Geochemistry and zircon U-Pb age of the Tongchanggou porphyry Cu-Mo deposit on the southern margin of Geza arc, northwest Yunnan Province, and its geological significance
-
摘要:
云南格咱岛弧构造-岩浆成矿带是义敦岛弧的重要组成部分,属于西南三江地区铜多金属矿床富集区之一。对格咱岛弧南缘铜厂沟成矿斑岩的岩石学、地球化学特征及锆石U-Pb年龄进行了研究,系统分析了区内花岗岩的岩石成因、形成的构造环境及成岩成矿的地球动力学背景。铜厂沟成矿斑岩主要为花岗闪长斑岩,用LA-ICP-MS测得其中锆石的206Pb/238U年龄为87.62±0.59Ma。岩石地球化学特征表明,铜厂沟花岗闪长斑岩具有高硅、富碱、富钾的特点,属于高钾钙碱性岩石系列;岩石具有较高的稀土元素总量;富集轻稀土元素,轻、重稀土元素分馏明显,δEu为0.89~0.97,具较弱的负异常;微量元素特征表明,岩石富集大离子亲石元素K、U、Th、Rb、Ba、Sr,亏损高场强元素Nb、Ta、P、Ti;大离子亲石元素的富集和Nb、Ta等高场强元素的亏损,说明岩浆主要来源于壳源物质的部分熔融。本区花岗岩形成于碰撞后与伸展构造的转换阶段,属于碰撞造山过程的产物。碰撞诱发的岩石圈地幔物质上涌导致地壳发生部分熔融作用,形成富钾的初始含矿岩浆,岩浆沿深大断裂上升侵位最终形成了格咱岛弧燕山晚期的构造-岩浆作用及成矿事件。
Abstract:The Geza tectonic-magmatic belt is an important part of Yidun arc and also an important ore concentration area of copper polymetallic deposits in the Sanjiang region of southwest China. Based on the study of petrologic and geochemical characteristics and zircon U-Pb geochronology of the Tongchanggou oreforming porphyry on the southern margin of Geza arc, the authors systematically analyzed the petrogenesis, tectonic environment, diagenesis and metallogenic geodynamic background of the granite. The rock type of Tongchanggou metallogenic porphyry is granodiorite porphyry, the research results of the zircon U-Pb geochronology show that the age of emplacement and crystallization of the magma is 87.62±0.59Ma (MSWD=0.52) by LA-ICP-MS method. Petrographic and lithogeochemical characteristics indicate that Tongchanggou granodiorite porphyry has characteristics of high silicon (63.02%~74.06%), high alkali (K2O+Na2O=6.97%~8.79%), and rich K (K2O/Na2O=0.71~2.13). The rocks belong to high-K calc-alkaline rock series enriched in light rare earth elements. The fractionation between LREE and HREE is obvious. δEu values are 0.89~0.97 with a weak negative anomaly. The analytical results of trace elements show that the rocks are enriched in large ion lithophile elements of K, U, Th, Rb, Ba, Sr, and depleted in high field strength elements of Nb, Ta, P, Ti, suggesting that the formation of magma might have been derived from the partial melting of crust materials. The granite was formed in the conversion stage of post-collision and extensional tectonics, belonging to the product of the collision orogenic process. The collision induced upwelling of the lithospheric mantle which led to partial melting of the crust and formed the potassium-rich and orebearing initial magma. Magma rising and intrusion along the deep faults eventually triggered the late Yanshanian tectonic-magmatic and metallogenic events in Geza area.
-
图 1 云南格咱岛弧成矿带构造-岩浆分布(据参考文献②修改)
Figure 1.
图 9 花岗岩构造环境判别图解[23]
Figure 9.
表 1 铜厂沟花岗闪长斑岩岩石主量、微量和稀土元素分析结果
Table 1. Major, trace and rare earth elements analytical results of Tongchanggou granodiorite porphyry
样号 LBB-10 LBB-19 LBB-21 LBB-27 LBB-29 LBB-59 LBB-66 LBB-76 LBB-13 LBB-35 LBB-2 岩性 花岗闪长斑岩 辉钼矿化花岗闪长斑岩 SiO2 69.01 74.06 65.56 65.91 68.35 66.73 72.12 69.73 66.18 66.52 67.06 TiO2 0.64 0.49 0.69 0.57 0.56 0.55 0.41 0.43 0.73 0.58 0.61 Al2O3 14.82 12.19 16.07 15.08 14.77 14.77 11.43 12.50 15.9 15.82 15.00 Fe2O3 0.51 0.27 1.13 2.63 1.43 1.94 2.90 1.26 0.70 1.61 1.60 FeO 1.07 0.72 1.84 1.64 1.52 1.53 0.88 1.34 0.89 1.49 2.05 MnO 0.03 0.02 0.04 0.02 0.02 0.05 0.02 0.04 0.03 0.02 0.07 MgO 1.45 1.07 1.73 1.29 1.21 1.35 0.90 1.03 1.47 1.36 1.55 CaO 2.64 2.21 2.98 3.01 2.75 2.79 2.50 2.93 2.93 3.00 3.09 Na2O 3.08 2.29 3.74 4.06 3.6 3.71 2.62 3.09 3.33 4.43 3.80 K2O 4.95 4.87 4.42 3.11 3.63 3.59 3.00 4.24 5.46 2.83 3.64 P2O5 0.31 0.24 0.33 0.28 0.26 0.27 0.21 0.21 0.31 0.28 0.29 烧失量 1.26 1.34 1.27 2.22 1.70 2.57 2.81 3.01 1.87 1.83 1.07 总量 99.76 99.77 99.79 99.82 99.80 99.85 99.81 99.82 99.81 99.77 99.82 A/CNK 0.97 0.93 0.98 0.97 0.99 0.98 0.94 0.83 0.95 1.00 0.95 SI 13.09 11.62 13.46 10.23 10.62 11.22 8.89 9.43 12.43 11.60 12.30 DI 81.50 86.00 77.10 76.50 79.50 78.20 80.80 82.80 80.50 77.50 76.80 σ 2.50 1.60 2.90 2.20 2.00 2.20 1.10 2.00 3.30 2.20 2.30 La 53.86 46.25 59.48 74.46 56.61 60.51 52.31 46.85 59.97 57.41 58.38 Ce 99.33 80.82 106.10 119.10 96.41 104.90 86.55 81.50 112.50 94.29 102.20 Pr 10.67 8.43 11.00 11.66 9.82 10.76 8.57 8.36 12.09 9.43 10.41 Nd 35.76 28.82 37.32 37.93 32.27 35.51 27.43 27.28 41.29 31.08 33.78 Sm 5.71 4.54 5.81 5.49 5.18 5.44 4.00 3.98 6.48 4.75 5.04 Eu 1.52 1.16 1.56 1.45 1.24 1.49 1.02 1.07 1.73 1.31 1.32 Gd 4.73 3.80 4.80 4.72 4.13 4.53 3.33 3.30 5.33 4.07 4.23 Tb 0.63 0.50 0.66 0.63 0.56 0.59 0.45 0.44 0.72 0.54 0.56 Dy 3.01 2.48 3.25 2.93 2.65 2.88 2.14 2.10 3.50 2.60 2.62 Ho 0.55 0.43 0.57 0.52 0.47 0.52 0.35 0.39 0.61 0.45 0.49 Er 1.38 1.12 1.46 1.34 1.18 1.42 1.00 1.01 1.58 1.11 1.29 Tm 0.20 0.16 0.23 0.19 0.17 0.21 0.15 0.15 0.24 0.17 0.19 Yb 1.21 0.97 1.38 1.16 1.07 1.24 0.91 0.93 1.41 1.05 1.19 Lu 0.16 0.14 0.19 0.16 0.14 0.17 0.13 0.14 0.20 0.15 0.17 Y 14.08 11.49 14.91 13.76 12.45 14.06 10.16 10.16 16.40 12.09 13.01 Ba 1553 1381.00 1368.00 1009.00 1182.00 1193.00 823.00 1501.00 1529.00 1032.00 1505.00 Cu 98.40 19.10 95.80 300.20 108.40 257.30 63.70 167.60 50.10 317.00 31.60 F 676.00 505.00 799.00 505.00 526.00 597.00 622.00 393.00 766.00 572.00 648.00 Ga 20.70 16.30 22.70 22.30 20.50 21.90 16.20 16.60 22.70 23.20 22.30 Hf 8.50 5.70 7.40 5.80 7.10 5.70 4.90 5.40 9.70 7.10 6.60 Mo 1672.00 1258.00 59.30 9.10 30.60 55.90 271.70 117.40 409.90 4.20 3.40 Nb 30.20 26.00 31.20 29.20 27.00 36.30 15.30 26.50 39.10 25.90 35.30 Pb 23.10 21.40 25.50 17.10 20.00 24.70 20.80 25.90 22.50 24.40 35.90 Rb 96.00 83.00 80.00 66.00 96.00 83.00 105.00 104.00 123.00 62.00 96.00 Sr 819.00 557.00 711.00 592.00 780.00 609.00 473.00 356.00 966.00 813 623.00 Ta 2.03 1.62 2.02 1.97 1.74 2.31 0.93 1.69 3.24 1.71 2.21 Th 15.40 12.10 16.20 17.20 16.70 25.10 18.40 20.20 16.80 19.30 22.00 W 2.50 1.60 1.20 7.10 4.10 4.00 42.90 3.70 4.40 5.30 2.60 Zn 36.00 25.00 38.00 27.00 33.00 50.00 27.00 42.00 40.00 29.00 61.00 Zr 205.00 144.00 176.00 155.00 198.00 151.00 131.00 134.00 239.00 193.00 163.00 注:主量元素含量单位为%,微量和稀土元素含量为10-6 表 2 铜厂沟花岗闪长斑岩岩体LA-ICP-MS锆石U-Th-Pb同位素分析
Table 2. U-Th-Pb composition of zircons from Tongchanggou granodiorite porphyry measured by LA-ICP-MS technique
测点 Pb/10-6 Th/10-6 U/10-6 Th/U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U年龄/Ma ±1σ 206Pb/238U年龄/Ma ±1σ 1 8.2 139 577 0.24 0.0521 0.0054 0.0972 0.010 0.014 0.0004 94 9 89 3 2 8.0 175 553 0.32 0.050 0.0051 0.090 0.009 0.014 0.0003 87 8 87 2 3 7.3 107 529 0.20 0.053 0.0026 0.100 0.005 0.0134 0.0002 95 4 86 1 4 6.7 179 451 0.40 0.0474 0.0031 0.090 0.006 0.014 0.0002 87 5 89 1 5 9.8 689 519 1.33 0.0654 0.0071 0.1242 0.014 0.014 0.0003 119 13 88 2 6 10.2 181 740 0.25 0.050 0.0024 0.092 0.0044 0.014 0.0002 89 4 87 1 7 25.5 2695 1170 2.30 0.0515 0.0034 0.097 0.006 0.014 0.0002 94 5 88 1 9 5.3 75 403 0.19 0.050 0.003 0.0911 0.006 0.014 0.0002 89 5 87 1 10 8.0 117 608 0.19 0.0473 0.0024 0.088 0.0043 0.014 0.0002 86 4 88 1 12 14.5 343 1039 0.33 0.0477 0.002 0.090 0.0033 0.014 0.0002 87 3 88 1 13 9.0 187 641 0.29 0.051 0.003 0.0953 0.0051 0.014 0.0002 93 5 88 1 14 6.6 100 488 0.20 0.0492 0.0031 0.093 0.0063 0.014 0.0003 90 6 88 2 17 9.0 181 646 0.28 0.0462 0.003 0.088 0.006 0.014 0.0002 85 5 88 1 18 8.8 191 634 0.30 0.050 0.0031 0.0914 0.0063 0.014 0.0002 89 6 87 1 -
[1] Li W C, Yin G H, YU H J, et al. The Yanshanian Granites and Associated Mo-Polymetallic Mineralization in the Xiangcheng-Luoji Area of the Sanjiang-Yangtze Conjunction Zone in Southwest China[J]. Acta Geologica Sinica(English Eduation), 2014, 88(6):1742-1756. doi: 10.1111/1755-6724.12341
[2] 曾普胜, 李文昌, 王海平, 等.云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征[J].岩石学报, 2006, 22(4):989-1000. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200604022&dbname=CJFD&dbcode=CJFQ
[3] 李文昌. 义敦岛弧构造演化与普朗超大型斑岩铜矿成矿模型[D]. 中国地质大学(北京)博士学位论文, 2007: 15-80.
[4] 李文昌, 刘学龙, 曾普胜, 等.云南普朗斑岩型铜矿成矿岩体特征[J].中国地质, 2011, 38(2):403-414.
[5] 李文昌, 尹光候, 卢映祥, 等.西南"三江"格咱火山-岩浆弧中红山-属都蛇绿混杂岩带的厘定及其意义[J].岩石学报, 2010, 26(6):1661-1671. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201006003.htm
[6] 刘学龙, 李文昌, 尹光侯.云南格咱岛弧斑岩-矽卡岩铜、钼(金)矿床成矿系统[J].中国地质, 2012, 39(4):1007-1022. http://d.wanfangdata.com.cn/Periodical/zgdizhi201204017
[7] 刘学龙, 李文昌, 尹光侯.云南格咱岛弧地苏嘎成矿岩体LAICP-MS锆石U-Pb年龄及地质意义[J].地质通报, 2013, 32(4):573-579. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20130405&journal_id=gbc
[8] 徐兴旺, 蔡新平, 屈文俊, 等.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义[J].地质学报, 2006, 80(9):1421-1433. http://d.wanfangdata.com.cn/Periodical/dizhixb200609016
[9] Liu X L, Li W C, Yin G H, et al. The geochronology, mineralogy and geochemistry study of the Pulang porphyry copper deposits in Geza arc of Yunnan Province[J]. Acta Petrologica Sinica(English Eduation), 2013, 29(9):3049-3064.
[10] 李文昌, 余海军, 尹光侯, 等.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质, 2012, 31(2):282-292. http://d.wanfangdata.com.cn/Periodical/kcdz201202009
[11] 孟健寅, 杨立强, 吕亮, 等.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义[J].岩石学报, 2013, 29(4):1214-1222. http://d.wanfangdata.com.cn/Conference/7957796
[12] 刘学龙, 李文昌, 尹光侯.云南格咱岛弧印支期地壳隆升与剥蚀及其地质意义:来自黑云母矿物压力计的证据[J].现代地质, 2013, 27(3):537-548.
[13] 刘学龙, 李文昌, 张娜, 等.云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪[J].中国地质, 2016, 43(1):209-220. doi: 10.12029/gc20160115
[14] 葛良胜, 邹依林, 邢俊兵, 等.滇西北地区富碱岩体(脉)地质学及岩石化学特征[J].矿产与地质, 2002, 16(3):147-153. http://d.wanfangdata.com.cn/Periodical/kcydz200203004
[15] 李建康, 李文昌, 王登红, 等.中甸弧燕山晚期成矿事件的ReOs定年及成矿规律研究[J].岩石学报, 2007, 23(10):2415-2422. doi: 10.3969/j.issn.1000-0569.2007.10.010
[16] 尹光侯.中甸火山-岩浆弧燕山期热林复式岩体演化与Ar-Ar定年及铜钼矿化[J].地质与勘探, 2009, 45(4):385-394. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkt200904007&dbname=CJFD&dbcode=CJFQ
[17] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz200904009&dbname=CJFD&dbcode=CJFQ
[18] Sun S S, Mcdonough W F. Chemical and istopic and proceses[C]//Saunders A D, Nony M J. Magmatism in Ocean Basins.Geol. Soc. Longdon Spec. Publ., 1989, 42(2):313-345.
[19] Taylor S R, McClennan S. The Continental Crust:Composition and evolution[M]. Blackwall Scientific Publications, 1985, 54(2):209-230.
[20] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[21] 侯增谦, 杨岳清, 曲晓明, 等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报, 2004, 78(1):109-120. http://d.wanfangdata.com.cn/Periodical/dizhixb200401013
[22] 孟健寅, 杨立强, 吕亮, 等.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义[J].岩石学报, 2012, 29(10):1214-1222. http://d.wanfangdata.com.cn/Conference/7957796
[23] Batcheelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multication parameters[J]. Chemical Geology, 1985, 48:43-55. doi: 10.1016/0009-2541(85)90034-8
[24] Tomposon A B. Some time-space relationships for crustal meliting and granitic intrusion at various depths[C]//Castro A. Understand-ing granites:integrating new and classical techniques. Geological Society Speical Publication, 1999:168:7-25.
[25] 刘学龙, 李文昌, 尹光侯, 等.云南格咱岛弧普朗斑岩型铜矿年代学、岩石矿物学及地球化学研究[J].岩石学报, 2013, 29(9):3049-3064. http://d.wanfangdata.com.cn/Periodical/ysxb98201309008
[26] 李文昌, 余海军, 尹光候.西南"三江"格咱岛弧斑岩成矿系统[J].岩石学报, 2013, 29(4):1129-1144. http://earth.wanfangdata.com.cn/Journal/Paper/ysxb98201304003
[27] Kay R W, Kay R M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219:177-189. doi: 10.1016/0040-1951(93)90295-U
[28] 郭敬辉, 陈福坤, 张晓曼, 等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J].岩石学报, 2005, 21(4):1281-1301. http://d.wanfangdata.com.cn/Periodical/ysxb98200504025
[29] 刘学龙, 李文昌, 张娜.扬子西缘结合带乡城洛吉钼多金属矿床及成矿系统[M].昆明:云南科技出版社, 2017:62-112.
① 云南省地质调查院. 云南香格里拉县格咱地区铜多金属矿整装勘查成果报告. 2013.
② 云南省地质调查院. 西南三江南段重大找矿疑难问题研究报告.2009.