al. Carboniferous granitic plutons from the northern margin of the North China block:implications for a late Paleozoic active continental margin[J]. Journal of the Geological Society, 2007, 164(2):451-463. doi: 10.1144/0016-76492005-190

    [27]

    刘建峰, 李锦轶, 孙立新, 等.内蒙古巴林左旗九井子蛇绿岩锆石U-Pb定年:对西拉木伦河缝合带形成演化的约束[J].中国地质, 2016, 43(6):1947-1962. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201606008

    [28]

    孙德有, 吴福元, 张艳斌, 等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版), 2004, 34(2):174-181. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200402003

    [29]

    Gorton M P, Schandl E S. From continents to island arcs:a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J]. Canadian Mineralogist, 2000, 38(5):1065-1073. http://cn.bing.com/academic/profile?id=155cbaf233df326995aad4be9df8733d&encoded=0&v=paper_preview&mkt=zh-cn

    内蒙古自治区地质调查院. 1:20 万赤峰幅区域地质调查修测项目. 2000.

    内蒙古自治区地质调查院. 1:20 万五分幅区域地质调查修测项目. 2000.

    河北省区域地质矿产调查研究所. 1:5 万朝阳地幅区调报告. 1996.

    吉林大学. 内蒙古 1:25万赤峰市幅地质图. 2012.

    中国地质科学院地质研究所. 内蒙古 1:25万西老府幅区调修测报告. 2009.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  354
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2018-03-20
修回日期:  2018-08-13
刊出日期:  2018-09-15

目录