桂北新寨强过铝质花岗岩的岩石成因及其构造意义——来自年代学、地球化学及Sr-Nd-Hf同位素的制约

贾小辉, 王晓地, 杨文强. 桂北新寨强过铝质花岗岩的岩石成因及其构造意义——来自年代学、地球化学及Sr-Nd-Hf同位素的制约[J]. 地质通报, 2017, 36(5): 738-749.
引用本文: 贾小辉, 王晓地, 杨文强. 桂北新寨强过铝质花岗岩的岩石成因及其构造意义——来自年代学、地球化学及Sr-Nd-Hf同位素的制约[J]. 地质通报, 2017, 36(5): 738-749.
JIA Xiaohui, WANG Xiaodi, YANG Wenqiang. Constraints of geochemistry, geochronology and Sr-Nd-Hf isotopes on the Xinzhai peralu-minous granite in northern Guangxi:implications for petrogenesis and tectonic significance[J]. Geological Bulletin of China, 2017, 36(5): 738-749.
Citation: JIA Xiaohui, WANG Xiaodi, YANG Wenqiang. Constraints of geochemistry, geochronology and Sr-Nd-Hf isotopes on the Xinzhai peralu-minous granite in northern Guangxi:implications for petrogenesis and tectonic significance[J]. Geological Bulletin of China, 2017, 36(5): 738-749.

桂北新寨强过铝质花岗岩的岩石成因及其构造意义——来自年代学、地球化学及Sr-Nd-Hf同位素的制约

  • 基金项目:
    国家自然科学基金项目《粤北罗岗钾玄质侵入岩的岩石成因及其动力学意义》(批准号:41302046)、中国地质调查局项目《南岭关键地区区域地质调查》(编号:12120113063600)和《国家地质数据库建设与整合》(编号:1212011220512)
详细信息
    作者简介: 贾小辉(1980-), 男, 硕士, 助理研究员, 岩石地球化学专业。E-mail:jxh1226@126.com
    通讯作者: 王晓地(1974-), 男, 博士, 高级工程师, 从事岩石学和矿床学研究。E-mail:178372234@qq.com
  • 中图分类号: P534.42;P588.12+1;P597

Constraints of geochemistry, geochronology and Sr-Nd-Hf isotopes on the Xinzhai peralu-minous granite in northern Guangxi:implications for petrogenesis and tectonic significance

More Information
  • LA-ICP-MS锆石U-Pb定年结果显示,桂北新寨花岗岩形成于中奥陶世(465±2Ma)。该花岗岩的地球化学特征表现为化学成分较均一,具有高硅(SiO2=68.54%~74.57%)、富碱(K2O+Na2O=7.61%~8.31%)、更富钾(K2O/Na2O=1.77~2.35)、强过铝质(A/CNK=1.09~2.39)和富集大离子亲石元素而亏损高场强元素等特征,属于S型花岗岩。新寨花岗岩具有比较均一的Sr、Nd同位素组成(ISr=0.71137~0.71328,ε Ndt)=-7.89~-7.26)。锆石Hf同位素组成为:(176Hf/177Hf)i=0.28232~0.28252,εHft)=-6.18~+0.61,Hf同位素两阶段模式年龄TDM2变化于1.67~2.11Ga之间。元素及Nd-Sr-Hf同位素分析结果显示,新寨花岗岩可能源自古元古代地壳变质泥岩的部分熔融,在成岩过程中有少量幔源组分的参与。新寨S型花岗岩可能是广西运动第二幕在桂北地区的岩石学响应,为早古生代构造-岩浆群事件的建立提供了新证据。

  • 加载中
  • 图 1  新寨侵入体地质简图(a)和华南早古生代花岗岩分布简图(b)

    Figure 1. 

    图 2  新寨花岗岩锆石U-Pb年龄谐和图(a)和加权平均年龄图(b)

    Figure 2. 

    图 3  SiO2-K2O图(a)[28]和A/CNK-A/NK图(b)(引文数据据参考文献[7, 14, 29-42])

    Figure 3. 

    图 4  新寨、南岭地区、武夷—云开地区早古生代花岗岩稀土元素分布模式(a、c、e)和原始地幔标准化微量元素蛛网图(b、d、f)

    Figure 4. 

    图 5  新寨侵入岩(87Sr/86Sr)i-ε Nd(t)(a)和t-ε Nd(t))图解(b)(图例同图 3

    Figure 5. 

    图 6  新寨花岗岩锆石的ε Hf(t)(a)和TDM2频谱图(b)

    Figure 6. 

    图 7  新寨花岗岩Al2O3/TiO2-CaO/Na2O(a),Rb/SrRb/Ba(b)和CaO/(MgO+TFeO)-Al2O3/(MgO+TFeO)(c)图解

    Figure 7. 

    图 8  新寨花岗岩(Yb+Ta)-Rb(a)和Y-Nb图解(b)[54]

    Figure 8. 

    表 1  新寨花岗岩LA-ICP-MS锆石U-Th-Pb同位素分析数据

    Table 1.  LA-ICP-MS U-Th-Pb isotopic data for zircons of the Xinzhai granites

    点号 Pb Th U 比值(经普通铅校正) 年龄(经普通铅校正)/Ma
    /10-6 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
    1 340 1852 3872 0.05193 0.00073 0.5387 0.0073 0.07484 0.00055 282 27 438 5 465 3
    2 314 1485 3695 0.04815 0.00062 0.5014 0.0067 0.07502 0.0005 107 28 413 5 466 3
    3 279 1304 3243 0.05273 0.00101 0.5520 0.0138 0.07484 0.00067 317 54 446 9 465 4
    4 218 983 2585 0.04956 0.00074 0.5187 0.0074 0.07546 0.00035 174 32 424 5 469 2
    5 180 696 2182 0.04983 0.00081 0.5184 0.0084 0.07500 0.00038 187 37 424 6 466 2
    6 251 1809 2752 0.05398 0.00097 0.5621 0.0099 0.07515 0.00054 370 37 453 6 467 3
    7 367 1511 4445 0.05268 0.00074 0.5448 0.0077 0.07464 0.00051 315 29 442 5 464 3
    8 307 1709 3336 0.05406 0.00077 0.5684 0.0087 0.07580 0.00054 373 31 457 6 471 3
    9 506 3225 6517 0.05389 0.00064 0.5140 0.0064 0.06884 0.00052 366 23 421 4 429 3
    10 254 1070 3089 0.05584 0.00083 0.5800 0.0078 0.07506 0.00057 446 25 464 5 467 3
    11 431 2850 4939 0.05645 0.00074 0.5833 0.0073 0.07472 0.00062 470 21 467 5 465 4
    12 335 1456 3850 0.05733 0.00095 0.6010 0.0099 0.07574 0.00065 504 32 478 6 471 4
    13 448 2762 5309 0.05446 0.00078 0.5646 0.0081 0.07499 0.00067 390 26 455 5 466 4
    14 397 3076 4596 0.05262 0.00066 0.5448 0.0068 0.07472 0.00035 313 27 442 4 465 2
    15 436 3203 5232 0.05188 0.00063 0.5262 0.0064 0.07320 0.00037 280 26 429 4 455 2
    16 317 2249 3757 0.05144 0.00064 0.5232 0.0068 0.07346 0.00051 261 26 427 5 457 3
    17 438 2426 5146 0.05038 0.00057 0.5234 0.0062 0.07501 0.00045 213 24 427 4 466 3
    18 268 1250 3182 0.05094 0.00066 0.5272 0.0077 0.07470 0.00055 238 30 430 5 464 3
    下载: 导出CSV

    表 2  新寨花岗岩锆石Lu-Hf同位素分析结果

    Table 2.  Lu-Hf isotopic analyses for zircons of the Xinzhai granites

    点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf T/Ma ε Hf(t) THf1/Ga THf2/Ga
    01 0.025163 0.000830 0.282463 0.000011 465 -0.95 0.4 1.11 1.78
    02 0.027225 0.000853 0.282346 0.000013 466 -5.06 0.5 1.27 2.04
    03 0.029851 0.000952 0.282370 0.000012 465 -4.27 0.4 1.24 1.99
    04 0.040693 0.001246 0.282317 0.000014 469 -6.18 0.5 1.33 2.11
    05 0.029434 0.000908 0.282359 0.000009 466 -4.63 0.3 1.26 2.02
    06 0.054760 0.001624 0.282430 0.000014 467 -2.32 0.5 1.18 1.86
    07 0.030690 0.000943 0.282388 0.000009 464 -3.66 0.3 1.22 1.95
    08 0.036582 0.001166 0.282469 0.000011 471 -0.73 0.4 1.11 1.77
    09 0.051495 0.001635 0.282528 0.000019 429 0.35 0.7 1.04 1.64
    10 0.047695 0.001418 0.282391 0.000012 467 -3.64 0.4 1.23 1.94
    11 0.044739 0.001420 0.282480 0.000014 465 -0.51 0.5 1.10 1.74
    12 0.032905 0.001018 0.282385 0.000014 471 -3.65 0.5 1.23 1.96
    13 0.042287 0.001289 0.282477 0.000013 466 -0.55 0.5 1.10 1.75
    14 0.051338 0.001555 0.282513 0.000018 465 0.61 0.6 1.06 1.67
    15 0.034169 0.001069 0.282458 0.000012 455 -1.42 0.4 1.12 1.79
    16 0.048987 0.001475 0.282427 0.000014 457 -2.59 0.5 1.18 1.86
    17 0.038565 0.001186 0.282391 0.000012 466 -3.58 0.4 1.22 1.94
    18 0.022362 0.000739 0.282463 0.000011 464 -0.95 0.4 1.11 1.78
    下载: 导出CSV

    表 3  新寨花岗岩主量和微量元素分析结果

    Table 3.  Chemical composition of the Xinzhai granites

    元素 N38-1 N38-2 N38-3 N38-4 N38-5 N38-6
    SiO2 74.07 74.57 68.54 68.70 72.43 71.89
    Al2O3 13.25 13.39 15.25 14.78 15.44 15.33
    Fe2O3 0.30 0.50 1.18 1.49 1.02 2.11
    FeO 1.57 1.49 2.55 2.29 1.30 0.97
    CaO 0.95 0.17 0.42 0.97 0.18 0.07
    MgO 0.62 0.41 1.63 1.52 0.88 0.87
    k2O 5.37 5.83 5.24 5.12 5.59 5.56
    Na2O 2.84 2.48 2.37 2.90 0.16 0.16
    TiO2 0.16 0.12 0.39 0.37 0.46 0.46
    P2O5 0.04 0.02 0.09 0.09 0.12 0.04
    MnO 0.03 0.02 0.07 0.06 0.02 0.04
    总计 99.19 99.00 97.73 98.28 97.60 97.50
    烧失量 0.62 0.83 1.96 1.45 2.25 2.37
    Sc 3.34 3.26 9.16 9.66 11.4 8.55
    V 21.4 16.9 59.3 61.7 75.6 71.6
    Cr 15.7 9.19 27.1 33.2 41.9 39.4
    Co 3.27 3.25 8.56 9.15 4.85 7.58
    Ni 6.62 6.58 16.8 17.6 13.8 14.9
    Ga 13.1 13.2 17.1 17.9 18.5 17.9
    Rb 304 309 300 247 292 268
    Sr 58.3 32.7 73.3 146 7.51 6.05
    Y 26.2 19.7 33.4 30.1 31.2 20.1
    Nb 11.1 11.6 12.8 12.4 14.8 14.4
    Cs 15.8 18.2 29.4 16.1 36.7 27.4
    Ba 469 604 962 702 1110 1083
    La 34.5 31.5 31.3 38.4 32.1 38.6
    Ce 64.1 56.2 66.9 62.5 65.6 72.8
    Pr 6.73 6.2 6.96 8.27 7.95 8.96
    Nd 23.1 21.2 27.0 30.5 29.9 35.2
    Sm 4.13 3.73 5.44 5.90 6.42 6.28
    Eu 0.49 0.42 0.97 0.99 0.96 1.03
    Gd 3.44 2.89 4.95 5.14 5.31 4.58
    Tb 0.65 0.52 0.88 0.93 1.00 0.80
    Dy 4.01 3.22 5.56 5.07 5.75 4.25
    Ho 0.84 0.63 1.10 1.04 1.10 0.71
    Er 2.51 1.97 3.28 2.91 3.18 2.22
    Tm 0.53 0.40 0.60 0.51 0.58 0.39
    Yb 3.55 2.93 3.66 3.40 3.32 2.51
    Lu 0.63 0.53 0.60 0.50 0.52 0.33
    Ta 3.20 3.20 1.88 1.77 1.95 2.01
    Pb 55.8 53.3 29.4 46.4 20.5 16.1
    Th 33.4 43.4 27.6 32.6 31.3 31.2
    U 8.82 10.0 7.62 10.1 6.28 8.24
    Zr 134 156 196 197 244 197
    Hf 5.74 6.59 6.31 5.89 7.46 5.98
      注:主量元素单位为%,微量和稀土元素为10-6
    下载: 导出CSV

    表 4  新寨花岗岩Sr-Nd同位素分析结果

    样品号 Sm /10-6 Nd /10-6 147Sm/144Nd 143Nd/144Nd ε Nd(t) TDM2/Ga Rb /10-6 Sr /10-6 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i
    N038-1 4.13 23.1 0.1088 0.511% 0.000004 -7.88 1.85 304 58.3 14.71 0.80984 0.000011 0.71137
    N038-3 5.44 27 0.1226 0.51201 0.000007 -7.89 1.85 300 73.3 11.54 0.76544 0.000010 0.68815
    N038-4 5.9 30.5 0.1177 0.51202 0.000006 -7.26 1.80 247 146 4.770 0.74523 0.000013 0.71328
    下载: 导出CSV
  • [1]

    陈洪德, 侯明才, 许效松, 等.加里东期华南的盆地演化与层序格架[J].成都理工大学学报(自然科学版), 2006, 33(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200601000.htm

    [2]

    Hs K J, Li J L, Chen H H, et al. Tectonics of South China:key to tectonics of South China:key to understanding west Pacific geology[J]. Tectonophysics, 1990, 193:9-39.

    [3]

    Ma L, Chen H J, Gan K W, et al. Geotectonics and petroleum geology of marine sedimentary rocks in southern China[M]. Geological Publishing House, Beijing, 2004.

    [4]

    舒良树, 于津海, 贾东, 等.华南东段早古生代造山带研究[J].地质通报, 2008, 27(10):1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20081001&journal_id=gbc

    [5]

    Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneisses in Yunkai Mountains and its implications on the Caledonian event in South China[J]. Gondwana Research, 2007, 12(4):404-416. doi: 10.1016/j.gr.2006.10.003

    [6]

    Wang Y J, Zhang F F, Fan W M, et al. Tectonic setting of the South China Block in the early Paleozoic:resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics, 2010, 29(6):1-70. http://onlinelibrary.wiley.com/doi/10.1029/2010TC002750/full

    [7]

    Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis within the eastern South China Block:geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 2011, 127:239-260. doi: 10.1016/j.lithos.2011.07.027

    [8]

    Wang Y J, Wu C M, Zhang A M, et al. Kwangsian and Indosinian reworking of the eastern South China Block:constraints on zircon U-Pb geochronology and metamorphismof amphibolites and granu-lites[J]. Lithos, 2012, 150:227-242. doi: 10.1016/j.lithos.2012.04.022

    [9]

    Wang Y J, Fan W M, Zhang G W, et al. Phanerozoic tectonics of the South China Block:key observations and controversies[J]. Gondwana Research, 2013, 23:1273-1305. doi: 10.1016/j.gr.2012.02.019

    [10]

    Wang Y J, Zhang A M, Fan W M, et al. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block:geochronological and geochemical evidence[J]. Lithos, 2013, 160/161:37-54. doi: 10.1016/j.lithos.2012.11.004

    [11]

    Faure M, Shu L S, Wang B, et al. Intracontinental subduction:a possible mechanism for the Early Palaeozoic Orogen of SE China[J]. Terra Nova, 2009, 21:360-368. doi: 10.1111/ter.2009.21.issue-5

    [12]

    Charvet J, Shu L S, Faure M, et al. Structural development of the lower Paleozoic belt of South China:genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 2010, 39:309-330. doi: 10.1016/j.jseaes.2010.03.006

    [13]

    Huang X L, Yu Y, Li J, et al. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South Chi-na:middle-lower crustal melting during orogenic collapse[J]. Lith-os, 2013, 177:268-284. doi: 10.1016/j.lithos.2013.07.002

    [14]

    Wan Y S, Liu D Y, Wilde S M, et al. Evolution of the Yunkai terrane, South China:evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope[J]. Journal of Asian Earth Sciences, 2010, 37:140-153. doi: 10.1016/j.jseaes.2009.08.002

    [15]

    Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai Orogeny, southeastern South China:new age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5/6):772-793. https://www.researchgate.net/profile/Jo_Anne_Wartho/publication/50875443_Magmatic_and_metamorphic_events_during_the_early_Paleozoic_Wuyi-Yunkai_orogeny_southeastern_South_China_New_age_constraints_and_pressure-temperature_conditions/links/00b4953556253e9f44000000.pdf?origin=publication_detail

    [16]

    孙涛.新编华南花岗岩分布图及其说明[J].地质通报, 2006, 25(3):3327. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20060355&journal_id=gbc

    [17]

    周新民.对华南花岗岩研究的思考[J].高校地质学报, 2003, 9:556-565 doi: 10.3969/j.issn.1006-7493.2003.04.009

    [18]

    张相训, 陈扬浦.灵川县新寨花岗岩体形成时代研究[J].广西地质, 1993, 6(1):23-28. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199301002.htm

    [19]

    袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008

    [20]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. https://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f/In-situ-analysis-of-major-and-trace-elements-of-anhydrous-minerals-by-LA-ICP-MSLA-ICP-MS-without-applying-an-internal-standard.pdf

    [21]

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    [22]

    Ludwig K R. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M]. California:Berkeley Geochronology Center, 2003.

    [23]

    Blichert T J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1):243-258. http://www.academia.edu/5433105/The_Lu-Hf_isotope_geochemistry_of_chondrites_and_the_evolution_of_the_mantle-crust_system

    [24]

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9

    [25]

    Qu X M, Hou Z Q, Li Y G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gungdese copper belt, southern Tibetan (Xizang) plateau[J].Lithos, 2004, 74(3/4):131-148. http://www.academia.edu/14455616/Melt_components_derived_from_a_subducted_slab_in_late_orogenic_ore-bearing_porphyries_in_the_Gangdese_copper_belt_southern_Tibetan_plateau

    [26]

    王银喜, 杨杰东, 陶仙聪, 等.化石、矿物和岩石样品的Sm-Nd同位素实验方法研究及其应用[J].南京大学学报(自然科学版), 1988, 21(2):297-308. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198802017.htm

    [27]

    Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth Science Review, 1994, 37:215-224. doi: 10.1016/0012-8252(94)90029-9

    [28]

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions of Mineralogy and Petrology, 1976, 58(1):63-8l. doi: 10.1007/BF00384745

    [29]

    李献华.万洋山-诸广山花岗岩复式岩基的地球化学研究及地壳形成演化历史[J].地质地球化学, 1989, (3):4-5. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198903018.htm

    [30]

    柏道远, 黄建中, 马铁球, 等.湘东南志留纪彭公庙花岗岩体的地质地球化学特征及其构造环境[J].现代地质, 2006, 20(1):130-140. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200601015.htm

    [31]

    许德如, 陈广浩, 夏斌, 等.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J].高校地质学报, 2006, 12(4):507-521. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604012.htm

    [32]

    耿红燕, 徐夕生, 赵明, 等.粤西白垩纪火山-侵入岩浆活动及其地质意义[J].中国科学(D辑), 2006, 36(7):601-617. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200607001.htm

    [33]

    彭松柏, 金振民, 刘云华, 等.云开造山带强过铝深熔花岗岩地球化学, 年代学及构造背景[J].地球科学:中国地质大学学报, 2006, 31(1):110-120. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601015.htm

    [34]

    周新民, 孙涛, 沈渭洲, 等. 华南中生代花岗岩-火山岩时空格局与成因模式[C]//南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社, 2007: 179-195.

    [35]

    伍光英, 马铁球, 冯艳芳, 等.南岭万洋山加里东期花岗岩地质地球化学特征及其成因[J].中国地质, 2008, 35(4):608-617. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200804006.htm

    [36]

    沈渭洲, 张芳荣, 舒良树, 等.江西宁冈岩体的形成时代, 地球化学特征及其构造意义[J].岩石学报, 2008, 24(10):2244-2254. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810006.htm

    [37]

    刘锐, 张利, 周汉文, 等.闽西北加里东期混合岩及花岗岩的成因:同变形地壳深熔作用[J].岩石学报, 2008, 24(6):1205-1222. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806006.htm

    [38]

    程顺波, 付建明, 徐德明, 等.桂东北大宁岩体锆石SHRIMP年代学和地球化学研究[J].中国地质, 2009, 36(6):1278-1288. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200906011.htm

    [39]

    程顺波, 付建明, 徐德明, 等.湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析[J].大地构造与成矿学, 2009, 33(4):588-597. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200904014.htm

    [40]

    王彦斌, 王登红, 韩娟, 等.湖南益将稀土-钪矿的石英闪长岩锆石U-Pb定年和Hf同位素特征:湘南加里东期岩浆活动的年代学证据[J].中国地质, 2010, 37(4):1062-1070. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004022.htm

    [41]

    李光来, 华仁民, 胡东泉, 等.赣南地区石雷石英闪长岩的成因:岩石化学, 副矿物微量元素, 锆石U-Pb年代学与Sr-Nd-Hf同位素制约[J].岩石学报, 2010, 26(3):903-918. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003021.htm

    [42]

    颜乾坤. 桂东北桂岭二长花岗岩地球化学特征及其成因[D]. 桂林理工大学硕士学位论文, 2010: 1-30.

    [43]

    Sun S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [44]

    邱检生, Mcinnes B I A, 蒋少涌, 等.江西会昌密坑山岩体的地球化学及其成因类型的新认识[J].地球化学, 2005, 34(1):20-32. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200501002.htm

    [45]

    Griffin W L, Wang X, Jackson S E. Zircon chemistry and magma genesis, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61:237-269. doi: 10.1016/S0024-4937(02)00082-8

    [46]

    Zeng W, Zhang L, Zhou H W, et al. Caledonian reworking of Paleoproterozoic basement in the Cathaysia Block:constraints from zircon U-Pb dating, Hf isotopes and trace elements[J]. Chinese Sci-ence Bulletin, 2008, 53(6):895-904. https://www.researchgate.net/publication/226901120_Caledonian_reworking_of_Paleoproterozoic_basement_in_the_Cathaysia_Block_Constraints_from_zircon_U-Pb_dating_Hf_isotopes_and_trace_elements

    [47]

    Xia Y, Xu X S, Zou H B, et al. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block:evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites[J]. Lithos, 2014, 184/187:416-435. doi: 10.1016/j.lithos.2013.11.014

    [48]

    Zhang A M, Wang Y J, Fan W M, et al. LA-ICPMS zircons UPb geochronology and Hf isotopic composition of the Taoxi migmatite (Wuping):constrains on the formation age of the Taoxi complex and the Yu'nan event[J]. Geotectonica et Metallogenia, 2011, 35(1):64-72. https://www.researchgate.net/publication/281122575_LA-ICPMS_zircons_U-Pb_geochronology_and_Hf_isotopic_composition_of_the_Taoxi_migmatite_Wuping_constrains_on_the_formation_age_of_the_Taoxi_complex_and_the_Yu'nan_event

    [49]

    张爱梅, 王岳军, 范蔚茗, 等.福建武平地区桃溪群混合岩U-Pb定年及其Hf同位素组成:对桃溪群时代及郁南运动的约束[J].大地构造与成矿学, 2011, 35(1):64-72. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201101007.htm

    [50]

    Shu X J, Wang X L, Sun T, et al. Crustal formation in the Nanling Range, South China Block:Hf isotope evidence of zircons from Phanerozoic granitoids[J]. Journal of Asian Earth Sciences, 2013, 74:210-224. doi: 10.1016/j.jseaes.2013.01.016

    [51]

    陈旭, 张元动, 樊隽轩, 等.赣南奥陶纪笔石地层序列与广西运动[J].中国科学(D辑), 2010, 40:1621-1631. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012002.htm

    [52]

    陈旭, 张元动, 樊隽轩, 等.广西运动的进程:来自生物相和岩相带的证据[J].中国科学(D辑), 2012, 42:1621-1631. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201211002.htm

    [53]

    陈世悦, 李聪, 张鹏飞, 等.江南-雪峰地区加里东期和印支期不整合分布规律[J].中国地质, 2011, 35(8):1212-1219. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105009.htm

    [54]

    Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rock[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    [55]

    Zhao K D, Jiang S Y, Sun T, et al. Zircon U-Pb dating, trace element and Sr-Nd-Hf isotope geochemistry of Paleozoic granites in the Miao' ershan-Yuechengling batholith, South China:implication for petrogenesis and tectonic-magmatic evolution[J]. Journal of Asian Earth Sciences, 2013, 74:244-264. doi: 10.1016/j.jseaes.2012.12.026

    广西壮族自治区地质局. 1: 200000桂林幅区域地质测量报告. 1969.

  • 加载中

(8)

(4)

计量
  • 文章访问数:  1396
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2016-09-18
修回日期:  2017-03-16
刊出日期:  2017-05-25

目录