Wall rock alteration and trace elements of pyrite in Qiyugou No.189 porphyry gold deposit in western Henan Province and their constraints on metallogenic process
-
摘要:
豫西祁雨沟189号金矿床是华北陆块南缘熊耳山矿集区近年新发现的中型金矿床。金矿体赋存于早白垩世角闪二长花岗岩体内,上部为细脉浸染状金矿化,下部为岩浆热液角砾岩型金矿化,总体具有斑岩型矿床特征。尽管前人开展过研究工作,但对于矿床蚀变分带和成矿过程仍存在较大的争议。在野外调查划分蚀变分带的基础上,运用微区分析技术对不同蚀变带中的黄铁矿主、微量元素和硫同位素组成开展了测试分析。结果表明,围岩蚀变具有面型分带特征,由矿体中心到外围发育钾长石化带、绢英岩化带和青磐岩化带。金主要以裂隙金、粒间金和包体金的形式赋存于黄铁矿等硫化物中,不可见金的含量低。从钾长石化带,经绢英岩化带到青磐岩化带,Ag、Bi含量整体呈上升趋势,As、Sb、Zn、Mn、Mo、Sn等总体变化不明显。原位硫同位素组成表明成矿物质来源于深部岩浆。对金矿成矿过程进行了探讨,指出络合物和Te-Bi熔体对Au的迁移富集起着重要作用。
Abstract:The Qiyugou No.189 gold deposit in western Henan is a medium-sized one newly discovered in the Xiong'ershan ore-concentrated area on the southern margin of the North China Block in recent years.The gold orebodies are hosted in the Early Cretaceous hornblende monzonitic granite.The upper part is veinlet disseminated gold mineralization, and the lower part is hydrothermally mineralized Au-bearing breccia, which shows porphyry mineralization characteristics.Although predecessors carried out research work, there are still big controversies about the alteration zonation and mineralization process of the deposit.Based on the field investigation and analysis of alteration zonation, micro-area analysis technology was used to test and study the main-trace elements and sulfur isotopic compositions of pyrite in different alteration zones.The wall rock alteration zonation is characterized by potassium feldspar zone-sericitization zone-propylitization zone from the center to the periphery of the orebody.Gold mainly occurs in the form of fissure gold, intergranular gold and inclusion gold in pyrite and other sulfide, and the content of invisible gold is low.From the potassic zone, through the phyllic zone, to the propylitic alteration zone, the contents of Ag and Bi tend to increase, while the contents of As, Sb, Zn, Mn, Mo and Sn, etc.show no obvious changes.The in-situ sulfur isotope composition indicates that the ore-forming material originates from deep magma.The analysis of its metallogenic process indicates that complexes and Te-Bi melts play an important role in the migration and enrichment of gold.
-
-
表 1 祁雨沟189号金矿床各蚀变带黄铁矿电子探针分析结果
Table 1. EPMA analysis of pyrite in each alteration zones of Qiyugou No.189 gold deposit
样品号 蚀变带 Se As Ge S Ga Pb Sb Fe Co Bi Ni Zn Te Cu Ag Au 总计 δS δFe N(S)/N(Fe) ZK032H11-1 钾长石化带 0.03 0.02 - 53.34 - 0.02 - 46.35 0.08 - - 0.05 - - 0.02 0.02 99.93 -0.206 -0.430 2.014 ZK032H11-2 - 0.07 - 52.96 - 0.03 - 45.54 0.06 - - - - - - 0.03 98.69 -0.913 -2.163 2.035 ZK032H21-1 - 0.05 - 53.24 - 0.08 - 46.29 0.05 - - - - - - 0.03 99.74 -0.393 -0.556 2.013 平均 0.03 0.05 - 53.18 - 0.04 - 46.06 0.06 - - 0.05 - - 0.02 0.03 99.52 -0.504 -1.050 2.021 ZK032H11-5 绢英岩化带 - 0.01 - 52.95 - - 0.01 46.29 0.11 - - 0.02 0.02 - - - 99.41 -0.93 -0.561 2.002 ZK032H11-6 0.02 - 0.02 52.81 - - - 46.37 0.06 - - - 0.04 0.02 - - 99.34 -1.196 -0.385 1.993 ZK032B26-2 - - - 52.73 - - - 46.62 0.03 - - 0.03 0.01 - - - 99.42 -1.351 0.146 1.979 ZK032B26-3 - 0.06 - 53.55 0.01 0.06 - 46.40 0.09 - - - - 0.01 - - 100.18 0.183 -0.329 0.020 ZK032B26-4 - - - 52.70 - 0.03 - 46.28 0.05 - - 0.02 - - - 0.04 99.12 -1.398 -0.582 1.993 ZK032B26-5 0.03 - - 52.78 - 0.02 0.01 46.15 0.02 - - 0.04 - - - 0.03 99.08 -1.257 -0.857 2.001 ZK032B26-1 - 0.05 - 52.99 0.05 - 0.03 46.58 0.05 - - - 0.02 - 0.01 - 99.78 -0.895 0.062 1.991 平均 0.02 0.03 0.02 52.93 0.03 0.04 0.02 46.38 0.06 - - 0.03 0.02 0.02 0.01 0.03 99.64 -0.978 -0.358 1.997 ZK022H63-9 青磐岩化带 - - - 53.27 - - - 46.28 0.06 - - - 0.03 - - - 99.64 -0.754 -0.694 2.008 ZK022H63-10 0.02 - - 53.44 - 0.10 - 46.6 0.11 - 0.01 0.03 - - - - 100.31 -0.664 0 1.996 ZK032H21-5 - 0.03 - 52.82 - - - 46.04 0.07 - - - - - - - 98.96 -0.453 -0.206 2.004 ZK032H21-6 - 0.04 0.03 53.02 0.02 0.14 0.03 45.85 0.04 - - 0.02 - - - 0.04 99.23 -1.182 -1.096 2.008 ZK032B144-1 0.04 - - 53.05 - - - 46.23 0.03 - 0.02 - 0.02 0.01 - 0.02 99.42 -0.812 -1.495 2.023 ZK032B144-2 - 0.03 - 53.10 - 0.06 - 46.55 0.07 - - - 0.04 - - 0.05 99.90 -0.311 -0.591 2.015 ZK032B144-3 0.04 0.01 - 53.21 - 0.05 - 46.45 0.06 - - 0.02 0.05 0.03 - - 99.92 -0.024 0.112 2.007 平均 0.04 0.03 0.03 53.05 - - 0.03 46.23 0.06 - - 0.02 0.04 0.02 - 0.03 99.58 -0.600 -0.567 2.009 ZK032B208-1 与方解石共生 - - - 54.04 - - - 46.16 0.12 - 0.03 - - - - 0.01 100.36 1.111 -0.831 2.049 ZK032B208-2 - 0.04 - 53.72 - 0.03 - 46.42 0.03 - 0.01 - - 0.02 - 0.04 100.31 0.503 -0.290 2.025 ZK032B208-3 - - - 53.36 - 0.06 - 45.86 0.03 0.04 0.03 0.03 0.01 - - - 99.42 0.167 -1.473 2.036 ZK032B208-4 - - - 53.98 - 0.06 - 46.37 0.08 - - - 0.03 - 0.01 0.03 100.6 0.995 -0.397 2.037 ZK032B115-1 - 0.02 - 52.56 - - - 46.20 0.07 - - 0.03 - - - 0.07 98.95 -1.665 -0.763 1.991 ZK032B115-2 - - - 52.84 - 0.07 0.03 46.09 0.05 - - - 0.04 - - 0.01 99.13 -1.133 -0.995 2.007 ZK032B115-3 0.06 - - 52.71 - 0.10 - 46.22 0.02 - 0.01 - 0.02 - - - 99.14 -1.381 -0.715 1.996 平均 0.03 0.03 - 53.32 - 0.06 0.03 46.19 0.06 0.04 0.02 0.02 0.03 0.02 0.01 0.03 99.89 -0.248 -0.781 2.020 ZK022B215-1 与硫铅铋矿共生 - - - 52.73 - 0.01 - 46.17 0.12 - - 0.01 0.03 - - - 99.07 -1.355 -0.825 1.999 ZK022B215-2 - - - 53.35 - - - 46.79 0.04 - - - - - - - 100.2 -0.193 0.520 1.995 ZK022B215-3 0.02 0.06 - 53.03 - - - 46.40 0.07 - - - - - 0.02 - 99.60 -0.79 -0.324 2.000 平均 0.02 0.06 - 53.03 - 0.01 - 46.45 0.08 - - 0.01 0.03 - 0.02 - 99.71 -0.779 -0.210 1.998 注:“一”表示元素含量低于检测限, 元素含量单位为% 表 2 祁雨沟189号金矿床各蚀变带黄铁矿LA-ICP-MS微量元素分析结果
Table 2. LA-ICP-MS analysis of trace elements in pyrites from different alteration zones of Qiyugou No.189 gold deposit
10-6 样品编号 Py产状 As Sb Au Ag Cu Pb Zn Mn Mo Co Ni Sn Bi Co/Ni ZK32H21-K1 Py1 nd nd - nd nd 10.71 - nd - 18.98 - 1.55 22.02 - ZK32H21-K2 Py1 42.48 nd - 0.61 nd - 7.51 nd - 2122 80.71 nd - 26.29 ZK22H2-1-1 Py1 17.99 nd - - nd 1.53 - - nd 2053 - nd 0.34 - ZK22H2-1-2 Py1 - nd nd nd nd 9.47 20.42 - nd 7031 17.96 nd 26.96 391.4 ZK22H44-1 Py1 22.14 nd - 1.13 nd nd 10.35 nd nd 1132 - 1.83 - - 平均(钾长石化带) Py1 27.54 nd - 0.87 nd 7.24 12.76 - - 2471 49.33 1.69 16.44 208.9 ZK22H44-2 Py2 nd 0.34 0.28 nd nd 34.90 27.47 14.25 - 587.1 - nd 74.12 - ZK32B11-SM1 Py2 - - 0.06 0.74 nd - 12.57 - nd 152.9 - nd nd - ZK32B11-SM2 Py2 - - - 0.10 nd 0.87 15.77 - 6.51 56.39 46.66 0.61 nd 1.21 ZK32B26-SM1 Py2 164.9 nd 0.07 nd nd nd 16.57 4.90 nd 24.67 - nd 0.27 - ZK32B26-SM2 Py2 37.80 0.38 - nd nd 1.70 10.42 nd 10.82 212.9 - 1.05 0.65 - ZK32B77-1-1 Py2 nd 0.18 nd - nd nd 11.42 nd nd 599.7 60.83 1.12 - 9.86 ZK32B77-1-2 Py2 - nd nd nd nd - 20.17 - nd 142.8 nd 1.10 - - ZK32H9-1 Py2 8.63 2.35 3.97 318.1 nd 4986 24.60 - nd 127.7 306.7 - 3355 0.42 ZK32H9-2 Py2 - - - 0.40 nd - 9.24 - nd 417.2 207.2 - - 2.01 ZK32H9-3 Py2 40.06 0.42 nd 3.87 nd 412.7 - - nd 50.56 2861 nd 5.25 0.02 ZK22H21-1 Py2 15.88 0.35 - 11.31 nd 2179 15.37 nd nd 781.9 nd - 45.72 - ZK22H21-2 Py2 19.01 - - 0.26 nd 1.76 17.57 5.13 - 263.9 - 0.56 0.24 - ZK22H21-3 Py2 19.51 - - - nd 1.31 72.68 - nd 144.7 - - nd - ZK32H19-S2 Py2 44.89 nd nd nd - - - nd nd - nd - - - ZK32H19-S3 Py2 130.6 nd - nd - - - - nd - nd - - - ZK32H19-S4 Py2 44.88 0.14 0.02 nd - 0.90 17.12 nd - - - - - - 平均(绢英岩化带) Py2 47.83 0.46 0.88 47.82 - 846.6 20.84 6.07 5.78 274.0 580.4 0.89 435.1 2.70 ZK32H20-1 Py3 nd nd nd nd nd nd - - nd 15.66 - nd nd - ZK32H20-2 Py3 - nd 0.10 nd nd nd 12.30 - - 175.7 - nd nd - ZK32H20-3 Py3 - nd nd nd nd - 12.49 nd - 401.5 - - 2.27 - ZK32H20-4 Py3 - - nd - nd 21.53 25.88 12.25 - 301.5 - nd 22.76 - ZK32H20-5 Py3 - nd nd nd nd 4.43 16.41 nd - 962.9 nd nd 5.75 - ZK32H21-CM2 Py3 49.39 nd 0.18 17.80 nd 362.4 9.73 nd nd nd nd 1.87 198.6 - ZK22H10-1 Py3 23.04 nd 0.16 nd nd 1.96 16.67 21.46 nd 403.1 nd nd 6.63 - ZK22H10-2 Py3 47.33 0.76 nd 5.38 nd 52.66 19.44 - - 192.3 394.6 - 81.70 0.49 ZK22H18-CM1 Py3 - 0.63 0.07 nd nd 2.68 14.88 nd nd 39.51 nd nd nd - ZK22H18-CM2 Py3 nd - nd nd nd 1.70 24.87 nd nd - - 2.52 0.93 - ZK22H22-1 Py3 66.88 nd nd nd nd 3.52 12.34 nd nd 2396 nd nd 8.89 - ZK22H22-2 Py3 86.84 0.22 nd nd nd nd - nd - 2111 - 2.47 nd - ZK22H43-1 Py3 55.22 nd 0.07 - nd 2.88 16.82 - nd nd - - 1.38 - ZK22H43-2 Py3 167.7 0.37 0.09 1.24 nd 4.17 25.16 - nd nd 151.1 nd 1.05 - ZK32B144-1 Py3 - 0.13 nd nd - - - nd nd 387.5 nd 0.50 - - ZK32B144-2 Py3 nd - 0.02 - nd nd 6.66 2.09 - 477.9 - - nd - ZK32B144-3 Py3 83.50 0.16 - 0.55 - 9.56 nd 9.57 - 137.3 nd - 0.89 - 平均(青磐岩化带) Py3 72.49 0.38 0.10 6.24 - 42.50 16.43 11.35 - 615.5 272.9 1.84 30.08 0.49 ZKO32B115-1 Py4 24.56 0.06 - - - 1.74 13.10 1.44 nd 1.57 - - 0.45 - ZKO32B115-2 Py4 14.69 nd 0.20 7.10 11.11 121.8 14.98 1.58 - 12.84 nd - 18.57 - ZKO32B115-3 Py4 - nd - - - nd 16.38 nd - 229.3 21.38 nd nd 10.73 ZKO32B115-4 Py4 - nd nd - 4.73 nd - nd - 29.35 - - nd - ZKO32B115-5 Py4 26.93 0.32 - 0.67 4.19 22.91 16.82 nd nd 4.09 nd nd 0.74 - ZK32H18-1 Py4 - - 0.05 nd - - 8.67 - - 13.07 - - 0.03 - ZK32H18-2 Py4 - nd nd - - 1.02 15.96 - nd 8.13 - nd 0.13 - ZK32H18-3 Py4 nd nd 0.05 nd 5.57 2.56 11.10 2.01 - 8.29 - - 0.15 - ZK32H18-4 Py4 - - - 0.61 - - 8.78 - nd 6.69 - - 0.06 - ZK32H18-5 Py4 - - nd nd 5.03 0.43 13.22 - - 729.3 nd - 0.19 - ZK32H19-F1 Py4 64.93 nd - - - 1.70 16.06 - nd - nd nd 0.14 - ZK32H19-F2 Py4 77.46 5.34 0.15 53.26 432.2 5361 447.3 nd nd nd - - 151.1 - ZK32H19-F3 Py4 2768 - 0.15 0.73 7.90 50.79 13.12 nd - 13.90 157.8 - 1.57 0.09 ZK32H19-F4 Py4 853.9 - 0.07 - - 0.57 - - - 236.9 19.53 0.26 - 12.14 ZK32H19-F5 Py4 nd - - 1.93 10.01 112.8 9.37 - - nd nd nd 0.24 - 平均(与方解石共生) Py4 547.2 1.91 0.11 10.72 60.09 516.2 46.53 1.68 - 107.8 66.22 0.26 14.44 7.65 注:“nd”表示元素未检测出;“-”表示元素含量低于检测限 表 3 祁雨沟189号金矿床黄铁矿原位硫同位素分析结果
Table 3. In-situ sulfur isotope analysis of pyrite of Qiyugou No.189 gold deposit
样品编号 蚀变带 黄铁矿世代 δ34S值/‰ ZK022H2-1 钾长石化带 Py1 -0.1 ZK022H2-2 Py1 -3.2 ZK032H11-1 Py1 1.9 ZK032H11-2 Py1 3.5 ZK022H44-1 Py1 0.0 ZK022H44-2 Py1 0.3 平均 Py1 0.4 ZK032B26-1 绢英岩化带 Py2 -0.5 ZK032B26-2 Py2 1.3 ZK032H19-1 Py2 0.1 ZK032H19-2 Py2 -2.1 ZK032H19-4 Py2 -7.3 ZK022H21-1 Py2 -7.4 ZK022H21-2 Py2 -2.2 平均 Py2 -2.6 ZK022H18-1 青磐岩化带 Py3 0.7 ZK022H18-3 Py3 -4.7 ZK022H22-1 Py3 -6.2 ZK022H22-2 Py3 -4.2 ZK022H22-3 Py3 -0.2 ZK032H20-1 Py3 -5.1 ZK032H20-2 Py3 -7.8 ZK032H20-3 Py3 -6.4 平均 Py3 -4.2 ZK032B115-1 与方解石共生 Py4 1.8 ZK032B115-2 Py4 1.3 ZK032B208-1 Py4 0.6 ZK032B208-2 Py4 -0.3 ZK032H18-1 Py4 -5.7 ZK032H18-3 Py4 -1.0 平均 Py4 -0.6 -
[1] 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1816. doi: 10.3321/j.issn:0001-5717.2009.12.002
[2] Hou Z Q, Ma H W, Zaw K. The Himalayan Yulong Porphyry Copper Belt: product of large-scale strike-slip faulting in Eastern Tibet[J]. Economic Geology, 2003, 98(1): 125-145. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.900.946&rep=rep1&type=pdf
[3] Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3): 247-250. doi: 10.1130/G25451A.1
[4] Richards J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1): 1-26. doi: 10.1016/j.oregeorev.2011.05.006
[5] 万利敏, 陈冰丽. 祁雨沟次火山斑岩型金矿床成矿系统分析及找矿意义[J]. 黄金, 2017, 38(2): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201702006.htm
[6] Qi N, Wang P, Yu J, et al. Geochronology and origin of the Qi189 porphyry gold deposit in Qiyugou orefield, Qinling orogen, china[J]. Ore Geology Reviews, 2019, 114: 103121. doi: 10.1016/j.oregeorev.2019.103121
[7] Wang P, Mao J W, Ye H S, et al. The Qiyugou Au orefield—An intrusion-related gold system in the Eastern Qinling ore belt, China: Constraints from SIMS zircon U-Pb, molybdenite Re-Os, sericite 40Ar-39Ar geochronology, in-situ S-Pb isotopes, and mineralogy[J]. Ore Geology Reviews, 2020, 124: 103636. doi: 10.1016/j.oregeorev.2020.103636
[8] Tang L, Zhao Y, Zhang S T, et al. Origin and evolution of a porphyry-breccia system: evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, china[J]. Gondwana Research, 2020, 89: 88-104. http://www.sciencedirect.com/science/article/pii/S1342937X20302525
[9] Belinda F, Rune B L, Andreas G, et al. In situ ananlysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 182(2/4): 237-247. http://link.springer.com/chapter/10.1007/978-3-642-22161-3_10
[10] 周涛发, 张乐骏, 袁峰, 等. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J]. 地学前缘, 2010, 17(2): 306-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002035.htm
[11] 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
[12] Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033
[13] Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326/327: 72-87. http://www.sciencedirect.com/science/article/pii/S0009254112003233
[14] 郭保健, 李永峰, 王志光, 等. 熊耳山Au-Ag-Pb-Mo矿集区成矿模式与找矿方向[J]. 地质与勘探, 2005, (5): 43-47. doi: 10.3969/j.issn.0495-5331.2005.05.009
[15] 石铨曾, 秦国群, 李明立, 等. 豫西后造山阶段的剥离伸展构造与金矿化[J]. 河南地质, 1993, (1): 28-36, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD199301006.htm
[16] 张进江, 郑亚东, 刘树文. 小秦岭金矿田中生代构造演化与矿床形成[J]. 地质科学, 2003, (1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200301009.htm
[17] 李永峰, 毛景文, 胡华斌, 等. 豫西公峪金矿床流体包裹体及其He、Ar、S、H、O同位素组成对成矿流体来源的示踪[J]. 岩石学报, 2005, (5): 1347-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505003.htm
[18] 毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, (1): 171-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
[19] 王义天, 毛景文, 卢欣祥. 嵩县祁雨沟金矿成矿时代的40Ar-39Ar年代学证据[J]. 地质论评, 2001, (5): 551-555. doi: 10.3321/j.issn:0371-5736.2001.05.015
[20] Han Y, Li X, Zhang S, et al. Single grain Rb-Sr dating of euhedral and cataclastic pyrite from the Qiyugou gold deposit in western Henan, central China[J]. Chinese Science Bulletin, 2007, 52(13): 1820-1826. doi: 10.1007/s11434-007-0248-3
[21] 唐克非. 华北克拉通南缘熊耳山地区金矿床时空演化、矿床成因及成矿构造背景[D]. 中国地质大学(武汉)博士学位论文, 2014.
[22] 张兴康, 叶会寿, 颜正信, 等. 豫西吉家洼金矿床成矿时代和成矿物质来源: 来自闪锌矿Rb-Sr同位素年龄和Pb同位素的证据[J]. 地质学报, 2018, 92(5): 1003-1018. doi: 10.3969/j.issn.0001-5717.2018.05.008
[23] 陈衍景, 唐国军, Franco Pirajno, 等. 东秦岭上宫金矿流体成矿作用: 放射成因同位素地球化学研究[J]. 矿物岩石, 2004, (3): 22-27. doi: 10.3969/j.issn.1001-6872.2004.03.003
[24] 张苏坤, 史保堂, 汪江河, 等. 豫西熊耳山吉家洼金矿床同位素特征与成矿模式[J]. 矿产勘查, 2016, 7(4): 552-560. doi: 10.3969/j.issn.1674-7801.2016.04.006
[25] 抄尉尉, 叶会寿, 田野, 等. 豫西熊耳山矿集区栾灵金矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿床地质, 2016, 35(1): 103-116. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201601007.htm
[26] 曾涛, 唐利, 黄丹峰, 等. 豫西熊耳山矿集区祁雨沟斑岩型金矿床地质特征及找矿意义[J]. 黄金, 2019, 40(10): 4-9. doi: 10.11792/hj20191002
[27] Deng J, Gong Q, Wang C, et al. Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong'ershan region, Central China: An overview with new zircon U-Pb geochronology data on quartz porphyries[J]. Journal of Asian Earth Sciences, 2014, 79(pt. A): 161-172. http://www.sciencedirect.com/science/article/pii/S136791201300494X
[28] Zhai D G, Williams-Jones A E, Liu J J, et al. Mineralogical, fluid inclusion, and multiple isotope(H-O-S-Pb)constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China[J]. Economic Geology, 2018, 113(6): 1359-1382. doi: 10.5382/econgeo.2018.4595
[29] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[30] Crowe D E, Vaughan R G. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios[J]. American Mineralogist, 1996, 81(1/2): 187-193. http://www.degruyter.com/downloadpdf/j/ammin.1996.81.issue-1-2/am-1996-1-223/am-1996-1-223.xml
[31] 严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm
[32] 冷成彪. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约[J]. 地学前缘, 2017, 24(6): 162-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706016.htm
[33] Cook N J, Ciobanu C L, Mao J W. Textural control on gold distribution in As freepyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton(Hebei Province, China)[J]. Chemical Geology, 2009, 264(1/4): 101-121 http://www.sciencedirect.com/science/article/pii/s0009254109001065
[34] 王岚, 杨理勤, 王亚平, 等. 激光剥蚀电感耦合等离子体质谱微区分析进展评述[J]. 地质通报, 2012, 31(4): 637-645. doi: 10.3969/j.issn.1671-2552.2012.04.020 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120420&flag=1
[35] Ohmoto H, Rye R O. Isotopes of sulfur and carbon[C]//Barnes H L. Geochemistry of hydrothermal ore deposits. 2nd ed. New York : John Wiley & Sons. 1979, 509-567.
[36] 王鹏. 熊耳山祁雨沟矿田燕山期岩浆活动与金成矿作用[D]. 中国地质大学(北京)博士学位论文, 2020.
[37] 邵克忠, 王宝德, 吴新国, 等. 祁雨沟地区爆发角砾岩型金矿成矿地质条件及找矿方向研究[J]. 河北地质学院学报, 1992, (2): 105-195. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX198804012.htm
[38] 范宏瑞, 谢奕汉, 赵瑞, 等. 豫西熊耳山地区岩石和金矿床稳定同位素地球化学研究[J]. 地质找矿论丛, 1994, 9(1): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK401.006.htm
[39] 陈旺. 豫西熊耳山金矿床和银(铅)矿床铅同位素研究[J]. 贵金属地质, 1995, 4(3): 168-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD503.001.htm
[40] Xiong S F, Jiang S Y, Zhao K D, et al. Gold distribution and source of the J4 gold-bearing breccia pipe in the. Qiyugou district, North China Craton: Constraints from ore mineralogy and in situ analysis of trace elements and S-Pb isotopes[J]. Ore Geology Reviews, 2019, 105: 514-536. doi: 10.1016/j.oregeorev.2018.12.022
[41] 李英和, 仁崔锁. 华北地台南缘铅同位素演化[J]. 西安地质学院学报, 1990, 12(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX199002000.htm
[42] Wang C, Lu Y, He X, et al. The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: Insight into rift-related magmatism[J]. Precambrian Research, 2016, 277: 26-46. doi: 10.1016/j.precamres.2016.02.009
[43] Wang C, He X, Carranza E J M, et al. Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: Implications for the Columbia supercontinent[J]. Geoscience Frontiers, 2019, 10(4): 1543-1560. doi: 10.1016/j.gsf.2018.10.007
[44] Loftus-Hills G, Solomon M. Cobalt, nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 1967, 2(3): 228-242. http://link.springer.com/content/pdf/10.1007%2FBF00201918.pdf
[45] Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 1979, 14(3): 353-374.
[46] Bajwah Z U, Seccombe P K, Offler R. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 1987, 22(4): 292-300. http://link.springer.com/content/pdf/10.1007%2FBF00204522.pdf
[47] 齐楠, 王玭, 陈衍景, 等. 河南祁雨沟金矿田189号矿床流体包裹体与矿床成因研究[J]. 大地构造与成矿学, 2019, 43(3): 558-574. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903013.htm
[48] Jian W, Mao J W, Lehmann B, et al. Au-Ag-Te-rich melt inclusions in hydrothermal gold-quartz veins, Xiaoqinling lode gold district, central China[J]. Economic Geology, 2021, 116(5): 1239-1248. doi: 10.5382/econgeo.4811
① 姚书振. 河南省嵩县祁雨沟金矿床成矿规律研究报告. 武汉: 中国地质大学, 2012.
-