扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据

邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据[J]. 地质通报, 2017, 36(5): 706-714.
引用本文: 邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据[J]. 地质通报, 2017, 36(5): 706-714.
QIU Xiaofei, ZHAO Xiaoming, YANG Hongmei, WEI Yunxu, WU Nianwen, LU Shansong, JANG Tuo, PENG Lianhong. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton:Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite[J]. Geological Bulletin of China, 2017, 36(5): 706-714.
Citation: QIU Xiaofei, ZHAO Xiaoming, YANG Hongmei, WEI Yunxu, WU Nianwen, LU Shansong, JANG Tuo, PENG Lianhong. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton:Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite[J]. Geological Bulletin of China, 2017, 36(5): 706-714.

扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据

  • 基金项目:
    国家自然科学基金项目《扬子克拉通神农架地区新元古代基性岩墙时代、成因和构造意义的地球化学研究》(批准号:41303026)、中国地质调查局项目《武当-桐柏-大别成矿带武当—随枣地区岩浆岩同位素年代学与地球化学调查》(编号:DD20160030)、《中南地区基础地质综合调查与片区总结》(编号:DD20160351)和中国地质调查局百名青年地质英才培养计划
详细信息
    作者简介: 邱啸飞(1985-), 男, 博士, 副研究员, 从事同位素地球化学和岩石地球化学研究。E-mail:qiuxiaofei@geochemist.cn
  • 中图分类号: P534.3;P597+.3

Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton:Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite

  • 崆岭杂岩除太古宙结晶基底外,还出露一套以含石墨和富铝矿物为特征的孔兹岩系。相对于结晶基底,目前对于该套表壳岩系的同位素年代学研究有限。对该套孔兹岩系中代表性岩石类型榴线英岩开展了变质锆石U-Pb同位素年龄测定。研究结果表明,榴线英岩变质年龄为1964±12Ma。结合前人在相近地层岩石组合中报道的锆石U-Pb年龄数据,推测崆岭杂岩孔兹岩系原岩可能沉积于2.1~2.0Ga。扬子陆核的古元古代变质-岩浆作用可能与全球广泛存在的同时期(2.1~1.8Ga)碰撞造山事件有关,暗示其很可能是Columbia超大陆的重要组成部分。

  • 加载中
  • 图 1  崆岭杂岩地质简图及其采样点(据参考文献[20]修改)

    Figure 1. 

    图 2  崆岭杂岩榴线英岩野外露头照片

    Figure 2. 

    图 3  崆岭杂岩榴线英岩典型锆石阴极发光(CL)图像

    Figure 3. 

    图 4  崆岭杂岩榴线英岩锆石U-Pb年龄谐和图

    Figure 4. 

    图 5  崆岭杂岩榴线英岩锆石稀土元素配分模式图

    Figure 5. 

    表 1  崆岭杂岩孔兹岩锆石U-Th-Pb同位素组成和年龄值

    Table 1.  U-Th-Pb isotopic ratios and apparent ages of zircons from the khondalite in the Kongling Complex

    点号 元素含量/10-6 同位素比值 表面年龄/Ma
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 谐和度
    LLG-l 117 2.73 336 0.1156 0.0033 5.345 0.14 0.3360 0.0041 1900 51 1876 23 1867 20 99%
    LLG-2 115 2.04 323 0.1167 0.0023 5.515 0.11 0.3439 0.0041 1906 36 1903 18 1905 19 99%
    LLG-3 102 1.92 294 0.1173 0.0026 5.416 0.15 0.3362 0.0067 1915 39 1887 23 1868 32 98%
    LLG-4 107 2.16 298 0.1192 0.0021 5.633 0.10 0.3434 0.0035 1944 27 1921 16 1903 17 99%
    LLG-5 106 1.85 304 0.1164 0.0050 5.193 0.16 0.3320 0.0101 1902 72 1852 27 1848 49 99%
    LLG-6 89.4 1.52 245 0.1217 0.0029 5.793 0.14 0.3452 0.0040 1981 47 1945 21 1911 19 98%
    LLG-7 115 2.01 313 0.1190 0.0020 5.713 0.10 0.3481 0.0033 1943 31 1933 15 1926 16 99%
    LLG-8 104 2.07 285 0.1201 0.0023 5.716 0.11 0.3456 0.0038 1958 34 1934 17 1914 18 98%
    LLG-9 110 1.96 299 0.1178 0.0024 5.600 0.11 0.3454 0.0037 1924 36 1916 17 1913 18 99%
    LLG-10 113 2.03 313 0.1182 0.0022 5.578 0.11 0.3416 0.0038 1929 33 1913 17 1894 18 99%
    LLG-12 119 2.20 325 0.1200 0.0022 5.661 0.10 0.3412 0.0033 1967 32 1925 16 1892 16 98%
    LLG-13 104 1.74 283 0.1222 0.0022 5.742 0.10 0.3403 0.0036 1989 27 1938 15 1888 17 97%
    LLG-14 119 2.03 322 0.1211 0.0019 5.743 0.094 0.3425 0.0032 1972 62 1938 14 1899 15 97%
    LLG-15 113 1.87 307 0.1210 0.0019 5.723 0.088 0.3418 0.0032 1972 28 1935 13 1895 15 97%
    LLG-16 96.5 1.62 259 0.1233 0.0022 5.855 0.099 0.3440 0.0035 2006 32 1955 15 1906 17 97%
    LLG-17 100 1.62 265 0.1228 0.0023 5.9499 0.11 0.3496 0.0035 1998 32 1969 16 1933 17 98%
    LLG-18 115 2.06 291 0.1242 0.0026 6.224 0.12 0.3611 0.0033 2017 37 2008 18 1987 16 98%
    LLG-19 98.7 1.79 261 0.1186 0.0021 5.773 0.11 0.3503 0.0036 1936 33 1942 16 1936 17 99%
    LLG-20 139 2.86 376 0.1221 0.0022 5.784 0.10 0.3414 0.0034 1987 33 1944 15 1893 16 97%
    LLG-21 122 2.53 334 0.1227 0.0023 5.791 0.11 0.3393 0.0034 1995 33 1945 17 1884 16 96%
    LLG-22 119 12.1 318 0.1229 0.0021 5.9270 0.10 0.3469 0.0033 1998 30 1965 15 1920 16 97%
    LLG-23 121 2.31 331 0.1201 0.0020 5.688 0.092 0.3412 0.0032 1958 30 1930 14 1893 15 98%
    LLG-24 103 3.52 280 0.1217 0.0021 5.818 0.10 0.3438 0.0029 1983 31 1949 15 1905 14 97%
    LLG-25 146 3.23 400 0.1203 0.0018 5.728 0.087 0.3428 0.0029 1961 22 1936 13 1900 14 98%
    LLG-26 109 2.19 297 0.1218 0.0020 5.835 0.094 0.3454 0.0033 1983 30 1952 14 1913 16 97%
    LLG-27 98.8 2.53 278 0.1206 0.0021 5.610 0.11 0.3349 0.0035 1966 27 1918 16 1862 17 97%
    LLG-28 115 2.25 326 0.1205 0.0020 5.641 0.093 0.3375 0.0030 1965 25 1922 14 1875 14 97%
    LLG-29 115 2.67 320 0.1191 0.0020 5.664 0.097 0.3429 0.0033 1942 25 1926 15 1901 16 98%
    LLG-30 65.7 14.1 177 0.1211 0.0026 5.9440 0.13 0.3549 0.0046 1973 33 1968 19 1958 22 99%
    LLG-11 127 25.6 299 0.1460 0.0026 7.675 0.15 0.3791 0.0041 2299 30 2194 18 2072 19 94%
      注:衰变常数:235U=9.8485×10-10/a; 238U=1.55125×10-10/a。238U/235U=137.88;锆石谐和度(%)= [(206Pb/238U age)/(207Pb/235U age)]×100
    下载: 导出CSV

    表 2  崆岭杂岩孔兹岩锆石稀土元素组成

    Table 2.  REE compositions of zircon crystals from the khondalite in the Kongling Complex

    10-6
    点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
    LLG-1 0.026 0.14 0.03 0.38 1.45 0.85 13.4 4.98 44.1 10.3 29.7 4.75 34.7 5.12
    LLG-2 0.0039 0.16 0.02 0.27 1.09 0.76 11.7 5.03 46.0 10.9 30.2 4.87 34.2 4.96
    LLG-3 0.0055 0.09 0.02 0.39 1.42 0.61 12.1 4.54 39.3 9.48 25.8 4.13 31.1 4.30
    LLG-4 0.043 0.33 0.05 0.33 1.38 0.84 10.1 4.41 40.3 9.54 26.3 4.20 30.5 4.54
    LLG-5 0 0.10 0.01 0.17 0.83 0.52 8.80 3.68 35.9 8.76 23.3 3.57 28.2 4.13
    LLG-6 0.0088 0.11 0.01 0.15 1.06 0.45 8.99 3.44 30.4 6.45 19.2 2.94 22.3 3.24
    LLG-7 0.0067 0.19 0.01 0.31 1.38 0.85 11.9 4.69 41.9 9.94 28.1 4.55 32.4 4.89
    LLG-8 0.081 0.43 0.07 0.42 1.38 0.82 8.90 3.51 31.2 7.30 20.6 3.26 24.1 3.55
    LLG-9 0.0031 0.12 0.01 0.35 1.39 0.79 11.7 4.45 39.1 9.50 26.3 4.01 31.4 4.57
    LLG-10 0.010 0.18 0.03 0.40 1.15 0.56 11.1 4.08 37.2 8.72 24.5 3.85 28.2 4.08
    LLG-12 0.016 0.22 0.03 0.40 1.58 0.75 11.4 4.60 40.1 9.45 25.5 4.12 28.0 4.27
    LLG-13 0 0.09 0.004 0.21 0.83 0.57 8.16 3.35 29.8 7.15 19.2 3.15 23.2 3.42
    LLG-14 0.026 0.18 0.01 0.21 1.33 0.70 12.1 4.94 45.6 10.7 28.2 4.57 31.8 4.84
    LLG-15 0.0031 0.10 0.01 0.20 0•% 0.74 11.1 4.08 38.9 9.59 27.4 4.22 31.0 4.97
    LLG-16 0.0031 0.15 0.01 0.09 0.83 0.56 9.01 3.52 32.2 7.43 20.5 3.27 24.4 3.72
    LLG-17 0.0084 0.17 0.02 0.37 1.05 0.51 8.99 4.02 36.7 8.56 23.8 3.90 28.0 4.54
    LLG-18 0.029 0.31 0.05 0.47 1.07 0.53 9.71 3.90 34.6 7.89 23.1 3.42 24.8 4.35
    LLG-19 0 0.12 0.00 0.15 0.81 0.48 9.23 4.14 37.7 9.25 24.0 4.19 30.3 4.96
    LLG-20 0.0033 0.21 0.01 0.24 1.97 0.93 17.6 6.30 56.7 13.7 37.4 5.86 41.6 6.08
    LLG-21 0.052 0.42 0.03 0.51 1.66 0.98 12.8 4.99 44.9 10.9 31.0 5.03 34.8 5.64
    LLG-22 0.015 0.56 0.02 0.33 1.25 0.68 10.3 4.23 41.5 10.9 36.5 6.84 60.0 10.9
    LLG-23 0 0.22 0.01 0.35 1.45 0.76 14.2 5.25 49.3 11.5 32.5 5.10 36.1 5.66
    LLG-24 0.15 0.66 0.10 0.65 1.63 0.86 10.7 3.98 39.2 9.81 29.8 5.25 40.2 6.75
    LLG-25 0.068 0.43 0.05 0.63 1.81 1.15 17.2 6.72 61.1 14.3 39.1 6.07 41.8 6.93
    LLG-26 0.0030 0.14 0.02 0.22 1.17 0.63 11.7 4.46 38.4 9.51 26.5 4.03 29.7 4.50
    LLG-27 0.015 0.17 0.01 0.40 0.85 0.48 9.85 4.05 39.5 10.1 30.0 4.77 40.2 6.22
    LLG-28 0.23 1.21 0.19 1.28 2.04 1.25 14.7 5.48 48.2 11.5 32.0 4.95 34.5 5.45
    LLG-29 0.051 0.53 0.08 0.70 1.69 0.92 12.7 4.68 40.7 10.0 29.1 4.43 33.2 5.19
    LLG-30 0.082 18.9 0.11 2.19 4.64 2.06 23.1 7.62 79.7 25.8 95.8 17.7 150 26.6
    LLG-11 0.037 4.40 0.06 0.49 0•% 0.71 7.55 3.24 31.9 9.71 38.9 8.91 94.9 20.6
    下载: 导出CSV
  • [1]

    Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122(1):111-140. https://www.researchgate.net/profile/Wenli_Ling/publication/222890252_Neoproterozoic_tectonic_evolution_of_the_northwestern_Yangtze_craton_South_China_Implications_for_amalgamation_and_break-up_of_the_Rodinia_Supercontinent/links/570b97af08aea660813b06ab.pdf

    [2]

    Qiu X F, Ling W L, Liu X M, et al. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 2011, 191(3/4):101-119. https://www.researchgate.net/publication/251560763_Recognition_of_Grenvillian_volcanic_suite_in_the_Shennongjia_region_and_its_tectonic_significance_for_the_South_China_Craton

    [3]

    Qiu X F, Yang H M, Lu S S, et al. Geochronology and geochemistry of Grenville-aged (1063±16Ma) metabasalts in the Shennongjia district, Yangtze block:implications for tectonic evolution of the South China Craton[J]. International Geology Review, 2015, 57(1):76-96. doi: 10.1080/00206814.2014.991949

    [4]

    邱啸飞, 凌文黎, 柳小明, 等.扬子克拉通北缘神农架群火山岩锆石Hf同位素特征[J].地质通报, 2013, 32(9):1394-1401. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20130908&journal_id=gbc

    [5]

    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrian Research, 2006, 151(3):265-288. http://www.deepdyve.com/lp/elsevier/zircon-u-pb-age-and-hf-o-isotope-evidence-for-paleoproterozoic-cGlgLseDct

    [6]

    Wu Y B, Gao S, Gong H J, et al. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton:refining the timing of Palaeoproterozoic high-grade metamorphism[J]. Journal of Metamorphic Geology, 2009, 27(6):461-477. doi: 10.1111/jmg.2009.27.issue-6

    [7]

    彭松柏, 李昌年, Kusky T M, 等.鄂西黄陵背斜南部元古宙庙湾蛇绿岩的发现及其构造意义[J].地质通报, 2010, 29(1):8-20. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100102&journal_id=gbc

    [8]

    Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton:Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21(2/3):577-594. http://www.sciencedirect.com/science/article/pii/S1342937X11002024

    [9]

    Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200(2/3):26-37. https://www.researchgate.net/publication/257128267_Geochemistry_and_Zircon_U-Pb_Geochronology_of_Paleoproterozoic_Arc_Related_Granitoid_in_the_Northwestern_Yangtze_Block_and_Its_Geological_Implications

    [10]

    邱啸飞, 凌文黎, 柳小明.扬子陆核与神农架地块中元古代相互关系:来自锆石U-Pb年代学和Hf同位素的约束[J].地质科技情报, 2014, 33(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402002.htm

    [11]

    Qiu Y M, Gao S, McNaughton N J, et al. First evidence of > 3.2Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tec-tonics[J]. Geology, 2000, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2

    [12]

    Jiao W F, Wu Y B, Yang S H, et al. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China Series D:Earth Sciences, 2009, 52(9):1393-1399. doi: 10.1007/s11430-009-0135-7

    [13]

    Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 2011, 311(2):153-182. doi: 10.2475/02.2011.03

    [14]

    Chen K, Gao S, Wu Y B, et al. 2.6-2.7Ga crustal growth in Yangtze craton, South China[J]. Precambrian Research, 2013, 224:472-490. doi: 10.1016/j.precamres.2012.10.017

    [15]

    Guo J L, Gao S, Wu Y B, et al. 3.45Ga granitic gneisses from the Yangtze Craton, South China:Implications for Early Archean crust-al growth[J]. Precambrian Research, 2014, 242(3/4):82-95. https://www.researchgate.net/profile/Kang_Chen7/publication/259794609_345_Ga_granitic_gneisses_from_the_Yangtze_Craton_South_China_Implications_for_Early_Archean_crustal_growth/links/00b4952de9b393d895000000/345-Ga-granitic-gneisses-from-the-Yangtze-Craton-South-China-Implications-for-Early-Archean-crustal-growth.pdf

    [16]

    姜继圣.黄陵变质地区的同位素地质年代及地壳演化[J].吉林大学学报(地球科学版), 1986, 3:1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198603000.htm

    [17]

    Yin C Q, Lin S F, Davis D W, et al. 2.1-1.85Ga tectonic events in the Yangtze Block, South China:Petrological and geochronologi-cal evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 2013, 182:200-210. http://www.sciencedirect.com/science/article/pii/S0024493713003162

    [18]

    Peng M, Wu Y B, Wang J, et al. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. Chinese Science Bulletin, 2008, 54(6):1098-1104. https://www.researchgate.net/profile/Min_Peng5/publication/225748150_Paleoproterozoic_mafic_dyke_from_Kongling_terrain_in_the_Yangtze_Craton_and_its_implication/links/0046353717c064a920000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail

    [19]

    Zhang S B, Zheng Y F, Zhao Z F, et al. Origin of TTG-like rocks from anatexis of ancient lower crust:Geochemical evidence from Neoproterozoic granitoids in South China[J]. Lithos, 2009, 113(3/4):347-368. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/237949769_Origin_of_TTG-like_rocks_from_anatexis_of_ancient_lower_crust_Geochemical_evidence_from_Neoproterozoic_granitoids_in_South_China/links/0046352cbafeda5feb000000.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail

    [20]

    Gao S, Ling W L, Qiu Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13):2071-2088. http://www.academia.edu/13678727/Contrasting_geochemical_and_Sm-Nd_isotopic_compositions_of_Archean_metasediments_from_the_Kongling_high-grade_terrain_of_the_Yangtze_craton_evidence_for_cratonic_evolution_and_redistribution_of_REE_during_crustal_anatexis

    [21]

    湖北省地矿局.湖北省区域地质志[M].北京:地质出版社, 1990:1-662.

    [22]

    马大铨, 李志昌.鄂西崆岭杂岩的组成, 时代及地质演化[J].地球学报:中国地质科学院院报, 1997, 18(3):233-241. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB703.001.htm

    [23]

    Ling W L, Gao S, Zheng H F, et al. Sm-Nd isotopic dating of Kongling terrain[J]. Chinese Science Bulletin, 1998, 43(1):86-89. doi: 10.1007/BF02885525

    [24]

    李志昌, 方向.鄂西黄陵地区太古宙变质岩La-Ce同位素体系[J].地球化学, 1998, 27(2):117-124. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199802002.htm

    [25]

    魏君奇, 王建雄.崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成[J].高校地质学报, 2012, 18(4):589-600. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201204003.htm

    [26]

    Ling W L, Gao S, Zhang B R, et al. The recognizing of ca. 1.95Ga tectono-thermal eventin Kongling nucleus and its significance for the evolution of Yangtze Block, South China[J]. Chinese Science Bulletin, 2001, 46(4):326-329. doi: 10.1007/BF03187196

    [27]

    Liu Y S, Kelemen P B, Zong K Q, et al. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247:133-153. doi: 10.1016/j.chemgeo.2007.10.016

    [28]

    Sláma J, Kosler J, Condon D J, et al. Plesovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249:1-35. doi: 10.1016/j.chemgeo.2007.11.005

    [29]

    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm

    [30]

    Ludwig K R. User's manual for Isoplot/Ex (rev. 2.49):A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2001, No. 1a:1-50.

    [31]

    Williams I S, Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides[J]. Contributions to Mineralogy and Petrology, 1987, 97:205-217. doi: 10.1007/BF00371240

    [32]

    Bingen B, Austrheim H, Whitehouse M J, et al. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway[J]. Contributions to Mineralogy and Petrology, 2004, 147(6):671-683. doi: 10.1007/s00410-004-0585-z

    [33]

    Schaltegger U, Fanning C M, Günther D, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in highgrade metamorphism:conventional and insitu U-Pb isotope, cathodoluminescence and microchemical evidence[J]. Contributions to Mineralogy and Petrology, 1999, 134:186-201. doi: 10.1007/s004100050478

    [34]

    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for ≥ 3.5Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006, 146(1/2):16-34. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/248450700_Zircon_isotope_evidence_for_35Ga_continental_crust_in_the_Yangtze_Craton_of_China/links/00b4952cbb5f026e05000000.pdf?origin=publication_list

    [35]

    卢良兆, 徐学纯.中国北方早前寒武纪孔兹岩系[J].地质科技情报, 1998, 9:60-62. http://www.cqvip.com/qk/96865X/199809/3300755.html

    [36]

    魏君奇, 景明明.崆岭杂岩中角闪岩类的年代学和地球化学[J].地质科学, 2013, 48(4):970-983. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201304002.htm

    [37]

    Santosh M, Tsunogae T, Li J, et al. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:implications for Paleoproterozoic ultrahigh temperature metamorphism[J]. Gondwana Research, 2007, 11(3):263-285. doi: 10.1016/j.gr.2006.10.009

    [38]

    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002

    [39]

    Kröner A, Jaeckel P, Brandl G, et al. Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance[J]. Precambrian Research, 1999, 93(4):299-337. doi: 10.1016/S0301-9268(98)00102-8

    [40]

    Zhao G C, Sun M, Wilde S A, et al. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:records in the North China Craton[J]. Gondwana Research, 2003, 6(3):417-434. doi: 10.1016/S1342-937X(05)70996-5

    [41]

    Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana:A fragment of greater India lithosphere?[J]. Geology, 2013, 41(8):903-906. doi: 10.1130/G34395.1

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1664
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2016-01-18
修回日期:  2016-06-28
刊出日期:  2017-05-25

目录