Identification of Ordovician oceanic island basalt in the Changning-Menglian suture zone and its tectonic implications:Evidence from geochemical and geochronological data
-
摘要:
西南三江昌宁-孟连构造带传统被认为是晚古生代古特提斯洋的缝合带。在该构造带中段铜厂街蛇绿混杂岩东侧勐勇-芒红一带,新识别出一套近南北向展布的灰绿色气孔-杏仁状玄武岩、安山玄武岩和硅质岩、浅变质泥质粉砂岩组成的火山-沉积岩系。对杏仁状玄武岩样品进行LA-ICP-MS锆石U-Pb定年,获得其206Pb/238U年龄加权平均值为449.3±8.4Ma(MSWD=3.5),表明该套火山岩喷发于奥陶纪。元素地球化学特征表现为富铝(12.11%~15.04%)、富钠(K2O/N2O=0.03~0.44)、高Mg#值(45.9~61.7),同时,该套火山岩中MgO=6.78%~12.34%,平均为9.43%,Cr=58.6×10-6~636×10-6,平均为310.3×10-6,Ni=57.4×10-6~410×10-6,平均为202.1×10-6,Nb=18.9×10-6~32.8×10-6,平均为25.06×10-6,具有轻稀土元素强烈富集的"直线状"稀土元素配分模式,(La/Yb)N=5.25,(Ce/Yb)N=4.42,(Ce/Sm)N=1.68,稀土元素总量随全碱含量增大有升高的趋势,表明其为亚速尔型洋岛。总体上,该套火山岩具碱性OIB(洋岛玄武岩)的特征,可能是大洋板内热点前部熔融的产物。亚速尔型洋岛玄武岩的出现代表了特提斯洋盆内洋岛发育早期阶段的物质记录,为重新认识滇西南昌宁-孟连地区特提斯主洋盆开阔多岛洋的格局提供了丰富的岩石学依据。
Abstract:The Changning-Menglian tectonic belt has been traditionally known as one of the Paleo-Tethys suture zones in the Sanjiang orogenic domain, Southwest China. This study focused on the newly found volcano-sedimentary rocks consisting of vesicular and amygdaloidal basalts, andesitic basalt, siliceous rock, and meta-mud siltstone in the Mengyong-Manghong area located to the east of the Tongchangjie ophiolitic rocks in the central Changning-Menglian suture zone. LA-ICP-MS zircon U-Pb dating reveals that the 206Pb/238U weighted mean age of the amygdaloidal basalt is 449.3±8.4Ma(MSWD=3.5), suggesting that this suite of volcanic rocks was emplaced in Ordovician. The basaltic rocks are rich in Al2O3 (12.11%~15.04%), show high K2O/N2O ratios of 0.03~0.44 and high MgO (6.78%~12.34%, 9.43% on average) with high Mg# of 45.9~61.7, and Cr, Ni, Nb values of 58.6×10-6~636×10-6, 57.4×10-6~410×10-6 and 18.9×10-6~32.8×10-6 (310.3×10-6, 202.1×10-6 and 25.06×10-6 on average) respectively. They have flat chondrite-normalized REE patterns with low (La/Yb)N (averagely 5.25), (Ce/Yb)N (4.42 on average) and (Ce/Sm)N (1.68 on average). The ΣREE value of the basaltic rocks increases with the increasing of the total alkaline, which suggests that the rocks are similar to the Azores-type oceanic island basalts (OIB). Generally, this suite of volcanic rocks is alkaline with OIB affinity, which might have resulted from the melting of the head of the hotspot in the Intra-oceanic plate. The new discovery of the Azores-type OIB in the Changing-Menglian records the product of OIB activity in the Early Paleozoic evolution of Tethys Ocean, which provides important basic information for further understanding of the composite arc-basin system in the Tethyan domain of Southwest China.
-
-
图 1 研究区地质简图(据参考文献①修改)
Figure 1.
图 6 老南掌剖面火山岩稀土元素配分模式(a)和微量元素蛛网图(b)(标准化值据参考文献[23])
Figure 6.
图 8 火山岩Nb-Nb/Th和La-La/Nb图解[31]
Figure 8.
表 1 老南掌玄武岩(D0100-1-2)LA-ICP-MS锆石U-Th-Pb同位素数据
Table 1. LA-ICP-MS zircon U-Th-Pb dating results of the Laonanzhang basalt
点号 Pb Th U Th/U 同位素比值 同位素年龄/Ma 10-6 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 210 125 111 1.12 0.0973 0.0023 3.9182 0.0905 0.2900 0.0038 1573 44 1617 19 1642 19 02 45.6 90.4 140 0.64 0.0581 0.0028 0.5906 0.0270 0.0740 0.0012 532 101 471 17 460 7 03 163 160 298 0.54 0.0571 0.0022 0.5539 0.0220 0.0699 0.0009 494 85 448 14 435 6 04 129 176 409 0.43 0.0525 0.0021 0.2810 0.0105 0.0389 0.0005 306 91 251 8 246 3 05 201 196 448 0.44 0.0511 0.0015 0.2636 0.0082 0.0372 0.0005 256 73 238 7 236 3 06 144 219 352 0.62 0.0507 0.0019 0.2568 0.0095 0.0367 0.0004 228 85 232 8 232 3 07 71 352 1424 0.25 0.0526 0.0014 0.3056 0.0086 0.0419 0.0004 309 57 271 7 265 3 08 118 295 464 0.64 0.0569 0.0014 0.5876 0.0147 0.0748 0.0008 487 56 469 9 465 5 09 154 214 212 1.01 0.0683 0.0015 1.1975 0.0276 0.1265 0.0014 880 46 799 13 768 8 10 73 154 217 0.71 0.0662 0.0017 1.2394 0.0334 0.1351 0.0018 813 49 819 15 817 10 11 83 299 354 0.85 0.0564 0.0016 0.6059 0.0174 0.0777 0.0011 478 61 481 11 482 6 12 131 154 326 0.47 0.0508 0.0026 0.2602 0.0128 0.0370 0.0006 232 110 235 10 234 4 13 71 231 1194 0.19 0.0877 0.0016 3.0356 0.0630 0.2493 0.0032 1376 37 1417 16 1435 17 14 162 102 176 0.58 0.0570 0.0024 0.5593 0.0251 0.0709 0.0011 500 94 451 16 442 7 15 447 89.8 157 0.57 0.0558 0.0026 0.5433 0.0251 0.0702 0.0010 443 99 441 17 438 6 16 209 253 227 1.11 0.0552 0.0019 0.5409 0.0185 0.0711 0.0009 420 80 439 12 442 6 17 70 225 527 0.43 0.0576 0.0018 0.4640 0.0146 0.0582 0.0008 522 67 387 10 365 5 18 66 280 786 0.36 0.0550 0.0016 0.2207 0.0066 0.0289 0.0003 413 67 202 6 184 2 19 32.2 69.9 97.2 0.72 0.0582 0.0028 0.5757 0.0265 0.0728 0.0011 539 107 462 17 453 6 20 139 290 1110 0.26 0.0594 0.0017 0.5361 0.0156 0.0651 0.0006 583 63 436 10 406 4 21 50.4 111 179 0.62 0.0588 0.0023 0.5811 0.0225 0.0718 0.0010 561 86 465 14 447 6 22 127 105 308 0.34 0.0747 0.0019 1.8017 0.0422 0.1748 0.0018 1061 57 1046 15 1038 10 23 131 280 373 0.75 0.0562 0.0022 0.5927 0.0220 0.0764 0.0009 461 85 473 14 475 5 24 57.7 133 210 0.63 0.0551 0.0020 0.5553 0.0184 0.0735 0.0009 417 75 448 12 457 6 表 2 老南掌玄武岩的全岩主量、微量和稀土元素测试数据
Table 2. Whole-rock major, trace and rare earth elements analyses of the Laonanzhang basalt
样品号 D0100-1-1 D0100-1-2 D0100-1-3 D0100-1-4 D0100-1-5 D0100-1-7 D0100-1-8 D0100-1-9 D1582-1-1 SiO2 49.72 48.26 45.87 45.64 40.77 50.00 45.43 48.64 49.69 TiO2 2.04 3.00 2.27 1.95 1.79 2.12 2.13 2.34 2.12 Al2O3 11.59 13.60 12.50 10.68 10.62 12.82 12.22 14.38 12.41 Fe2O3 1.63 1.42 1.69 1.85 1.61 1.57 2.06 1.66 3.59 FeO 7.85 9.48 9.97 8.95 7.65 7.61 8.42 7.33 5.98 MnO 0.13 0.18 0.17 0.15 0.16 0.14 0.15 0.14 0.14 MgO 9.36 6.78 10.27 12.28 10.47 7.94 12.34 7.64 7.78 CaO 7.42 7.75 8.21 10.68 11.38 8.02 7.77 8.00 9.22 Na2O 4.07 3.75 2.98 2.09 2.12 4.30 3.04 3.62 3.53 K2O 0.14 0.85 0.20 0.32 0.89 0.77 0.45 1.59 0.88 P2O3 0.22 0.34 0.24 0.21 0.22 0.27 0.31 0.29 0.24 烧失量 5.35 3.99 5.02 4.42 11.66 3.79 5.05 3.66 3.23 合计 99.52 99.40 99.39 99.22 99.34 99.35 99.37 99.29 98.81 Mg# 68.17 64.92 71.13 71.08 65.21 72.47 65.18 56.23 68.30 A/NK 1.69 1.92 2.44 2.82 2.39 1.62 2.23 1.87 1.92 A/CNK 0.85 0.96 0.99 0.79 0.72 0.84 0.97 0.96 0.82 Cu 92.3 97.5 84.4 77.4 73.9 95.5 89.2 86.2 89.1 Zn 94.8 134 112 100 93.7 117 104 101 97.7 Cr 186 58.6 448 636 530 213 299 202 222 Ni 107 57.4 284 410 404 108 239 103 107 Co 38.3 37.7 50.0 51.8 50.6 35.7 46.7 32.7 37.2 Rb 6.50 22.8 3.50 6.10 11.9 20.0 8.70 25.8 19.6 Sr 179 155 101 73.0 468 180 135 149 244 Ba 44.6 430 81.7 49.2 66.3 320 145 307 344 V 239 311 266 248 252 243 268 254 203 Sc 21.5 23.5 26.3 23.9 22.3 24.0 25.3 22.4 25.3 Nb 22.0 32.8 25.7 22.0 18.9 24.0 27.0 30.3 22.8 Zr 147 221 166 140 139 168 174 189 161 Hf 5.17 5.85 5.05 4.44 4.04 4.84 5.04 5.12 4.19 U 0.44 0.71 0.45 0.35 1.49 0.65 0.65 0.68 0.46 Th 1.27 2.31 1.50 1.39 1.40 1.64 1.70 2.10 1.51 La 17.2 30.0 20.0 17.1 16.2 21.2 24.1 23.3 20.0 Ce 38.2 64.8 44.5 38.0 35.4 47.2 51.1 51.9 43.6 Pr 5.23 8.49 5.98 5.18 4.79 6.34 6.86 6.84 5.71 Nd 22.3 35.5 25.2 22.3 20.9 27.2 28.5 28.5 24.3 Sm 5.17 7.60 5.89 5.12 4.59 5.89 6.02 6.24 5.86 Eu 1.60 2.69 1.81 1.60 1.49 1.83 1.95 1.95 2.04 Gd 4.95 7.24 5.60 5.00 4.51 5.73 5.70 5.85 5.45 Tb 0.93 1.34 1.13 0.92 0.91 1.04 1.01 1.08 1.05 Dy 6.16 8.39 6.79 6.00 5.73 6.50 6.51 6.95 6.59 Ho 1.07 1.57 1.18 1.09 1.01 1.17 1.17 1.24 1.26 Er 2.72 3.98 3.13 2.86 2.60 3.07 2.90 3.45 3.28 Tm 0.38 0.58 0.46 0.40 0.37 0.44 0.41 0.53 0.47 Yb 2.32 3.47 2.81 2.47 2.29 2.65 2.47 2.96 2.75 Lu 0.31 0.49 0.38 0.35 0.34 0.38 0.38 0.47 0.44 Y 28.1 42.5 26.9 26.1 25.8 19.5 28.8 18.7 32.5 ΣREE 136.54 218.58 151.77 134.41 126.82 150.07 167.87 159.89 155.25 δEu 0.95 1.09 0.95 0.96 0.99 0.95 1.01 0.97 1.09 (La/Yb)N 5.00 5.84 4.81 4.66 4.78 5.39 6.56 5.29 4.90 (Gd/Yb)N 1.72 1.69 1.61 1.64 1.59 1.74 1.86 1.59 1.60 (Ce/Yb)N 4.26 4.10 3.99 4.00 4.61 5.35 4.53 4.83 4.10 (Ce/Sm)N 1.62 1.62 1.62 1.67 1.72 1.82 1.75 1.79 1.56 注:主量元素含量单位为%,微量和稀土元素含量为10-6;A/NK=摩尔Al2O3/(Na2O+K2O),A/CNK=摩尔Al2O3/(CaO+Na2O+K2O);δEu=2EuN/(SmN+ GdN),其中N为球粒陨石标准化值 -
[1] 刘本培, 冯庆来, Chonglakmani C, 等.滇西古特提斯多岛洋的结构及其南北延伸[J].地学前缘, 2002, 9(3):67-76. http://d.wanfangdata.com.cn/Periodical/dxqy200203020
[2] 段向东. 滇西南耿马地区昌宁-孟连带盆地演化[D]. 中国地质大学(武汉)博士学位论文, 2008.
http://cdmd.cnki.com.cn/Article/CDMD-10491-1013352245.htm [3] 刘本培, 冯庆来, 方念乔, 等.滇西昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化[J].地球科学, 1993, 18(5):529-539. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx199305000&dbname=CJFD&dbcode=CJFQ
[4] 丛柏林, 吴根耀, 张旗, 等.中国滇西古特提斯构造带岩石大地构造演化[J].中国科学(B辑), 1993, 23(11):1201-1207. http://d.wanfangdata.com.cn/Periodical/cckjdxxb201105003
[5] 张旗, 周德进, 赵大升.滇西古特提斯造山带的威尔逊旋回:岩浆活动记录和深部过程讨论[J].岩石学报, 1996, 12(1):17-28. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb601.001&dbname=CJFD&dbcode=CJFQ
[6] 莫宣学, 沈上越, 朱勤文.等.三江中南段火山岩-蛇绿岩与成矿[M].北京:地质出版社, 1998.
[7] 莫宣学, 路风香, 沈上越.等.三江地区特提斯火山作用与成矿[M].北京:地质出版社, 1993.
[8] 莫宣学, 潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘, 2006, 13(6):43-51. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200606007&dbname=CJFD&dbcode=CJFQ
[9] 李静. 云南省双江县牛井山蛇绿混杂岩的岩石学研究[D]. 昆明理工大学硕士学位论文, 2004.
http://cdmd.cnki.com.cn/Article/CDMD-10674-2003102712.htm [10] 赵靖, 钟大赉, 王毅.滇西澜沧变质带的变形序列与变质作用初步研究[J].地质科学, 1994, 29(4):366-372. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx404.005&dbname=CJFD&dbcode=CJFQ
[11] 钟大赉.川滇西部古特提斯造山带[M].北京:科学出版社, 1998.
[12] 潘桂棠, 陈智梁, 李兴振, 等.东特提斯地质构造形成演化[M].北京:地质出版社, 1997.
[13] 潘桂堂, 李兴振, 王立全, 等.青藏高原及邻区大地构造单元初步划分[J].地质通报, 2002, 21(11):701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2002011160&journal_id=gbc
[14] 王保弟, 王立全, 潘桂棠, 等.昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J].科学通报, 2013, 58(4):344-354. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb201304009&dbname=CJFD&dbcode=CJFQ
[15] 刘桂春, 孙载波, 曾文涛, 等.滇西双江县勐库地区湾河蛇绿混杂岩的厘定、地球化学特征及其地质意义[J].岩石矿物学杂志, 2017, 36(2):163-174. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yskw201702003&dbname=CJFD&dbcode=CJFQ
[16] 李静, 孙载波, 徐桂香, 等.滇西双江县勐库地区榴闪岩的发现与厘定[J].矿物学报, 2015, 35(4):421-424. http://d.wanfangdata.com.cn/Periodical/kwxb201504001
[17] 徐桂香, 曾文涛, 孙载波, 等.滇西双江县勐库地区(退变质)榴辉岩的岩石学、矿物学特征[J].地质通报, 2016, 35(7):1036-1045. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160701&journal_id=gbc
[18] 陈光艳, 徐桂香, 孙载波, 等.滇西双江县勐库地区退变质榴辉岩中闪石类矿物的成因研究[J].岩石矿物学杂志, 2017, 36(1):36-47. http://d.wanfangdata.com.cn/Periodical/yskwxzz201701003
[19] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. http://d.wanfangdata.com.cn/NSTLQK/10.1093-petrology-egp082/
[20] Liu Y S, Hu Z C, Gao S. et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. http://cat.inist.fr/?aModele=afficheN&cpsidt=20878454
[21] Ludwig K R. User'smanual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Geochronology Center Special Publication, Berkeley, 2003:41-70.
[22] Condie K C. Archaean Greestone Belt. Amsterdam:Elsvier, 1981, 381 http://www.sciencedirect.com/science/article/pii/089953629190043X
[23] Sun S S, McDough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Publication of London, 1989, 42:313-345.
[24] Zielinski R A. Trace element evaluation of a suite of rocks from Reunion Island, Indian Ocean[J].Geochimica et Cosmochimica Acta, 1975, 39:713-734. doi: 10.1016/0016-7037(75)90012-5
[25] Zielinski R A, Frey F A. Gough Island:evaluation of a fractional crystallization model[J].Contributions to Mineralogy and Petrology, 1970, 29:242-254. doi: 10.1007/BF00373308
[26] White W M, Tapia M D M, Schilling J G. The petrology and geochemistry of the Azores Islands[J].Contributions to Mineralogy and Petrology, 1979, 69:201-213. doi: 10.1007/BF00372322
[27] Saunders A D. The rare element characteristics of igneous rocks from the ocean basins[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam:Elsevier, 1984:205-236.
[28] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile element[J]. Chem. Geol., 1997, 20(4):325-343. http://d.wanfangdata.com.cn/NSTLQK_10.1016-0009-2541(77)90057-2.aspx
[29] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annu. Rev. Earth Planet. Sci., 1995, 23:251-285. doi: 10.1146/annurev.ea.23.050195.001343
[30] Hofman A W, Jochum K P, Seufert M. Nd and Pb in oceanic basalts:New constrains on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79:33-45. doi: 10.1016/0012-821X(86)90038-5
[31] 李曙光.蛇绿岩生成构造环境的Ba-Nb-Th-La判别图[J].岩石学报, 1993, 9(2):146-157. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb199302004&dbname=CJFD&dbcode=CJFQ
[32] Wood D A, Joron J L, Treuil M. A reappraisal of the use of trace elements to classify and discriminate between magma series erupled in different tectonic settings[J]. Earth and Planet Science Letters, 1980, 45:326-336. http://d.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(79)90133-X/
[33] Mullen E D. MnO-TiO2-P2O5:A minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogensis[J]. Earth and Planet Science Letters, 1983, 65:53-62. https://es.scribd.com/document/270444316/The-Solid-Earth-La-Tierra-Solida
[34] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. J. Metamor. Geol., 2000, 18(4):423-439. http://ci.nii.ac.jp/naid/80011972963/en/
[35] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[36] 毛晓长, 王立全, 李冰, 等.云县-景谷火山弧带大中河晚志留世火山岩的发现及其地质意义[J].岩石学报, 2012, 28(5):1517-1528. http://d.wanfangdata.com.cn/Periodical/ysxb98201205014
[37] 王冬兵, 罗亮, 唐渊, 等.昌宁-孟连结合带牛井山早古生代埃达克岩锆石U-Pb年龄、岩石成因及其地质意义[J].岩石学报, 2016, 32(8), 2317-2329. http://d.wanfangdata.com.cn/Periodical/ysxb98201608006
[38] Nie X M, Feng Q L, Qian X, et al. Magmatic record of Prototethyan evolution in SWYunnan, China:Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanicrocks in the southern Lancangjiang zone[J]. Gondwana Research, 2015, 28(2):757-768. doi: 10.1016/j.gr.2014.05.011
[39] Xing X W, Wang Y J, Cawood P A, et al. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan[J]. Internation Journal of Earth Sciences, 2017, 106(5):1469-1486. doi: 10.1007/s00531-015-1282-z
[40] 康欢, 李大鹏, 陈岳龙, 等.云南宝山东缘早古生代高Si花岗岩的成因及构造意义[J].现代地质, 2016, 30(5):1026-1038. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201605008&dbname=CJFD&dbcode=CJFQ
[41] 王中刚, 于学元, 赵振华, 等.稀土元素地球化学[M].北京:科学出版社, 1989:1-535.
[42] Zielinski R A, Frey F A. Gough Island:evaluation of a fractional crystallization model[J].Contributions to Mineralogy and Petrology, 1970, 29:242-254. doi: 10.1007/BF00373308
① 云南省地质调查院. 1: 5万香竹林、勐勇、勐撒、懂过、安雅、耿马、勐库幅区域地质矿产调查报告. 2016.
-