额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义

杨华本, 刘玉, 郑吉林, 梁中恺, 王晓勇, 唐雪峰, 苏燕平. 额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义[J]. 地质通报, 2017, 36(2-3): 342-356.
引用本文: 杨华本, 刘玉, 郑吉林, 梁中恺, 王晓勇, 唐雪峰, 苏燕平. 额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义[J]. 地质通报, 2017, 36(2-3): 342-356.
YANG Huaben, LIU Yu, ZHENG Jilin, LIANG Zhongkai, WANG Xiaoyong, TANG Xuefeng, SU Yanping. Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China[J]. Geological Bulletin of China, 2017, 36(2-3): 342-356.
Citation: YANG Huaben, LIU Yu, ZHENG Jilin, LIANG Zhongkai, WANG Xiaoyong, TANG Xuefeng, SU Yanping. Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China[J]. Geological Bulletin of China, 2017, 36(2-3): 342-356.

额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义

  • 基金项目:
    中国地质调查局项目《黑龙江1∶5 万碧州公社、大乌苏、玻乌勒山、沙兰山幅区域地质矿产调查》(编号:1212011220666)
详细信息
    作者简介: 杨华本(1986-),男,硕士,工程师,从事区域地质调查工作。E-mail:yanghuaben@163.com
  • 中图分类号: P534.3;P588.12+1

Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China

  • 对大兴安岭北段额尔古纳地块东南缘玻乌勒山地区新元古代斜长角闪岩和片麻状花岗岩进行了LA-ICP-MS 锆石UPb定年和岩石地球化学分析,讨论额尔古纳地块的演化及其与Rodinia 超大陆聚合事件的关系。斜长角闪岩的锆石阴极发光图像显示核边结构,获得核部年龄904±4Ma 和边部年龄803~886Ma;片麻状花岗岩的锆石呈自形-半自形,发育岩浆成因的振荡环带,U-Pb 年龄为915±3Ma,表明其形成于新元古代。片麻状花岗岩SiO2=61.85%~67.63%,Mg#=36.9-47.9,Na2O+K2O=4.21%~9.29%,A/CNK=0.89~1.01,属于偏铝质系列。岩石富集轻稀土元素和大离子亲石元素,亏损高场强元素Nb、Ta 和Ti,具弱的Eu 负异常、低的初始Sr 比值和正的εNd(t)值,暗示片麻状花岗岩为年轻的初生地壳物质熔融形成。斜长角闪岩贫硅、Mg#较高,Ni、Cr、Co 含量较高,Zr/Hf、Nb/Ta 和Th/U 值低,具有平坦的稀土元素配分模式,与正常型洋中脊玄武岩相似,具有亏损地幔性质,同时富集大离子亲石元素Rb、Ba、K、Sr 和Pb,亏损高场强元素Nb、Ta、Ti 等,记录了消减带岩浆作用的信息,表明其为活动大陆边缘经过岛弧岩浆抽提的亏损地幔源区发生重新熔融形成。结合区域上新元古代岩浆事件的纪录,认为额尔古纳地块新元古代早期岩浆事件是Rodinia 超大陆聚合事件的响应,后期变质事件可能与Rodinia 超大陆裂解有关。

  • 加载中
  • 图 1  中国东北地区构造简图(a)及大兴安岭玻乌勒山地区地质简图(b)(图a 据参考文献[1],图b 据参考文献1 2 修改)

    Figure 1. 

    图 2  大兴安岭玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)显微照片

    Figure 2. 

    图 3  玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)代表性锆石CL 图像

    Figure 3. 

    图 4  玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)锆石U-Pb 年龄谐和图

    Figure 4. 

    图 5  玻乌勒山片麻状花岗岩与斜长角闪岩TAS 图[11](a)和SiO2-K2O 图[12](b)

    Figure 5. 

    图 6  玻乌勒山斜长角闪岩-片麻状花岗岩球粒陨石标准化稀土元素曲线(a、c)及原始地幔标准化微量元素蛛网图(b、d)(球粒陨石标准化值、原始地幔标准化值、OIB 及N-MORB 据参考文献[13])

    Figure 6. 

    图 7  玻乌勒山斜长角闪岩A-K 相关图解(a)[14]、Si-((al+fm)-(c+alk))图解(b)[15]、Nb/Y-SiO2图解(c)[16]和AI-CCPI 图解(d)[17]

    Figure 7. 

    图 8  玻乌勒山斜长角闪岩微量元素成分构造判别图

    Figure 8. 

    表 1  玻乌勒山片麻状花岗岩和斜长角闪岩的LA-ICP-MS 锆石U-Th-Pb 同位素分析结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb data of the Bowuleshangneissic granite and meta-gabbro

    分析点元素含量/10-6Th/U同位素比值年龄/Ma
    206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    PbU测值测值测值测值测值
    SPM4TC07,片麻状花岗岩,206Pb/238U表面年龄加权平均值为915±3Ma,MSWD=0.15;北纬51°50.034′、东经124°56.083′
    110610.7190.15150.00161.4460.0430.06930.0021909990827
    28480.4550.15190.00171.4530.0620.06940.00299121091139
    3261550.6560.15190.00151.4540.020.06940.0009912991113
    412680.6110.15240.00161.4560.030.06930.0014915991319
    5321641.3370.15290.00171.4510.0190.06890.00089171091112
    615950.5210.15240.00171.460.0290.06950.00149151091418
    712770.2590.15290.00231.4580.0350.06920.00169171491422
    815850.8920.15330.00161.4730.0260.06970.00129191092016
    917980.7080.15240.00151.470.030.070.0014915991819
    1011660.660.15470.00181.4880.040.06980.00179271192625
    11351980.9150.1540.00171.490.0170.07020.00079241092611
    1214900.5590.15360.00161.4770.0250.06980.00119211092116
    1315890.6680.1530.00161.4670.0230.06960.0019181091714
    1414860.7880.15170.00151.4630.0250.06990.0012911991516
    15181080.7370.15190.00161.4660.0240.070.00119121091716
    168510.6990.15170.00161.4520.0530.06940.0024910991133
    177480.4070.15190.00161.4540.070.06950.00339111091244
    1810610.6080.1530.00161.4730.0530.06990.0025918992034
    1911660.6090.15120.00151.4550.0550.06980.0026908991235
    20211410.1680.15150.00181.4690.0240.07030.00099101191815
    2112750.5590.15190.00161.4740.0350.07040.00179121092022
    2212830.140.15290.00191.4690.0320.06970.00149171191820
    23161000.4570.15290.00161.4820.0280.07030.00139171092318
    2410650.4590.15190.00161.4750.0580.07040.00279121092036
    25513390.2580.15290.00151.4680.0160.06970.0007917991810
    268470.490.15330.00161.4740.0790.06970.00379201092049
    278470.540.15240.00161.4590.0620.06940.00299151091439
    2815930.5480.15180.00181.470.0250.07020.00119111191816
    2915930.6880.15270.00151.4630.0280.06950.0013916991518
    3011700.5520.15250.00161.4650.030.06970.0014915991619
    3115940.5380.15230.00171.460.0250.06950.00119141091416
    32281990.0270.15170.00161.450.0230.06930.00099101091015
    335320.4160.15260.00181.4530.0650.06910.00319151191141
    348500.6120.15340.00171.4680.0460.06950.00229201091829
    3513830.4560.15280.00151.4710.030.06990.0014917991919
    3615980.4890.15260.00171.4610.0230.06950.00119151091515
    37372320.530.15180.00181.4550.0180.06950.00069111191212
    38191350.0120.15290.00161.480.0240.07020.0019171092315
    SPM4TC07,片麻状花岗岩,206Pb/238U表面年龄加权平均值为915±3Ma,MSWD=0.15;北纬51°50.034′、东经124°56.083′
    395440.010.13290.00141.3320.0640.07270.0034805986041
    40713851.4270.15240.00161.4720.0140.07010.0005914109199
    4112750.4330.15220.00171.4590.0320.06950.00169131091420
    42342200.3640.15250.00191.4680.0190.06980.00069151191712
    43171030.7690.15170.00151.450.0220.06940.001910991014
    44181080.7810.1520.00161.4650.0210.06990.001912991613
    45271680.4640.15230.00251.4730.0270.07020.00089141591917
    468580.0130.15210.00161.5030.0690.07170.00329131093243
    47151000.4170.15260.00161.4640.0220.06960.00099161091614
    4815940.6170.15210.00181.4570.0270.06950.00129131191317
    49935750.5620.15240.00161.4610.0140.06950.000591599159
    HQG,斜长角闪岩,206Pb/238U表面年龄加权平均值为904±4Ma,MSWD=0.54;北纬51°52.936′、东经124°51.364′
    1141030.0150.15010.00161.4340.0260.06920.00129021090317
    2372660.0060.15070.00161.4420.0210.06940.00099051090713
    33180.1980.14910.0031.4230.1860.06920.009589618899117
    4180.1290.15210.00271.4650.2520.06980.013791316916158
    52130.0610.14370.00221.3490.1960.06810.010486613867126
    6131070.0250.13270.00161.2040.0360.06580.0019803980324
    77500.1220.15130.00161.4510.0380.06960.0017908991024
    91100.1110.15150.00271.460.2180.06990.010990916914137
    810700.0850.15020.0021.4390.0450.06950.00189021290628
    104320.0350.14210.00151.3330.0650.06810.0033857986042
    112120.1120.14780.00211.4050.1610.0690.008288912891103
    12322240.0590.15150.00231.460.0330.070.00119091491421
    133140.0510.18230.00293.9470.2490.1570.00981080171623103
    14181310.0130.150.00171.4240.0230.06890.0019011089915
    152120.0680.13750.0021.2780.1420.06740.00768301283693
    16292040.3160.15090.00161.4350.0220.0690.00099061090414
    176450.0520.15160.00191.4610.050.06990.00249101291531
    182180.0540.14140.00181.3290.1010.06820.00528521185865
    192110.0620.15450.00231.5040.1790.07060.008492614932111
    2012870.0410.15030.0021.4270.0330.06890.00149031290021
    21171300.0190.13790.00151.2670.0210.06660.001833983114
    22322280.0040.1510.00181.4350.0220.06890.00099071190414
    23251770.0110.150.00171.4330.0230.06930.0019011090315
    252130.0730.15090.00271.4440.230.06950.011490616908145
    26443200.0630.14630.00151.3730.0190.06810.0009880987713
    27161130.0340.15110.00151.4530.0280.06980.0013907991118
    28141010.010.15140.00161.4580.0290.06980.0013909991318
    292150.0810.15180.0021.4650.1380.070.00669111291687
    302110.1180.15930.00241.570.1670.07150.007795315959102
    HQG,斜长角闪岩,206Pb/238U表面年龄加权平均值为904±4Ma,MSWD=0.54;北纬51°52.936′、东经124°51.364′
    3112870.0070.14880.00151.4180.0360.06920.0017894989723
    323180.110.13810.00181.2790.10.06720.00518341183766
    339660.0130.15210.00171.470.0340.07020.00169121091822
    3412880.0960.14740.00161.3980.0320.06880.00168861088821
    353200.0460.15250.0021.4620.0920.06960.00449151291558
    362120.0770.14790.00211.4030.1620.06880.008288913891103
    375380.0370.15010.00161.4330.050.06930.00249021090332
    382110.1390.15160.00231.4620.1880.070.009291014915118
    393140.0750.20010.00242.2040.1480.07990.0054117614118379
    405330.040.15080.00221.4410.0740.06930.00329051390647
    4110700.0180.14830.00171.420.030.06950.00138911089819
    422100.1670.15070.00231.4510.1850.06990.009390514911116
    下载: 导出CSV

    表 2  玻乌勒山片麻状花岗岩与斜长角闪岩主量、微量、稀土元素和Sr-Nd 同位素分析结果

    Table 2.  Major, trace elements, REE and Sr-Nd isotopic compositionsfor Bowuleshan gneissic granite and amphibolite

    样号
    岩性
    PM5TC
    3-1
    PM4TC
    07
    PM5TC
    04
    PM25TC9HQG1HQG3HQG4
    片麻状花岗岩斜长角闪岩
    SiO261.8567.6367.347.8549.1645.2246.02
    Al2O316.8613.5915.4213.815.6315.0814.68
    TiO20.720.680.621.570.751.050.77
    Fe2O33.12.671.564.124.644.414.52
    FeO1.463.091.849.136.446.395.58
    CaO2.854.771.9410.9910.3911.9813.54
    MgO1.41.881.337.226.34109.56
    K2O4.730.463.220.440.521.090.85
    Na2O4.553.764.932.332.881.351.3
    MnO0.1010.1190.080.2160.240.1610.165
    P2O50.2940.1620.1790.1410.0650.0490.033
    LOI1.831.111.352.032.83.022.78
    总和99.7699.9199.7999.8499.8699.8199.8
    FeOT4.255.493.2512.8410.6210.369.65
    A/CNK0.950.891.020.570.650.60.53
    Mg#36.937.842.350.151.563.263.8
    SI9.1515.810.431.130.44343.8
    Rb/Sr0.220.070.130.030.030.170.09
    σ4.580.722.741.581.882.681.52
    Y17.1534.9318.0327.814.831.219.7
    La41.0113.0137.355.572.111.681.53
    Ce85.7742.2575.2914.84.553.622.95
    Pr10.334.159.072.380.730.810.58
    Nd37.4717.8431.5512.13.775.453.8
    Sm6.294.825.23.571.422.591.62
    Eu1.441.241.161.380.651.080.73
    Gd4.84.874.083.791.663.322.11
    Tb0.71.040.660.790.390.80.49
    Dy3.626.553.425.432.785.893.67
    Ho0.641.370.651.10.571.230.77
    Er1.984.42.052.941.613.472.16
    Tm0.310.730.360.50.290.580.37
    Yb1.964.492.253.21.83.592.26
    Lu0.520.540.290.430.250.520.31
    Li16.667.9110.867.9123.338.824.4
    Be2.952.362.140.520.570.350.48
    Sc8.0620.215.2844.245.447.633.9
    V61.664.553.9335338313221
    Cr8.620.38.8337112353442
    Co9.215.86.947.341.651.837.3
    Ni4.37.97.254.732.3121114
    Ga20.2717.9420.3818.222.519.315.9
    Rb123.315.946.87.2513.646.929.6
    Sr555.8234.9357.2220518273324
    Zr311.3230.3278.710230.632.327.7
    Nb15.078.2515.064.951.030.510.66
    Mo0.170.20.260.40.240.370.3
    Ba893.8150.6810.596.5176300341
    Hf7.658.914.945.991.652.241.74
    Ta0.940.551.080.480.340.380.17
    Pb19.8623.13.1210.69.423.2
    Th8.935.1114.520.380.170.110.13
    U1.60.72.010.150.0870.0860.1
    Cl44.79363.857.93779.951.9
    F530290408412360564480
    ΣREE214142.24191.4285.7537.3665.8343.05
    LREE/HREE5.751.415.020.870.550.30.35
    (La/Yb)N8.382.5713.581.40.90.350.52
    δEu0.80.780.771.141.291.131.2
    87Sr/86Sr0.704774
    87Sr/86Sr(i)0.703387
    143Nd/144Nd0.512657
    εNd(915Ma)3.52
    TDM2(Ga)1.28
    注:A/CNK=(Al2O3)/(CaO+K2O+Na2O);Mg#=100×Mg2+/(Mg2++Fe2++Fe3+);δEu=EuN/[(GdN+SmN)/2];“N”表示相对于球粒陨石标准化值;固结指数(SI)=MgO×100/(MgO+FeO+F2O3+Na2O+K2O);主量元素含量单位为%, 微量和稀土元素含量为10-6
    下载: 导出CSV
  • [1]

    Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3/4):542-556. https://www.researchgate.net/publication/223492632_The_Hulan_Group_Its_role_in_the_evolution_of_the_Central_Asian_Orogenic_Belt_of_NE_China

    [2]

    任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999,(3):85-93. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903010.htm

    [3]

    谢鸣谦. 拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M]. 北京:科学出版社, 2000.

    [4]

    孙广瑞, 李仰春, 张昱. 额尔古纳地块基底地质构造[J]. 地质与资源, 2002, 11(3):129-139. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200203000.htm

    [5]

    苗来成, 刘敦一, 张福勤,等. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J]. 科学通报, 2007, 52(5):591-601. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200705018.htm

    [6]

    表尚虎, 郑卫政, 周兴福. 大兴安岭北部锆石U-Pb年龄对额尔古纳地块构造归属的制约[J]. 地质学报, 2012, 86(8):1262-1272. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201208010.htm

    [7]

    王洪波, 杨晓平. 大兴安岭北段新一轮国土资源大调查以来的主要基础地质成果与进展[J]. 地质通报, 2013, 32(2/3):525-532. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1025.htm

    [8]

    Liu Y, Hu Z, Gao S, et al. In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. https://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f/In-situ-analysis-of-major-and-trace-elements-of-anhydrous-minerals-by-LA-ICP-MSLA-ICP-MS-without-applying-an-internal-standard.pdf

    [9]

    Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust Recycling-induced Melt - Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):392-9.

    [10]

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    [11]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. http://www.oalib.com/references/7414805

    [12]

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to mineralogy and petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    [13]

    Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [14]

    周世泰. 恢复变质岩原岩的一种岩石化学方法[J]. 辽宁地质学报, 1981, (1):178-187.

    [15]

    Simonen A. Stratigraphy and sedimentation of the Svecofennidic, early Archeansupracrustal rocks in southwestern Finland[J]. Bulletin of the Geological Society of Finland, 1953, 160:1-64.

    [16]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4):325-343. http://www.academia.edu/17797804/Geochemical_discrimination_of_different_magma_series_and_their_differentiation_products_using_immobile_elements

    [17]

    Large R R. The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits[J]. Economic Geology, 2001, 96(5):957-971. https://pangea.stanford.edu/research/ODEX/EG/papers/Abs96-5_files/large2.pdf

    [18]

    Maclean W H. Mass change calculations in altered rock series[J]. MineraliumDeposita, 1990, 25(1):44-49.

    [19]

    Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767. doi: 10.1107/S0567739476001551

    [20]

    Niu Y, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J]. Earth & Planetary Science Letters, 1998, 155(1/2):147-147. https://www.researchgate.net/publication/222314997_Trace_element_evidence_from_seamounts_for_recycled_oceanic_crust_in_the_Eastern_Pacific_mantle_vol_148_pg_471_1997

    [21]

    Niu Y, Hékinian R. Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges[J]. Earth & Planetary Science Letters, 1997, 146(1/2):243-258. https://www.researchgate.net/publication/245580976_Basaltic_liquids_and_harzburgitic_residues_in_the_Garrett_Transform_A_case_study_at_fast-spreading_ridges

    [22]

    Niu Y. Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and, Post-melting Processes Beneath Mid-Ocean Ridges[J]. Journal of Petrology, 2004, 45(12):2423-2458. doi: 10.1093/petrology/egh068

    [23]

    Niu Y. ChemInform Abstract: Earth Processes Cause Zr-Hf and Nb-Ta Fractionations, but Why and How?[J]. ChemInform, 2012, 43(29):3587-3591. https://www.researchgate.net/publication/264214788_ChemInform_Abstract_Earth_Processes_Cause_Zr-Hf_and_Nb-Ta_Fractionations_but_Why_and_How

    [24]

    Alard O, Luguet A, Pearson N J, et al. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle[J]. Nature, 2005, 436(7053):1005-8. doi: 10.1038/nature03902

    [25]

    Thompson R N, O'Hara M J. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach[and Discussion][J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1984, 310(1514):549-590.

    [26]

    Eiler J M, Crawford A, Elliott T, et al. Oxygen Isotope Geochemistry of Oceanic-Arc Lavas[J]. Journal of Petrology, 2000, 41(2):229-256. doi: 10.1093/petrology/41.2.229

    [27]

    Chung S L, Wang K L, Crawford A J, et al. High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassiclavas[J]. Lithos, 2001, 59(4):153-170. doi: 10.1016/S0024-4937(01)00067-6

    [28]

    Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[J]. Journal of Geology, 1985, 94(4): 632-633. https://www.researchgate.net/publication/224929850_The_Continental_Crust_its_Composition_and_Evolution_An_Examination_of_the_Geochemical_Record_Preserved_in_Sedimentary_Rocks

    [29]

    Mahoney J J, Coffin M F. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints[C]//Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, 2013:335-355.

    [30]

    Jochum K P, Mcdonough W F, Palme H, et al. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotitexenoliths[J]. Nature, 1989, 340(6234):548-550. doi: 10.1038/340548a0

    [31]

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1):33-47. doi: 10.1007/BF00375192

    [32]

    汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3):413-421. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm

    [33]

    万渝生, 吴澄宇, 张炳熹, 稀土元素地球化学与玄武质岩石的成因-应用与问题. 岩石圈研究的现代方法.[M] 北京: 原子能出版社, 1997: 215-228.

    [34]

    Taylor S R, Mclennan S M. The chemical composition of the Archaeancrust[J]. Geological Society London Special Publications, 1986, 24:173-178. doi: 10.1144/GSL.SP.1986.024.01.16

    [35]

    Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):293-301.

    [36]

    高山, 骆庭川, 张本仁,等. 中国东部地壳的结构和组成[J]. 中国科学:地球科学, 1999, 29(3):204-213. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199903001.htm

    [37]

    洪大卫, 王式, 谢锡林,等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000(2):441-456.

    [38]

    Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic crustal growth: UPb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1):89-113. https://www.researchgate.net/publication/223576713_Phanerozoic_crustal_growth_U-Pb_and_Sr-Nd_isotopic_evidence_from_the_granites_in_northeastern_China

    [39]

    Jahn B M, Griffin W L, Windley B. Continental growth in the Phanerozoic: Evidence from Central Asia[J]. Tectonophysics, 2000, 328(328):vii-x. https://www.researchgate.net/publication/240379167_Continental_growth_in_the_Phanerozoic_Evidence_from_Central_Asia

    [40]

    吴福元, 孙德有. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2):181-189. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm

    [41]

    Martin H. Adakitic magmas: modern analogues of Archaeangranitoids[J]. Lithos, 1999, 46(3):411-429. doi: 10.1016/S0024-4937(98)00076-0

    [42]

    罗毅, 王正邦, 周德安. 额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景[J]. 东华理工大学学报(自然科学版), 1997(1): 1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ701.000.htm

    [43]

    武广, 孙丰月, 赵财胜,等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 2005, 50(20):2278-2288. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htm

    [44]

    边红业, 吉峰, 表尚虎. 大兴安岭富西里地区赞岐岩-(石英)二长闪长岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 世界地质, 2014, 33(4):768-779. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201404004.htm

    [45]

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014

    [46]

    Gou J, Sun D Y, Ren Y S, et al. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence[J]. Journal of Asian Earth Sciences, 2013, 67: 114-137. https://www.researchgate.net/publication/258794425_Petrogenesis_and_geodynamic_setting_of_Neoproterozoic_and_Late_Paleozoic_magmatism_in_the_Manzhouli-Erguna_area_of_Inner_Mongolia_China_Geochronological_geochemical_and_Hf_isotopic_evidence

    [47]

    张一涵. 内蒙古东北部额尔古纳河群和乌宾敖包组的形成时代与物源:碎屑锆石U-Pb年代学证据[D]. 吉林大学硕士学位论文, 2014.

    [48]

    李明. 中国东北现代河流碎屑锆石U-Pb年代学和Hf同位素研究及大陆生长与演化[D]. 中国地质大学博士学位论文, 2010.

    [49]

    陈岳龙, 李大鹏, 刘长征, 等. 大兴安岭的形成与演化历史: 来自河漫滩沉积物地球化学及其碎屑锆石U-Pb年龄, Hf同位素组成的证据[J]. 地质学报, 2014, 88(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201401001.htm

    [50]

    Powell C M, Powell C M. Assembly and break-up of Rodinia: introduction to the special volume[J]. Precambrian Research, 2001, 110(1):1-8. https://www.researchgate.net/publication/263311146_Assembly_and_break-up_of_Rodinia_Introduction_to_the_special_volume

    [51]

    郭进京, 张国伟, 陆松年,等. 中国新元古代大陆拼合与Rodinia超大陆[J]. 高校地质学报, 1999(2):148-156. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX902.002.htm

    [52]

    周建波, 曾维顺, 曹嘉麟,等. 中国东北地区的构造格局与演化:从500Ma到180Ma[J]. 吉林大学学报(地), 2012, 42(5):1298-1316. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205005.htm

    [53]

    Hoffman P F. Did the breakout of laurentia turn gondwanaland inside-out?[J]. Science, 1991, 252(5011):1409-12. doi: 10.1126/science.252.5011.1409

  • 加载中

(8)

(2)

计量
  • 文章访问数:  465
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2015-12-09
修回日期:  2016-07-01
刊出日期:  2017-03-25

目录