铁含量对滑石脱水动力学的影响及其地质意义

张瑞鑫, 易丽, 刘红, 杨思宇. 铁含量对滑石脱水动力学的影响及其地质意义[J]. 地质通报, 2017, 36(6): 1051-1055.
引用本文: 张瑞鑫, 易丽, 刘红, 杨思宇. 铁含量对滑石脱水动力学的影响及其地质意义[J]. 地质通报, 2017, 36(6): 1051-1055.
ZHANG Ruixin, YI Li, LIU Hong, YANG Siyu. The effect of iron content on the kinetics of talc dehydration and its geological significance[J]. Geological Bulletin of China, 2017, 36(6): 1051-1055.
Citation: ZHANG Ruixin, YI Li, LIU Hong, YANG Siyu. The effect of iron content on the kinetics of talc dehydration and its geological significance[J]. Geological Bulletin of China, 2017, 36(6): 1051-1055.

铁含量对滑石脱水动力学的影响及其地质意义

  • 基金项目:
    国家自然科学基金项目《俯冲带含水矿物脱水动力学实验研究》(批准号:41373060)、川滇国家地震预报实验场专项《实验场区水化典型异常机理探索》(编号:20150112)和中国地震局地震预测研究所基本科研业务费专项《俯冲带含水矿物脱水速率实验研究》(编号:2014IES0407)、《(Mg, Fe)SiO3钙钛矿的相稳定性研究》(编号:2012IES0408)
详细信息
    作者简介: 张瑞鑫(1990-), 男, 在读硕士生, 从事含水矿物脱水动力学研究。E-mail:714895277@qq.com
    通讯作者: 易丽(1974-), 女, 博士, 副研究员, 从事地震前兆机理研究。E-mail:hnyili@126.com
  • 中图分类号: P578.958

The effect of iron content on the kinetics of talc dehydration and its geological significance

More Information
  • 在常压下研究了2种不同铁含量滑石的原位X射线衍射高温脱水反应。选取粒径2~5μm的2种不同铁含量的滑石样品,在常压、空气氛围下进行了同步辐射原位X射线衍射脱水实验。实验结果表明,铁含量高的滑石脱水温度明显偏低,2个滑石样品在常压下发生明显脱水反应的温度相差达127℃以上。滑石在常压下的脱水动力机制为随机成核和生长机制,符合Avrami方程。将实验数据拟合Avrami方程得出:n=1.669。由实验结果可以推测,不同铁含量的滑石脱水深度可能有几十到上百千米的差别,研究铁含量与滑石脱水动力的相关性对于了解俯冲带浅-中源地震的成因机制具有重要意义。

  • 加载中
  • 图 1  实验装置示意图

    Figure 1. 

    图 2  1号滑石脱水反应XRD图谱(915℃恒温)

    Figure 2. 

    图 3  2号滑石脱水反应XRD图谱(700~910℃)

    Figure 3. 

    图 4  1号、2号滑石最强衍射峰强度在脱水反应期间的变化(2θ=4.16686°)

    Figure 4. 

    图 5  1号滑石脱水反应中滑石和顽火辉石的XRD图谱(915℃恒温)

    Figure 5. 

    图 6  1号滑石2=4.16686°拟合的Avrami方程

    Figure 6. 

    表 1  滑石的组成成分

    Table 1.  The composition of two kinds of talc

    %
    编号 SiO2 TiO2 FeO MgO CaO2 K2O Na2O Al2O3 Cr2O3 P2O5 LOI 总计
    1 62.35 0.01 0.50 31.31 0.08 0.05 0.01 0.10 0.08 0.04 5.74 100.20
    2 63.269 0.012 2.532 29.650 0.023 0.039 0.069 0.055 0.050 95.714
        注:1号滑石为X射线荧光分析结果;2号滑石为电子探针分析结果
    下载: 导出CSV
  • [1]

    余日东, 金振民.蛇纹石脱水与大洋俯冲带中源地震(70~300km)的关系[J].地学前缘, 2006, 13(2):191-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602021.htm

    [2]

    Larson K M, Kostoglodov V, Miyazaki S, et al. The 2006 aseismic slow slip event in Guerrero, Mexico:New results from GPS[J]. Geo-physical Research Letters, 2007, 34(13):256-260. http://onlinelibrary.wiley.com/doi/10.1029/2007GL029912/full

    [3]

    Song T R, Helmberger D V, Brudzinski M R, et al. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in south-ern Mexico[J]. Science, 2009, 324(5926):502-6. doi: 10.1126/science.1167595

    [4]

    Kim Y, Clayton R W, Jackson J M. Geometry and seismic proper-ties of the subducting Cocos plate in central Mexico[J]. Journal of Geophysical Research Atmospheres, 2010, 115(B6):258-273. http://onlinelibrary.wiley.com/doi/10.1029/2009JB006942/full

    [5]

    Moore D E, Lockner D A. Talc friction in the temperature range 25°-400° C:Relevance for Fault-Zone Weakening[J]. Tectono-physics, 2008, 449(1):120-132. https://pubs.er.usgs.gov/publication/70032195

    [6]

    Mysen B O, Ulmer P, Konzett J, et al. The upper mantle near con-vergent plate boundaries[J]. Reviews in Mineralogy, 1998, 37:97-138. http://rimg.geoscienceworld.org/content/37/1/97

    [7]

    Bose K, Ganguly J. Thermogravimetric study of the dehydration ki-netics of talc[J]. American Mineralogist, 1994, 79(7):692-699. https://arizona.pure.elsevier.com/en/publications/thermogravimetric-study-of-the-dehydration-kinetics-of-talc

    [8]

    Chollet M, Daniel I, Koga K T, et al. Dehydration kinetics of talc and 10Å phase:Consequences for subduction zone seismicity[J]. Earth & Planetary Science Letters, 2009, 284(1/2):57-64. http://www.sciencedirect.com/science/article/pii/S0012821X09002271

    [9]

    Wang D, Karato S I. Electrical conductivity of talc aggregates at 0.5GPa:influence of dehydration[J]. Physics & Chemistry of Miner-als, 2012, 40(1):11-17. https://link.springer.com/article/10.1007/s00269-012-0541-9

    [10]

    Zhang M, Hui Q, Lou X J, et al. Dehydroxylation, proton migra-tion, and structural changes in heated talc:An infrared spectroscop-ic study[J]. American Mineralogist, 2006, 91(5):816-825.

    [11]

    Taylor H F W, Taylor H F W. Homogeneous and Inhomogeneous Mechanisms in the Dehydroxylation of Minerals[J]. Clay Minerals, 1962, 5(28):45-55. doi: 10.1180/claymin

    [12]

    Molinamontes E, Donadio D, Hernándezlaguna A, et al. Water Re-lease from Pyrophyllite during the Dehydroxylation Process Ex-plored by Quantum Mechanical Simulations[J]. Journal of Physical Chemistry C, 2013, 117(15):7526-7532. doi: 10.1021/jp310739y

    [13]

    Wang D, Yi L, Huang B, et al. High-temperature dehydration of talc:a kinetics study using X-ray powder diffraction[J]. Phase Tran-sitions, 2015, 88(6):1-7. http://www.tandfonline.com/doi/abs/10.1080/01411594.2014.1002092?needAccess=true&journalCode=gpht20

    [14]

    王艳, 王多君, 易丽.空气气氛中滑石的热分解动力学实验研究[J].中国科学院大学学报, 2015, 32(1):70-73. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201501013.htm

    [15]

    Avrami M. Kinetics of Phase Change 2[J]. Journal of Chemical Physics, 1939, 7(12):1103-1112. doi: 10.1063/1.1750380

    [16]

    Avrami M. Kinetics of Phase Change:Ⅱ. Transformation-Time Relation for Random Distribution of Nuclei[J]. Journal of Chemi-cal Physics, 1940, 8(2):212-224. doi: 10.1063/1.1750631

    [17]

    Collettini C, Viti C, Smith S A F, et al. Development of intercon-nected talc networks and weakening of continental low-angle nor-mal faults[J]. Sem. Hop., 2009, 33(6):2102-16. https://www.researchgate.net/publication/240305277_Cation_disordering_in_dolomitetheoretical_and_experimental_approach

    [18]

    Omori S, Komabayashi T, Maruyama S. Dehydration and earth-quakes in the subducting slab:empirical link in intermediate and deep seismic zones[J]. Physics of the Earth &Planetary Interiors, 2004, 146(1/2):297-311. http://www.sciencedirect.com/science/article/pii/S0031920104001293

    [19]

    Syracuse E M, Keken P E V, Abers G A. The global range of sub-duction zone thermal models[J]. Physics of the Earth & Planetary Interiors, 2010, 183(1/2):73-90. http://www.sciencedirect.com/science/article/pii/S0031920110000300

    [20]

    申婷婷, 张立飞, 陈晶.俯冲带蛇纹岩的变质过程[J].岩石学报, 2016, 32(4):1206-1218. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604019.htm

    [21]

    Mohsen M D. Dictionary of Gems and Gemology[M]. Springer Berlin Heidelberg. 2009:575.

    [22]

    赵永红, 施旭, Zimmerman, M, 等.含水对富铁橄榄石流变性的影响[J].岩石学报, 2006, 22(9):2381-2386. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609013.htm

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1108
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2016-12-20
修回日期:  2017-04-28
刊出日期:  2017-06-25

目录