西藏多龙矿集区萨玛隆闪长岩LA-ICP-MS锆石U-Pb年龄和岩石化学特征及其对成矿背景的约束

陈华安, 祝向平, 刘朝强, 李光明, 马东方, 段志明, 李玉昌, 卫鲁杰. 西藏多龙矿集区萨玛隆闪长岩LA-ICP-MS锆石U-Pb年龄和岩石化学特征及其对成矿背景的约束[J]. 地质通报, 2017, 36(6): 945-955.
引用本文: 陈华安, 祝向平, 刘朝强, 李光明, 马东方, 段志明, 李玉昌, 卫鲁杰. 西藏多龙矿集区萨玛隆闪长岩LA-ICP-MS锆石U-Pb年龄和岩石化学特征及其对成矿背景的约束[J]. 地质通报, 2017, 36(6): 945-955.
CHEN Huaan, ZHU Xiangping, LIU Chaoqiang, LI Guangming, MA Dongfang, DUAN Zhiming, LI Yuchang, WEI Lujie. LA-ICP-MS zircon U-Pb age and petrochemistry of the Samalong diorite in the Duolong metallogenic area of Tibet and its constraint on the metallogenic setting of the porphyry deposits[J]. Geological Bulletin of China, 2017, 36(6): 945-955.
Citation: CHEN Huaan, ZHU Xiangping, LIU Chaoqiang, LI Guangming, MA Dongfang, DUAN Zhiming, LI Yuchang, WEI Lujie. LA-ICP-MS zircon U-Pb age and petrochemistry of the Samalong diorite in the Duolong metallogenic area of Tibet and its constraint on the metallogenic setting of the porphyry deposits[J]. Geological Bulletin of China, 2017, 36(6): 945-955.

西藏多龙矿集区萨玛隆闪长岩LA-ICP-MS锆石U-Pb年龄和岩石化学特征及其对成矿背景的约束

  • 基金项目:
    国家自然科学基金项目《西藏自治区改则县多不杂斑岩铜金矿床岩浆演化与成矿背景研究》(批准号:41202049)、《西藏冈底斯过铝花岗岩的岩石成因及其对地壳生长的约束》(编号:41272091)和中国地质调查局项目《中国矿产地质与成矿规律综合集成和服务》(矿产地质志)(编号:DD20160346)、《滇西地区三稀等重要矿产地质调查》(编号:DD20179604)、《西南三江有色金属资源基地调查》(编号:DD20160016)
详细信息
    作者简介: 陈华安(1964-), 男, 学士, 高级工程师, 从事资源评价与矿床学研究工作。E-mail:ckscha@sina.com
    通讯作者: 祝向平(1979-), 男, 博士, 高级工程师, 从事资源评价与矿床学研究工作。E-mail:zhuxiangping3@hotmail.com
  • 中图分类号: P597+.3;P584

LA-ICP-MS zircon U-Pb age and petrochemistry of the Samalong diorite in the Duolong metallogenic area of Tibet and its constraint on the metallogenic setting of the porphyry deposits

More Information
  • 西藏多龙矿集区是目前班公湖-怒江成矿带内最具潜力的找矿远景区,矿集区内已发现4处大型斑岩铜矿,但其成矿背景尚有争议。通过开展成矿前的萨玛隆闪长岩锆石U-Pb测年、岩石化学分析,结合区域内构造发育序次,对系列斑岩铜矿的成矿背景进行探讨。对萨玛隆闪长岩中进行LA-ICP-MS锆石U-Pb测年,获得23颗锆石的206Pb/238U年龄加权平均值为121.6±1.7 Ma(MSWD=1.9),代表了闪长岩的成岩年龄。萨玛隆闪长岩的全岩岩石化学分析结果显示,该岩石属于中钾富钠岩石,富集轻稀土元素和大离子亲石元素,亏损重稀土元素和高场强元素,具有高Sr、低Y特征,相对富集Cr、Ni等不相容元素,有埃达克岩的亲和性。闪长岩具相对较高的(87Sr/86Sr)i值和较低的(143Nd/144Nd)i值、εNdt)。全岩岩石化学特征显示,萨玛隆闪长岩起源于下地壳角闪岩相,可能有幔源物质混入。矿区内早期走滑断层切穿萨玛隆闪长岩,指示多龙矿集区内主要控岩-控矿走滑断层可能形成于116~121 Ma,多龙矿集区内系列斑岩铜矿形成于班公湖-怒江洋向北俯冲末期的构造转换阶段。

  • 加载中
  • 图 1  多龙矿集区构造背景简图(a)和地质简图(b)

    Figure 1. 

    图 2  萨玛隆闪长岩野外照片(a)和显微照片(b)

    Figure 2. 

    图 3  萨玛隆闪长岩中锆石阴极发光(CL)图像及206Pb/238U年龄

    Figure 3. 

    图 4  萨玛隆闪长岩锆石U-Pb谐和图及206Pb/238U年龄图

    Figure 4. 

    图 5  萨玛隆闪长岩SiO2-K2O图解[27](a)和TAS图解[28](b)

    Figure 5. 

    图 6  萨玛隆闪长岩的稀土元素配分模式(a)和微量元素蛛网图(b)

    Figure 6. 

    图 7  萨玛隆闪长岩的Y-Sr/Y图解(a)和Yb-La/Yb图解[30](b)

    Figure 7. 

    图 8  萨玛隆闪长岩(87Sr/86Sr)iNd(t)图解[31]

    Figure 8. 

    表 1  萨玛隆闪长岩LA-ICP-MS锆石U-Th-Pb同位素测试结果

    Table 1.  LA-ICP-MS zircons U-Th-Pb isotopic analyses of the Samalong diorite

    测点号 Pb/10-6 Th/10-6 U/10-6 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb/Ma 年龄1σ 207Pb/235U/Ma 年龄1σ 206Pb/238U/Ma 年龄1σ
    1 1.50 23.4 64.8 0.36 0.0990 0.0204 0.2506 0.0501 0.0184 0.0009 1606 427 227 41 117 6
    2 4.64 122 191 0.64 0.0837 0.0101 0.2173 0.0257 0.0188 0.0005 1284 247 200 21 120 3
    3 2.26 27.2 91.1 0.30 0.0784 0.0106 0.2109 0.0274 0.0195 0.0008 1157 284 194 23 125 5
    4 4.01 69.8 167 0.42 0.0777 0.0168 0.1960 0.0416 0.0183 0.0007 1140 474 182 35 117 4
    5 4.44 83.3 187 0.45 0.0633 0.0052 0.1587 0.0114 0.0192 0.0005 718 147 150 10 123 3
    6 6.69 136 252 0.54 0.0591 0.0061 0.1562 0.0157 0.0192 0.0004 570 233 147 14 122 3
    7 5.87 122 238 0.51 0.0648 0.0043 0.1736 0.0107 0.0196 0.0004 766 126 163 9 125 2
    8 51.2 568 1043 0.54 0.0499 0.0015 0.2739 0.0082 0.0392 0.0004 190 67 246 7 248 2
    9 4.99 89.0 185 0.48 0.0463 0.0037 0.1367 0.0106 0.0214 0.0004 13 175 130 9 137 3
    10 3.87 89.2 166 0.54 0.0687 0.0083 0.1765 0.0207 0.0186 0.0006 889 262 165 18 119 3
    11 6.09 155 241 0.64 0.0652 0.0047 0.1750 0.0121 0.0201 0.0004 779 144 164 10 128 2
    12 4.17 93.3 172 0.54 0.0685 0.0072 0.1831 0.0188 0.0194 0.0004 883 226 171 16 124 3
    13 2.15 26.6 98.5 0.27 0.0681 0.0111 0.1684 0.0268 0.0179 0.0007 872 363 158 23 115 4
    14 2.65 42.5 109 0.39 0.0707 0.0080 0.1932 0.0213 0.0198 0.0005 948 243 179 18 127 3
    15 3.75 92.0 163 0.56 0.0853 0.0057 0.2109 0.0134 0.0186 0.0005 1323 116 194 11 119 3
    16 3.30 57.5 144 0.40 0.0667 0.0070 0.1760 0.0178 0.0191 0.0005 830 228 165 15 122 3
    17 3.78 81.2 157 0.52 0.0709 0.0065 0.1876 0.0164 0.0192 0.0005 955 193 175 14 123 3
    18 3.79 75.3 162 0.46 0.0687 0.0060 0.1784 0.0152 0.0188 0.0004 890 188 167 13 120 3
    19 4.12 65.1 178 0.37 0.0635 0.0058 0.1643 0.0146 0.0188 0.0004 726 201 154 13 120 3
    20 4.59 87.4 194 0.45 0.0755 0.0058 0.1906 0.0138 0.0190 0.0004 1082 144 177 12 121 2
    21 2.65 51.6 114 0.45 0.0524 0.0076 0.1294 0.0185 0.0179 0.0005 303 313 124 17 114 3
    22 4.22 99.0 153 0.65 0.0674 0.0074 0.1872 0.0200 0.0201 0.0006 851 240 174 17 128 4
    23 3.03 58.3 135 0.43 0.0537 0.0082 0.1326 0.0198 0.0179 0.0005 357 327 126 18 114 3
    24 6.71 103 293 0.35 0.0594 0.0045 0.1465 0.0097 0.0188 0.0004 583 141 139 9 120 2
    25 6.32 92.7 274 0.34 0.0643 0.0066 0.1573 0.0133 0.0189 0.0004 751 179 148 12 121 3
    下载: 导出CSV

    表 2  萨玛隆闪长岩全岩主量、微量元素和Sr-Nd同位素测试结果

    Table 2.  Whole-rock major, trace element and Sr-Nd isotopic data of the Samlong diorite

    样品号 SML-1 SML-2 SML-3 SML-4 SML-5 样品号 SML-1 SML-2 SML-3 SML-4 SML-5
    主量元素 微量元素
    SiO2 60.42 56.76 59.59 59.22 57.90 Ba 123 141 141 160 159
    Al2O3 17.87 16.71 17.09 17.17 16.74 La 12.8 15.4 12.0 10.1 12.3
    Fe2O3 1.63 1.07 1.46 1.19 1.50 Ce 28.3 28.8 23.7 19.8 23.3
    FeO 3.89 4.17 4.17 4.13 3.90 Pr 3.14 3.49 2.90 2.45 2.86
    MnO 0.18 0.19 0.19 0.16 0.18 Nd 12.0 13.5 11.4 10.2 11.4
    CaO 1.82 5.15 3.64 4.5 4.34 Sm 2.61 2.90 2.63 2.35 2.59
    MgO 3.20 3.10 3.05 2.81 3.02 Eu 0.74 0.85 0.76 0.71 0.79
    K2O 0.90 0.97 0.58 0.67 0.88 Gd 2.65 2.61 2.28 2.14 2.39
    Na2O 4.54 3.91 4.05 3.96 4.30 Tb 0.42 0.44 0.39 0.36 0.42
    TiO2 0.62 0.58 0.58 0.50 0.57 Dy 2.78 2.76 2.43 2.37 2.49
    P2O5 0.15 0.14 0.14 0.13 0.14 Ho 0.58 0.57 0.53 0.48 0.55
    LOI 3.98 6.34 4.54 5.02 5.54 Er 1.64 1.56 1.52 1.35 1.56
    总计 99.2 99.09 99.08 99.46 99.01 Tm 0.25 0.24 0.24 0.20 0.25
    K2O/Na2O 0.20 0.25 0.14 0.17 0.20 Yb 1.67 1.65 1.57 1.43 1.55
    Mg# 48 48 50 51 49 Lu 0.25 0.26 0.26 0.22 0.25
    微量元素 Hf 2.47 2.40 2.38 2.12 2.34
    Li 110 84.4 119 109 82.1 Ta 0.52 0.51 0.49 0.40 0.48
    Be 0.82 1.05 0.77 0.66 0.76 Tl 0.29 0.28 0.17 0.21 0.25
    Sc 16.8 16.6 15.1 13.7 15.5 Pb 126 49.9 63.7 27.3 46.3
    V 140 135 134 118 134 Th 3.61 3.73 3.29 2.37 3.21
    Cr 38.0 38.3 35.0 24.5 34.7 U 0.86 0.91 0.89 0.61 0.71
    Co 14.8 13.0 13.7 12.1 12.6 Sr-Nd同位素
    Ni 17.3 16.9 16.6 12.9 17.3 (87Rb/86Sr)m 0.27 0.29 0.15 0.20 0.26
    Cu 96.4 49.6 120 70.9 52.2 (87Sr/86Sr)m 0.707728 0.707455 0.706577 0.70637 0.707183
    Zn 263 239 250 149 202 (2σ) 0.000004 0.000005 0.000004 0.00000 0.000004
    Ga 16.9 16.5 16.5 16.0 16.5 (147Sm/144Nd)m 0.1315 0.1299 0.1396 0.1387 0.1375
    Rb 40.9 45.0 23.7 32.4 41.0 (143Nd/144Nd)m 0.512521 0.512566 0.512623 0.51262 0.512587
    Sr 456 457 475 475 479 (2σ) 0.000015 0.000007 0.00001 0.00000 0.000008
    Y 16.3 16.3 15.2 14.6 15.6 (87Sr/86Sr)i 0.7073 0.7069 0.7063 0.7060 0.7067
    Zr 87.2 85.9 84.4 76.3 83.2 (143Nd/144Nd)i 0.5124 0.5125 0.5125 0.5125 0.5125
    Nb 7.87 7.81 7.46 6.23 7.36 εNd(0) -2.3 -1.4 -0.3 -0.1 -1.0
    Mo 0.23 0.14 0.22 0.19 0.18 εNd(t) -1.3 -0.4 0.6 0.7 -0.1
    Sn 1.26 1.13 1.97 1.91 1.75 TDM(Ga) 1.2 1.1 1.1 1.1 1.1
    Cs 4.25 4.56 4.59 5.77 5.12
      注:LOI=烧失量,Mg#=100×Mg2+/(Mg2++TFe2+)(87Sr/86Sr)i=(87Sr/86Sr)sample-87Rb/86Sr (eλt-1),87Rb/86Sr=Rb/Sr×2.981, λRb-Sr=1.42 × 10-11a-1;(143Nd/144Nd)i=(143Nd/144Nd)sample-(147Sm/144Nd)sample × (eλt-1),(143Nd/144Nd)CHUR(t) =0.512638-0.1967×(eλt-1),εNd(t)=[(143Nd/144Nd)sample/(143Nd/144Nd)CHUR(t)-1]×104TDM=1/λ×ln{1+[((143Nd/144Nd)sample-0.51315)/ ((147Sm/144Nd)sample-0.21317)]}, λSm-Nd=6.54×10-12 a-1, t=121Ma。主量元素含量单位为%,微量元素为10-6
    下载: 导出CSV
  • [1]

    李光明, 段志明, 刘波, 等.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的识别及意义[J].地质通报, 2011, 30(8):1256-1260. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110812&journal_id=gbc

    [2]

    李光明, 李金祥, 秦克章, 等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐度高氧化成矿流体:流体包裹体证据[J].岩石学报, 2007, 23(5):935-952. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705009.htm

    [3]

    李金祥, 李光明, 秦克章, 等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报, 2008, 24(3):531-543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm

    [4]

    佘宏全, 李进文, 马东方, 等.西藏多不杂斑岩铜矿床辉钼矿ReOs和锆石U-Pb SHRIMP测年及地质意义[J].矿床地质, 2009, 28(6):737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906002.htm

    [5]

    祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报, 2011, 27(7):2159-2164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107024.htm

    [6]

    祝向平, 陈华安, 马东方, 等.西藏多不杂斑岩铜金矿床地质与蚀变[J].地质与勘探, 2012, 48(2):199-206. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202002.htm

    [7]

    Li J X, Qin K Z, Li G M, et al. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet:Evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2011, 41:525-536. doi: 10.1016/j.jseaes.2011.03.008

    [8]

    Li J X, Li G M, Qin K Z, et al. High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit, Northern[J]. Geofluids, 2011, 11:134-143. doi: 10.1111/gfl.2011.11.issue-2

    [9]

    Li J X, Li G M, Qin K Z, et al. Mineralogy and Mineral Chemistry of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Arc, Northern Tibet[J]. Resource Geology, 2011, 62(1):19-41. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201301005012.htm

    [10]

    潘桂棠, 朱弟成, 王立全, 等.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘, 2004, 11(4):371-382. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404005.htm

    [11]

    潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm

    [12]

    邱瑞照, 周肃, 邓晋福, 等.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 2004, 31(3):262-268. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200403003.htm

    [13]

    Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008

    [14]

    Shi R D. SHRIMP dating of the Bangong Lake SSZ-type ophiolite:Constraints on the closure time of the ocean in the Bangong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin, 2007, 52(7):936-941. doi: 10.1007/s11434-007-0134-z

    [15]

    Shi R D, Yang J S, Xu Z Q, et al. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone[J]. Journal of Asian Earth Sciences, 2008, 32:438-457. doi: 10.1016/j.jseaes.2007.11.011

    [16]

    曲晓明, 辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报, 2006, 25(7):792-799. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=200607144&journal_id=gbc

    [17]

    Li J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:Evidence from U-Pb geochronology, petrochemistry and Sr-NdHf-O isotope characteristics[J]. Lithos, 2013, 160/161:216-227. doi: 10.1016/j.lithos.2012.12.015

    [18]

    李金祥. 班公湖带多不杂超大型富金斑岩铜矿床的成岩成矿年代学、岩石学及高氧化岩浆-流体-成矿作用[D]. 中国科学院研究生院博士学位论文, 2008: 1-225.

    [19]

    祝向平, 陈华安, 刘鸿飞, 等.西藏拿若斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J].地质学报, 2015, 89(1):109-128. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501009.htm

    [20]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [21]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082

    [22]

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICPMS[J]. Chinese Science Bulletin, 2010, 55:1535-1546. doi: 10.1007/s11434-010-3052-4

    [23]

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    [24]

    Gao S, Liu X M, Yuan H L, et al. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards Newsletter-Journal of Geostandards and Geoanalysis, 2002, 26:191-196. http://pubs.rsc.org/en/content/database/awb6519e10103

    [25]

    Zhang H F, Gao S, Zhong Z Q, et al. Geochemical and Sr-NdPb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh pressure metamorphic belt, China[J]. Chemical Geology, 2002, 186:281-299. doi: 10.1016/S0009-2541(02)00006-2

    [26]

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53:27-62. doi: 10.2113/0530027

    [27]

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745

    [28]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37:215-224. doi: 10.1016/0012-8252(94)90029-9

    [29]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [30]

    Castillo P R. Adakite petrogenesis[J]. Lithos, 2012, 134-135:304-316. doi: 10.1016/j.lithos.2011.09.013

    [31]

    Wang B D, Chen J L, Xu J F, et al. Chronology and geochemistry of the Nadingcuo Volcanic rocks in the southern Qiangtang Region of the Tibet Plateau:Partial melting of the remnant Ocean crust along the Bangong-Nujiang suture[J]. Acta Geologica Sinica, 2010, 84(6):1461-1473. doi: 10.1111/acgs.2010.84.issue-6

    [32]

    辛洪波, 曲晓明, 王瑞江, 等.藏西班公湖斑岩铜矿带成矿斑岩地球化学及Pb、Sr、Nd同位素特征[J].矿床地质, 2009, 28(6):785-792. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906006.htm

    [33]

    Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119:917-933. doi: 10.1130/B26033.1

    [34]

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255 doi: 10.1016/j.epsl.2010.11.005

    [35]

    Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454 doi: 10.1016/j.gr.2012.02.002

    [36]

    曲晓明, 辛洪波, 杜德道, 等.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J].地球化学, 2012, 41(1):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm

    [37]

    Tatsumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase released from a subducted lithosphere and the origin of arc magmas:Evidence from high pressure experiments and natural rocks[J]. Journal of Volcanology and Geothermal Research, 1986, 29:293-309. doi: 10.1016/0377-0273(86)90049-1

    [38]

    Foley S F, Barth M G, Jenner G A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas[J]. Geochimica et Cosmochimica Acta, 2000, 64:933-938. doi: 10.1016/S0016-7037(99)00355-5

    [39]

    Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37:247-250. doi: 10.1130/G25451A.1

    [40]

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665. doi: 10.1038/347662a0

    [41]

    Richards J, Kerrich R. Special paper:Adakite-like rocks:their diverse origins and questionable role in metallogenesis[J]. Economic Geology, 2007, 102:1-40. doi: 10.2113/gsecongeo.102.1.1

    [42]

    张旗, 王焰, 刘伟, 等.埃达克岩的特征及其意义[J].地质通报, 2002, 21(7):431-435. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=200207108&journal_id=gbc

    [43]

    Macpherson C G, Dreher S T, Thirwall M F. Adakites without slab melting:high pressure processing of basaltic island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243:581-593. doi: 10.1016/j.epsl.2005.12.034

    [44]

    Castillo P R. The origin of the adakite-high-Nb basalt association and its implications for post-subduction magmatism in Baja California, Mexico[J]. Geological Society of America Bulletin, 2008, 120:451-462. doi: 10.1130/B26166.1

    [45]

    Kay S M, Godoy E, Kurtz A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes[J]. Geological Society A Bulletin, 2005, 117:67-88. doi: 10.1130/B25431.1

    [46]

    Goss A R, Kay S M. Extreme high field strength element (HFSE) depletion and nearchondritic Nb/Ta ratios in Central Andean ada-kite-like lavas (~28°S, 68°W)[J]. Earth and Planetary Science Letters, 2009, 279:97-109. doi: 10.1016/j.epsl.2008.12.035

    四川省地质调查院. 1: 250000物玛幅区域地质调查报告. 2006.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  622
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2016-05-09
修回日期:  2017-05-17
刊出日期:  2017-06-25

目录