东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义

杨锡铭, 孙丰月, 赵拓飞, 刘金龙, 彭勃. 东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义[J]. 地质通报, 2018, 37(10): 1842-1852.
引用本文: 杨锡铭, 孙丰月, 赵拓飞, 刘金龙, 彭勃. 东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义[J]. 地质通报, 2018, 37(10): 1842-1852.
YANG Ximing, SUN Fengyue, ZHAO Tuofei, LIU Jinlong, PENG Bo. Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt[J]. Geological Bulletin of China, 2018, 37(10): 1842-1852.
Citation: YANG Ximing, SUN Fengyue, ZHAO Tuofei, LIU Jinlong, PENG Bo. Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt[J]. Geological Bulletin of China, 2018, 37(10): 1842-1852.

东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义

  • 基金项目:
    青海省地质调查局项目《青海省柴达木周缘铜镍硫化物矿床成矿规律及找矿预测研究》(编号:2017042004ky004)
详细信息
    作者简介: 杨锡铭(1993-), 男, 在读硕士生, 矿物学、矿床学、矿石学专业。E-mail:18243177359@163.com
    通讯作者: 孙丰月(1963-), 男, 博士, 教授, 从事矿床地质、成矿作用研究。E-mail:sfy@jlu.edu.cn
  • 中图分类号: P588.12+4;P597+.3

Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt

More Information
  • 东昆仑地区基性-超基性岩石的研究较薄弱,缺乏对东昆仑幔源岩浆活动及岩浆演化的整体认识。对阿克楚克塞辉长岩进行了地球化学、锆石U-Pb年代学及Hf同位素研究,结果显示,该岩石形成于晚三叠世早期(219.3±1.1Ma,MSWD=0.80);岩石SiO2含量为49.03%~57.26%,Mg#值为49~57,属于钙碱性系列岩石;稀土元素配分曲线为轻稀土元素富集的右倾型,富集大离子亲石元素Rb、Ba、K,相对亏损高场强元素Nb、Ta、Ti;εHft)=-1.81~3.25,锆石Hf模式年龄大于锆石结晶年龄。地球化学特征显示,阿克楚克塞辉长岩岩浆源区应为受俯冲板片流体交代的岩石圈地幔。结合区域构造背景分析,阿克楚克塞辉长岩形成于印支期造山后伸展的构造环境,继承了早期板片俯冲改造的地幔源区特征。

  • 加载中
  • 图 1  阿克楚克塞区域大地构造简图[3](a)和研究区地质图(b)

    Figure 1. 

    图 2  阿克楚克塞辉长岩显微照片

    Figure 2. 

    图 3  阿克楚克塞辉长岩锆石阴极发光(CL)图像

    Figure 3. 

    图 4  阿克楚克塞辉长岩锆石U-Pb谐和图

    Figure 4. 

    图 5  辉长岩TAS图解[17](a)和SiO2-K2O图解[18](b)

    Figure 5. 

    图 6  阿克楚克塞辉长岩稀土元素球粒陨石标准化配分曲线图(a)[19]和原始地幔标准化微量元素蛛网图(b)[20]

    Figure 6. 

    图 7  阿克楚克塞辉长岩Hf同位素图解[21-22]

    Figure 7. 

    图 8  阿克楚克塞辉长岩TFeO-MgO-Al2O3图解(a)[34]和Hf/3-Th-Ta图解(b)[35]

    Figure 8. 

    表 1  阿克楚克塞辉长岩(16AKCKS-1-N1)LA-MC-ICP-MS锆石U-Th-Pb同位素定年分析结果

    Table 1.  LA-MC-ICP-MS zircon U-Th-Pb dating results of sample 16AKCKS-1-N1 from Akechukesai gabbro

    点位 元素含量/10-6 Th/U 同位素比值 年龄/Ma
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 420 401 1.05 0.0505 0.0009 0.2427 0.0051 0.0348 0.0005 219 42 221 4 220 3
    4 940 1617 0.58 0.0515 0.0007 0.2459 0.0037 0.0346 0.0005 262 31 223 3 220 3
    5 1708 3800 0.45 0.0515 0.0009 0.2458 0.0050 0.0346 0.0004 264 38 223 4 219 2
    6 957 800 1.20 0.0509 0.0007 0.2418 0.0040 0.0344 0.0005 238 30 220 3 218 3
    9 1163 900 1.29 0.0503 0.0007 0.2399 0.0043 0.0345 0.0004 209 34 218 4 219 3
    11 2000 6087 0.33 0.0511 0.0005 0.2483 0.0031 0.0352 0.0005 244 24 225 3 223 3
    12 797 768 1.04 0.0506 0.0010 0.2441 0.0054 0.0349 0.0004 224 44 222 4 221 2
    13 635 575 1.10 0.0514 0.0010 0.2425 0.0043 0.0342 0.0004 257 43 220 3 217 3
    14 0 1558 0 0.0510 0.0010 0.2477 0.0049 0.0352 0.0004 239 43 225 4 223 3
    15 1527 3080 0.50 0.0510 0.0007 0.2421 0.0034 0.0344 0.0005 243 31 220 3 218 3
    16 2220 1324 1.68 0.0511 0.0009 0.2443 0.0030 0.0347 0.0005 247 39 222 2 220 3
    18 918 733 1.25 0.0510 0.0006 0.2443 0.0033 0.0347 0.0003 239 27 222 3 220 2
    19 1462 993 1.47 0.0512 0.0009 0.2404 0.0043 0.0340 0.0003 251 38 219 3 216 2
    21 283 301 0.94 0.0508 0.0012 0.24177 0.0059 0.0346 0.0003 230 56 220 5 219 2
    22 251 271 0.93 0.0496 0.0013 0.24021 0.0065 0.0351 0.0004 176 62 219 5 222 2
    23 485 498 0.97 0.0511 0.0009 0.24331 0.0046 0.0346 0.0002 244 41 221 4 219 1
    24 448 423 1.06 0.0504 0.0013 0.23943 0.0062 0.0345 0.0004 212 62 218 5 219 2
    下载: 导出CSV

    表 2  阿克楚克塞辉长岩主量、微量和稀土元素分析结果

    Table 2.  Major elements, trace elements and REE concentrations of the Akechukesai gabbro

    样品编号 16AKCKS-1-Y1-1 16AKCKS-1-Y1-2 16AKCKS-1-Y1-3 16AKCKS-1-Y1-4 16AKCKS-1-Y1-5
    SiO2 47.64 50.82 51.40 55.97 48.12
    TiO2 1.59 1.04 0.91 0.65 1.05
    Al2O3 16.94 20.03 20.12 16.57 17.54
    MnO 0.18 0.13 0.12 0.13 0.17
    MgO 5.80 3.63 3.27 3.84 6.11
    CaO 10.35 9.05 8.90 8.60 10.13
    Na2O 2.86 3.44 3.52 2.97 3.33
    K2O 1.93 1.88 2.30 2.81 1.09
    P2O5 0.25 0.32 0.20 0.24 0.12
    TFe2O3 9.61 7.23 6.65 5.96 9.11
    烧失量 2.62 1.84 2.09 1.50 2.59
    总计 97.15 97.57 97.40 97.74 96.76
    La 22.54 25.98 17.11 31.16 16.64
    Ce 45.80 47.75 30.73 56.30 28.67
    Pr 5.41 5.64 3.66 6.57 3.35
    Nd 22.77 23.89 15.67 27.41 13.27
    Sm 4.68 4.84 3.29 5.81 2.89
    Eu 1.61 1.73 1.48 1.48 0.99
    Gd 5.06 5.09 3.56 6.14 2.82
    Tb 0.67 0.67 0.48 0.86 0.46
    Dy 3.87 3.76 2.79 4.86 2.66
    Ho 0.73 0.71 0.52 0.92 0.55
    Er 2.10 2.01 1.53 2.69 1.46
    Tm 0.28 0.27 0.21 0.37 0.19
    Yb 1.83 1.68 1.34 2.40 1.31
    Lu 0.26 0.24 0.19 0.33 0.19
    Y 19.20 18.34 15.36 27.70 12.50
    ΣREE 117.60 124.25 82.56 147.30 75.45
    LREE 102.81 109.83 71.95 128.73 65.81
    HREE 14.79 14.41 10.61 18.57 9.64
    LREE/HREE 6.95 7.62 6.78 6.93 6.82
    (La/Yb)N 8.32 10.40 8.60 8.75 8.56
    δEu 1.00 1.06 1.31 0.75 1.05
    δCe 0.97 0.91 0.89 0.90 0.87
    Cs 5.36 8.41 6.74 3.57 7.05
    Rb 128.76 91.08 102.18 111.82 64.76
    Ba 380.71 472.74 396.46 663.72 210.74
    Th 1.93 3.48 2.87 8.27 3.42
    U 0.84 0.68 0.56 1.15 1.06
    Nb 7.97 8.11 5.71 7.57 4.15
    Ta 0.34 0.34 0.26 0.41 0.23
    K 16084.57 15666.18 19149.38 23523.26 9091.933
    Pb 6.50 15.52 10.01 9.83 9.46
    Sr 577.54 670.00 601.23 483.69 460.97
    P 1111.02 1409.11 894.77 1055.37 535.92
    Zr 53.00 58.20 39.16 86.80 67.23
    Hf 1.47 1.53 1.09 2.26 1.67
    Ti 9576.13 6276.32 5475.95 3895.52 6310.78
    Sc 23.20 15.25 13.28 18.75 23.54
    V 303.20 178.90 144.70 130.00 157.35
    Cr 110.54 41.99 49.04 63.57 135.61
    Mn 1403.39 1024.20 930.51 990.73 1377.07
    Co 31.86 25.02 19.08 20.30 26.02
    Ni 50.90 29.60 23.12 28.14 35.58
    Cu 12.23 14.67 14.49 16.62 10.21
    Zn 100.31 60.84 46.93 41.98 94.77
    注:主量元素含量单位为%,稀土和微量元素含量为10-6
    下载: 导出CSV

    表 3  阿克楚克赛辉长岩Hf同位素分析结果

    Table 3.  Zircon Hf isotopic compositions of the Akechusai gabbro

    点号 t /Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf (0) εHft tDM1/Ma tDM2/Ma fLu/Hf
    1 220 0.080605 0.000559 0.001609 0.000013 0.282676 0.000019 -3.4 1.2 0.7 830 1177 -0.95
    4 220 0.027226 0.000078 0.000620 0.000001 0.282623 0.000019 -5.3 -0.5 0.7 881 1286 -0.98
    5 219 0.126196 0.001662 0.002596 0.000028 0.282645 0.000030 -4.5 0.0 1.1 897 1255 -0.92
    9 219 0.099150 0.002275 0.001982 0.000048 0.282641 0.000024 -4.6 -0.1 0.8 889 1260 -0.94
    11 223 0.160456 0.003339 0.003265 0.000058 0.282596 0.000023 -6.2 -1.8 0.8 988 1370 -0.90
    12 221 0.075851 0.000254 0.001547 0.000003 0.282706 0.000021 -2.3 2.3 0.8 785 1109 -0.95
    16 220 0.156747 0.002172 0.003063 0.000036 0.282740 0.000025 -1.1 3.2 0.9 768 1046 -0.91
    18 220 0.103134 0.000766 0.002052 0.000015 0.282717 0.000023 -2.0 2.6 0.8 780 1089 -0.94
    19 216 0.116287 0.002945 0.002305 0.000060 0.282702 0.000022 -2.5 1.9 0.8 807 1126 -0.93
    20 211 0.056081 0.000533 0.001161 0.000012 0.282598 0.000023 -6.2 -1.7 0.8 930 1353 -0.97
    21 219 0.055959 0.000086 0.001130 0.000001 0.282623 0.000021 -5.3 -0.6 0.7 894 1292 -0.97
    22 222 0.076007 0.000632 0.001552 0.000012 0.282701 0.000022 -2.5 2.1 0.8 792 1118 -0.95
    23 219 0.072205 0.001062 0.001528 0.000014 0.282625 0.000022 -5.2 -0.6 0.8 901 1292 -0.95
    24 219 0.075165 0.000576 0.001527 0.000011 0.282661 0.000024 -3.9 0.7 0.9 849 1210 -0.95
    下载: 导出CSV
  • [1]

    黄汲清, 任纪舜, 姜春发, 等.中国大地构造基本轮廓[J].地质学报, 1977, 51(2):117-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000377523

    [2]

    姜春发, 杨经绥, 冯秉贵.昆仑开合构造[M].北京:地质出版社, 1992:59-78.

    [3]

    李荣社, 计文化, 杨永成, 等.昆仑山及邻区地质[M].北京:地质出版社, 2008:1-400.

    [4]

    谌宏伟, 罗照华, 莫宣学, 等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J].中国地质, 2005, 32(3):386-395. doi: 10.3969/j.issn.1000-3657.2005.03.006

    [5]

    莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    [6]

    李碧乐, 孙丰月, 于晓飞, 等.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J].岩石学报, 2012, 28(4):1163-1172. http://d.old.wanfangdata.com.cn/Conference/7667375

    [7]

    丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024

    [8]

    罗照华, 柯珊, 曹永清, 等.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20020677&flag=1

    [9]

    闫佳铭.青海东昆仑阿克楚克塞铜镍矿床地质特征及成因探讨[D].吉林大学硕士学位论文, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10183-1017156284.htm

    [10]

    袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008

    [11]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3

    [12]

    Anderseon T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2003, 192(1/2):59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X

    [13]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c

    [14]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. http://d.old.wanfangdata.com.cn/NSTLQK/10.1093-petrology-egp082/

    [15]

    Ludwing K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003: 1-70.

    [16]

    侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025

    [17]

    Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Earth Science Reviews, 1994, 37(3/4):215-224. http://www.sciencedirect.com/science/article/pii/0012825294900299

    [18]

    Peccerillo R, Taylor S R. Geochemistry of Eocene Calc-alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrolpgy, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    [19]

    Boynton W V. Cosmochemistry of thr Rare Earth Elements:Meteorite Studies[J]. Developments in Geochemistry, 1984, 2(2):63-114. http://www.sciencedirect.com/science/article/pii/B9780444421487500083

    [20]

    Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implication for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [21]

    Yang J H, Wu F Y, Shao J A, et al. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4):336-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=445d837b993421105b8443c8f17b51ba

    [22]

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001

    [23]

    赵忠华, 孙德有, 苟军, 等.满洲里南部塔木兰沟组火山岩年代学与地球化学研究[J].吉林大学学报:地球科学版, 2011, 41(6):1865-1880. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CCDZ201106017&dbname=CJFD&dbcode=CJFQ

    [24]

    邓晋福, 罗照华, 苏尚国, 等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004:1-381.

    [25]

    李承东, 张福勤, 苗来成, 等.吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J].岩石学报, 2007, 23(4):767-776. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200704008

    [26]

    Sklyarov E V, Gladkochub D P, Mazukabzov A M. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton[J]. Precambrian Research, 2003, 122(1):359-376. http://www.sciencedirect.com/science/article/pii/S030192680200219X

    [27]

    Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):implications for subduction-related metasomatism in the upper mantle[J]. Precambrican Research, 2007, 152(1):22-47. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.precamres.2006.09.002/

    [28]

    Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evoluton[M]. London:Blackwell, 1985:57-72.

    [29]

    Sajona F G, Maury R C, Pubellier M, et al. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao, Philippines[J]. Lithos, 2000, 54:173-206. doi: 10.1016/S0024-4937(00)00019-0

    [30]

    Tian L Y, Castillo P R, Hilton D R, et al. Major and trace element and Sr-Nd isotope signatures of the northern Lau Basin lavas:Implications for the composition and dynamics of the back-arc mantle[J]. Journal of Geophysical Research, 2011, 116:75-92. http://onlinelibrary.wiley.com/doi/10.1029/2011JB008791/full

    [31]

    Wang Q, Zhao Z, Bai Z, et al. Carboniferous adakites and Nb-enriched arc basaltic rocks association in tha Alataw Mountains, north Xinjiang:interactions between slab melt and mantle peridodite and implications for crustal growth[J]. Chinese Science Bulletin, 2003, 48(19):2108-2115. doi: 10.1007/BF03037015

    [32]

    Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for 'conservative' element mobility during subducting zone processes[J]. Earth and Planetary Science Letters, 2001, 192(3):331-346. doi: 10.1016/S0012-821X(01)00453-8

    [33]

    Hanyu T, Tatsumi Y, Nakai S I, et al. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25Myr:Constrains from geochemistry[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8):12-40. http://onlinelibrary.wiley.com/doi/10.1029/2005GC001220/citedby

    [34]

    Pearce J A. Basalt geochemistry used to investigate past tectonic environments on Cyprus[J]. Tectonophysics, 1975, 25(1):41-67. http://www.sciencedirect.com/science/article/pii/0040195175900104

    [35]

    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0

    [36]

    EI Aouli E H, Gasquet D, Cheilletz A. Lower Cryogenian calc-alkaline mafic rocks of the Western Anti-Atlas(Morocco):An example of orogenic-like magmatism in an extensional setting[J]. Journal of African Earth Sciences, 2010, 58(1):81-88. doi: 10.1016/j.jafrearsci.2010.01.010

    [37]

    Wang Y J, Zhang A M, Fan W M, et al. Origin of paleosubduciton modified mantle for Silurian gabbro in the Cathaysis Block:Geochronoligical and Geochemical evidence[J]. Lithos, 2013, 160/161:37-54. doi: 10.1016/j.lithos.2012.11.004

    [38]

    王秉璋.祁漫塔格地质走廊域古生代-中生代火成岩岩石构造组合研究[D].中国地质大学(北京)博士学位论文, 2011.

    [39]

    Zhang J Y, Ma C Q, Xiong F H, et al. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, easrern Kunlun Orogen, China[J]. Geological Magazine, 2012, 149(05):892-908. doi: 10.1017/S0016756811001142

    [40]

    赵财胜.青海东昆仑造山带金、银成矿作用[D].吉林大学博士学位论文, 2004.http://cdmd.cnki.com.cn/Article/CDMD-10183-2004100082.htm

    [41]

    郭正府, 邓晋福, 许志琴, 等.青藏东昆仑晚古生代末中生代中酸性火成岩与陆内造山过程[J].现代地质, 1998, 12(3):345-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800618575

    孙丰月, 陈国华, 迟效国, 等.新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究成果报告, 2003.

    孙丰月, 李碧乐, 丁清峰, 等.东昆仑成矿带重大找矿疑难问题研究成果报告. 2009.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  528
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2018-05-15
修回日期:  2018-08-22
刊出日期:  2018-10-25

目录