Molybdenite Re-Os isochron age of the Chiwawu Mo-Cu deposit in Fuping County, Hebei Province in northern Taihang Mountains and its prospecting significance
-
摘要:
赤瓦屋斑岩型钼铜矿床是太行山北段斑岩-矽卡岩成矿带内探明的一个中型钼铜矿床,钼铜矿体主要赋存于赤瓦屋岩体内部相的斑状花岗闪长岩中。为厘定赤瓦屋钼铜矿床的成矿时代和成矿物质来源,利用辉钼矿Re-Os同位素定年方法对赤瓦屋钼铜矿床中7件辉钼矿样品进行了成矿年代学测定,获得的模式年龄为129.1~130.6 Ma,年龄加权平均值为129.7±0.7 Ma,对应的等时线年龄为128.7±4.4 Ma,模式年龄和等时线年龄在误差范围内基本一致,指示赤瓦屋钼铜矿床形成于早白垩世。赤瓦屋钼铜矿床辉钼矿样品的Re含量为25.9×10-6~37.1×10-6,表明其成矿物质来源于壳幔混源。结合区域年代学资料,认为太行山北段成矿带在134~124 Ma存在一期岩浆热液成矿事件,斑岩铜矿型钼铜矿床的找矿潜力较大。
Abstract:The Chiwawu porphyry Mo-Cu deposit in the northern Taihang Mountains porphyry-skarn metallogenic belt is a medium-sized one discovered in recent years.The Mo-Cu orebodies are mainly hosted within porphyritic granodiorite of internal facies in Chiwawu pluton.In order to determine the age of mineralization and the source of molybdenum, seven molybdenite samples were collected from the Chiwawu Mo-Cu deposit for Re-Os dating.The Re-Os dating yields model ages ranging from129.1 Ma to130.6 Ma, with a weighted mean age of 129.7±0.7 Ma, and obtains an isochron age of 128.7±4.4 Ma.Evidently, model ages are consistent with isochron age within the error ranges, which constrains the ore-forming age of Chiwawu Mo-Cu deposit at the Early Cretaceous.The Re values of molybdenum vary in the range of 25.9×10-6~37.1×10-6, indicating that they were derived from mixing of crust and mantle sources.Combined with available chronologic data, it is recognized that a regional magmatic-metallogenic event might exist during the 134~124 Ma in northern Taihang Mountains.The prospecting potentiality of porphyry Cu-Mo deposits is great in this area.
-
-
图 1 太行山北段地质简图(显示主要岩体和重要矿床分布,据参考文献[11]修改)
Figure 1.
表 1 赤瓦屋钼铜矿床Re-Os同位素测试结果
Table 1. Molybdenite Re-Os isotope data of the Chiwawu Mo-Cu deposit
样品号 样重/g Re /10-6 普Os /10-9 187Re /10-9 187Os /10-9 模式年龄/Ma 测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ CWb31 0.03097 31.6 0.35 0.0062 0.0162 19831 222 43.20 0.26 130.6 2.1 CWb3 0.02012 37.1 0.29 0.0011 0.0602 23344 184 50.27 0.41 129.1 1.9 CWb9 0.02025 30.3 0.29 0.0011 0.0481 19067 182 41.07 0.25 129.2 1.9 CWb18 0.02018 26.2 0.21 0.0011 0.0476 16445 133 35.63 0.21 129.9 1.8 CWb24-1 0.02047 32.5 0.32 0.0011 0.0474 20409 200 44.16 0.30 129.7 2.0 CWk3 0.02004 27.2 0.21 0.0011 0.0141 17115 135 37.02 0.25 129.7 1.9 CWk6 0.02018 25.9 0.19 0.0011 0.0137 16278 119 35.19 0.24 129.6 1.8 表 2 太行山北段赤瓦屋和麻棚岩体及相关矿床测年数据
Table 2. Chronology data of Chiwawu and Mapeng intrusions and their related ore deposits in the northern Taihang Mountains
矿床及相关岩体名称 年龄/Ma 测试方法 参考文献 赤瓦屋钼铜矿床 128.7±4.4 辉钼矿Re-Os等时线法 本文数据 秋树林钼矿 129.06±1.13 辉钼矿Re-Os模式年龄 [10] 阎家沟钼矿 126.7±1.1 辉钼矿Re-Os等时线法 [10] 银洞钼矿 127.6 辉钼矿Re-Os模式年龄 [10] 赤瓦屋岩体 134±1 锆石LA-ICP-MS U-Pb法 [11] 133±1 锆石LA-ICP-MS U-Pb法 [11] 131±1 锆石LA-ICP-MS U-Pb法 11] 128±1 锆石LA-ICP-MS U-Pb法 [11] 134.0±5.3 锆石SHRIMP U-Pb法 [12] 139.8±3.1 锆石SHRIMP U-Pb法 [12] 126.4±2.4 锆石LA-ICP-MS U-Pb法 [13] 130±1.0 锆石LA-ICP-MS U-Pb法 [14] 128.2±1.5 锆石LA-ICP-MS U-Pb法 [14] 麻棚岩体 131±2 锆石LA-ICP-MS U-Pb法 [9] 131±2 锆石LA-ICP-MS U-Pb法 [9] 125±3 锆石SHRIMP U-Pb法 [36] 125.4±2 锆石LA-ICP-MS U-Pb法 [13] 126.2±2 锆石LA-ICP-MS U-Pb法 [13] 128.3±1.6 锆石LA-ICP-MS U-Pb法 [37] 125.1±1.1 锆石LA-ICP-MS U-Pb法 [37] 124.3±1.3 锆石LA-ICP-MS U-Pb法 [37] -
[1] 徐义刚. 太行山重力梯度带的形成与华北岩石圈减薄的时空差异性有关[J]. 地球科学, 2006, 31: 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601003.htm
[2] 陈斌, 翟明国, 邵济安. 太行山北段中生代岩基的成因和意义: 主要和微量元素地球化学证据[J]. 中国科学(D辑), 2002, 32(11): 896-907. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200211002.htm
[3] Chen B, Chen Z C, Jahn B M. Origin of mafic enclaves from the Taihang Mesozoic orogen, north China Craton[J]. Lithos, 2009, 110: 343-358. doi: 10.1016/j.lithos.2009.01.015
[4] 朱日祥, 陈凌, 吴福元, 等. 华北克拉通破坏的时间、范围与机制[J]. 中国科学(D辑), 2011, 41(5): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm
[5] Mao J W, Pirajno F, Lehmann B, et al. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 2014, 79: 576-584. doi: 10.1016/j.jseaes.2013.09.002
[6] 高永丰, 魏瑞华, 侯增谦, 等. 木吉村斑岩铜矿成矿作用: 华北克拉通中生代岩石圈减薄的响应[J]. 矿床地质, 2011, 30: 890-902. doi: 10.3969/j.issn.0258-7106.2011.05.010
[7] 者萌, 胡建中, 周伟, 等. 河北省安妥岭钼矿床地质特征及辉钼矿Re-Os同位素年龄[J]. 现代地质, 2014, 28: 339-347. doi: 10.3969/j.issn.1000-8527.2014.02.012
[8] 黄典豪, 杜安道, 吴澄宇, 等. 华北地台钼(铜)矿床成矿年代学研究——辉钼矿铼-锇年龄及其地质意义[J]. 矿床地质, 1996, 15(4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm
[9] Li S R, Santosh M, Zhang H F, et al. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains[J]. Gondwana Research, 2013, 23: 141-160. doi: 10.1016/j.gr.2012.02.006
[10] 孙文燕. 太行山中段银钼成矿系统结构及其深部找矿远景[D]. 中国地质大学(北京)博士学位论文, 2014.
[11] 李瑞玲, 段超, 陈志宽, 等. 太行山北段赤瓦屋铜钨矿化区花岗质岩石的锆石U-Pb年龄及其地质意义[J]. 中国地质, 2016, 43(5): 1761-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605024.htm
[12] 刘阳, 李程明, 穆一青, 等. 太行山北段赤瓦屋岩体锆石SHRIMP U-Pb年龄及其意义[J]. 地质与勘探, 2010, 46(3): 442-447. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201003010.htm
[13] 李林林, 韩宝福, 苗国均, 等. 太行山阜平杂岩中麻棚赤瓦屋岩体的时代、侵位深度及构造意义[J]. 岩石矿物学杂志, 2012, 31(3): 289-306. doi: 10.3969/j.issn.1000-6524.2012.03.001
[14] He X F, Santosh M. Crustal recycling through intraplate magmatism: Evidence from the Trans-North China Orogen[J]. Journal of Asian Earth Sciences, 2014, 95: 147-163. doi: 10.1016/j.jseaes.2014.02.011
[15] Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research, 2012, 222/223: 55-76. doi: 10.1016/j.precamres.2012.09.016
[16] Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107: 45-73. doi: 10.1016/S0301-9268(00)00154-6
[17] 段超, 毛景文, 谢桂青, 等. 太行山北段木吉村髫髻山组安山岩锆石U-Pb年龄和Hf同位素特征及其对区域成岩成矿规律的指示[J]. 地质学报, 2016, 90(2): 250-266. doi: 10.3969/j.issn.0001-5717.2016.02.005
[18] 邓晋福, 莫宣学, 赵海玲, 等. 中国东部岩石圈根/去根作用与大陆"活化"——东亚型大陆动力学模式研究计划[J]. 现代地质, 1994, 8(3): 349-356. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ403.017.htm
[19] 河北省地质矿产局. 河北省北京市天津市区域地质志[M]. 北京: 地质出版社, 1989: 125-135.
[20] 喻学惠, 任建业, 张俊霞. 太行山中段铜-金成矿条件及找矿方向[M]. 北京: 地质出版社, 1996: 11-30.
[21] 王雪飞. 综合物化探方法在河北保定赤瓦屋铜多金属矿区勘查中的应用研究[D]. 吉林大学硕士学位论文, 2020.
[22] 杜安道, 何红寥, 殷宁万, 等. 辉相矿的铼-锇同位素地质年龄测定方法研究[J]. 地质学报, 1994, 68(4): 339-347. doi: 10.3321/j.issn:0001-5717.1994.04.005
[23] 杜安道, 屈文俊, 李超, 等. 铼-锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试, 2009, 28(3): 288-304. doi: 10.3969/j.issn.0254-5357.2009.03.019
[24] 杜安道, 屈文俊, 王登红, 等. 铼-锇法及其在矿床学中的应用[M]. 北京: 地质出版社, 2012: 11-80.
[25] 屈文俊, 杜安道. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 2003, 22(4): 254-262. doi: 10.3969/j.issn.0254-5357.2003.04.003
[26] 屈文俊, 杜安道, 任静. 过氧化氢在黄铁矿的溶解过程中对铼-锇信号强度及年龄的影响研究[J]. 分析化学, 2008, 8(2): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200802018.htm
[27] 屈文俊, 杜安道, 李超. 金川铜镍硫化物样品中锇同位素比值的高精度分析[J]. 岩矿测试, 2009, 28(3): 219-222. doi: 10.3969/j.issn.0254-5357.2009.03.005
[28] 李超, 杜安道, 屈文俊. 大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究[J]. 矿床地质, 2009, 28(5): 707-712. doi: 10.3969/j.issn.0258-7106.2009.05.016
[29] 李超, 屈文俊, 杜安道. 铼-锇同位素定年法中丙酮萃取铼的系统研究[J]. 岩矿测试, 2009, 28(3): 233-238. doi: 10.3969/j.issn.0254-5357.2009.03.008
[30] 李超, 屈文俊, 周利敏, 等. Carius管直接蒸馏快速分离锇方法研究[J]. 岩矿测试, 2010, 29(1): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201203007.htm
[31] Ludwig K. Isoplot/Ex, version 2.0: A geochronogical toolkit for Micros of Excel[C]//Berkeley Geochronology Center, Berkeley, CA, 2009.
[32] Smoliar M I, Walker R J, Morgan J W. Re-Os ages of groupⅡA, ⅢA, ⅣA and ⅥB iron meteorites[J]. Science, 1996, 271: 1099-1109. doi: 10.1126/science.271.5252.1099
[33] Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 2001, 13(6): 479-486. doi: 10.1046/j.1365-3121.2001.00395.x
[34] Foster J G, Lambert D D, Frick L R, et al. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites[J]. Nature, 1996, 382(6593): 703-706.
[35] 李文昌, 余海军, 尹光侯, 等. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J]. 矿床地质, 2012, 31(2): 282-292. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201202010.htm
[36] 刘阳, 李程明, 郑杰, 等. 太行山北段麻棚岩体锆石SHRIMP U-Pb年龄及其意义[J]. 地质与勘探, 2010, 46: 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201004007.htm
[37] Li Q, Santosh M, Li S R, et al. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope[J]. Journal of Asian Earth Sciences, 2014, 95: 17-32. http://www.onacademic.com/detail/journal_1000036245042610_7ca5.html
[38] Li S R, Santosh M. Metallogeny and craton destruction: Records from the North China Craton[J]. Ore Geology Reviews, 2014, 56: 376-414. http://www.sciencedirect.com/science/article/pii/s0169136813000863
[39] 毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 31(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
[40] Mao J W, Xie G Q, Duan C, et al. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China[J]. Ore Geology Reviews, 2011, 43: 294-314. http://www.ingentaconnect.com/content/el/01691368/2011/00000043/00000001/art00024
[41] 毛景文, 段超, 刘佳林, 等. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例[J]. 岩石学报, 2012, 28(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201003.htm
[42] 周涛发, 范裕, 袁峰, 等. 长江中下游成矿带火山岩盆地的成岩成矿作用[J]. 地质学报, 2011, 85(5): 712-730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105010.htm
[43] Mao J W, Xie G Q, Bierlein F, et al. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt[J]. Geochimica Cosmochimica Acta, 2008, 72: 4607-4626. http://www.sciencedirect.com/science/article/pii/S0016703708004043
[44] 毛景文, 罗茂澄, 谢桂青, 等. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 2014, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm
-