覆压作用下页岩的孔渗性实验及其应力敏感性研究

张骞, 岳晓晶. 覆压作用下页岩的孔渗性实验及其应力敏感性研究[J]. 地质通报, 2021, 40(9): 1514-1521.
引用本文: 张骞, 岳晓晶. 覆压作用下页岩的孔渗性实验及其应力敏感性研究[J]. 地质通报, 2021, 40(9): 1514-1521.
ZHANG Qian, YUE Xiaojing. Experimental study on porosity and permeability and stress sensitivity of shale under pressurization[J]. Geological Bulletin of China, 2021, 40(9): 1514-1521.
Citation: ZHANG Qian, YUE Xiaojing. Experimental study on porosity and permeability and stress sensitivity of shale under pressurization[J]. Geological Bulletin of China, 2021, 40(9): 1514-1521.

覆压作用下页岩的孔渗性实验及其应力敏感性研究

  • 基金项目:
    国家科技重大专项项目《页岩气等非常规油气开发环境监测与保护关键技术》(编号:2016ZX05040)
详细信息
    作者简介: 张骞(1988-),男,硕士,助理研究员,从事地质战略研究。E-mail:373983765@qq.com
    通讯作者: 岳晓晶(1989-),女,博士,从事非常规油气开发地下水环境影响研究。E-mail: yuexiaojing412@163.com
  • 中图分类号: P619.22+7

Experimental study on porosity and permeability and stress sensitivity of shale under pressurization

More Information
  • 为了研究页岩在应力作用下的孔渗变化及孔隙结构特征,采用四川盆地昭通区块页岩样,不同压力条件下对页岩的孔隙度和渗透率进行实验分析,建立了页岩样孔隙度、渗透性与净覆压之间的相关关系和模型;采用渗透率损害率和应力敏感系数分析了页岩储层的应力敏感性。研究结果表明,页岩基质孔隙度和渗透率随有效应力的增加呈负指数函数规律降低,渗透率与孔隙结构有关,页岩地层中包括基质孔隙和裂隙共同发育的双重介质体系。当净覆压小于5 MPa时,页岩储层应力敏感系数变化较大,应力敏感性强;当净覆压大于5 MPa时,页岩储层应力敏感系数随有效应力的增加下降速度整体减缓,且存在波动变化,应力敏感性减弱,渗透率损害率随有效应力的增大而缓慢增加。研究发现,不同孔径的孔隙度随应力的增大而减小,反映了页岩中不同孔径对孔隙度的协同效应,对揭示页岩储层的孔径变化,指导深部页岩储层的物性特征具有一定的实际意义。

  • 加载中
  • 图 1  水力压裂开采增加页岩储层压力过程示意图

    Figure 1. 

    图 2  页岩孔隙度、渗透率与净覆压力之间的关系

    Figure 2. 

    图 3  页岩渗透压缩率(PPR)、应力敏感系数(SSC) 与净覆压的关系

    Figure 3. 

    图 4  页岩孔隙度压缩系数和净覆压的关系

    Figure 4. 

    图 5  覆压条件下页岩孔隙度与渗透率的关系

    Figure 5. 

    图 6  覆压条件下页岩孔渗双对数曲线

    Figure 6. 

    图 7  由孔渗幂指数判断孔隙结构图(据参考文献[5]修改)

    Figure 7. 

    图 8  样品14在电镜扫描下裂缝的存在

    Figure 8. 

    表 1  实验样品基础数据

    Table 1.  Basic data of the shale samples

    样品编号 直径/cm 长度/cm 孔隙度/% 渗透率/10-3μm2 密度/(g·cm-3) 样品描述
    1 2.457 6.452 5.33 0.08371 2.58 平行层理
    6 2.462 4.597 7.49 0.0333 2.56 平行层理
    8 2.472 4.966 7.47 0.04242 2.53 平行层理
    12 2.477 3.813 5.85 0.025 2.58 垂直层理
    14 2.474 5.210 4.59 0.00016 2.58 垂直层理
    17 2.474 5.242 4.99 0.00061 2.59 垂直层理
    下载: 导出CSV

    表 2  页岩样品孔隙度、渗透率和净覆压力之间的统计分析结果

    Table 2.  Statistic analysis results of relationship between porosity and permeability of shale and the effective confining pressure

    样品编号 压缩系数(Cp)/(MPa-1) 孔隙度(φ0)/% 相关系数(R12) 渗透率应力敏感系数(a)/(MPa-1) 渗透率(K0)/mD 相关系数(R22)
    1 0.026 5.333 0.959 0.280 0.0837 0.987
    6 0.049 7.494 0.983 0.090 0.033 0.991
    8 0.012 7.479 0.536 0.012 0.042 0.857
    12 0.017 5.811 0.823 0.263 0.025 0.945
    14 0.032 4.591 0.835 0.00016
    17 0.039 4.989 0.778 0.00061
    下载: 导出CSV
  • [1]

    Cai J, Yu B, Zou M, et al. Fractal characterization of spontaneous co-current imbibition in porous media[J]. Energy Fuel., 2010, 24: 1860-1867. doi: 10.1021/ef901413p

    [2]

    Dutta R, Lee C, Odumabo S, et al. Experimental investigation of fracturing-fluid migration caused by spontaneous imbibition in fractured low-permeability sands[J]. SPE Reservoir Evaluation & Engineering, 2014, 7(1): 74-81. http://www.onacademic.com/detail/journal_1000037967035110_160f.html

    [3]

    李继山. 表面活性剂体系对渗吸过程的影响[D]. 河北: 中国科学院研究生院(渗流流体力学研究所)博学位论文, 2006.

    [4]

    King G E. Thirty Years of Gas Shale Fracturing: What Have We Learned?[C]//Society of Petroleum Engineers, 2010, 62(11): 88-90.

    [5]

    Zhang R, Ning Z F, Yang F, et al. A laboratory study of the porosity-permeability relationships of shaleand sandstone under effective stress[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, (81): 19-27. http://www.researchgate.net/profile/Rui_Zhang139/publication/284232801_A_laboratory_study_of_the_porosity-permeability_relationships_of_shale_and_sandstone_under_effective_stress/links/571e2e5e08aead26e71a82e0.pdf

    [6]

    Arthur J D, Bohm B, Coughlin B J, et al. Hydraulic fracturing considerations for natural gas wells of the Fayetteville Shale[M]. All Consulting, 2008.

    [7]

    张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140. doi: 10.3787/j.issn.1000-0976.2008.06.040

    [8]

    秦积舜, 李爱芬. 油层物理学[M]. 东营: 石油大学出版社, 2001: 178-182.

    [9]

    Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid[J]. Journal of Applied Physics, 1956, (27): 457-467. http://www.onacademic.com/detail/journal_1000035968482110_5b1c.html

    [10]

    Lubinski A. Theory of elasticity for porous bodies displaying a strongpore structure[C]//Proc. 2nd U.S. National Congress of Applied Mechanics, 1954: 247-256.

    [11]

    贾文瑞, 李福恺, 肖敬修. 低渗透油田开发部署中几个问题的研究[J]. 石油勘探与开发, 1995, 22(4): 47-51. doi: 10.3321/j.issn:1000-0747.1995.04.017

    [12]

    Reyes L, Osisanya S O. Empirical correlation of effective stress dependent shalerock properties[J]. J. Can. Pet. Tech., 2002, (27): 47-53. http://www.onacademic.com/detail/journal_1000039246541510_435b.html

    [13]

    伍向阳, 陈祖安, 孙德明, 等. 静水压力下砂岩孔隙度变化实验研究[J]. 地球物理学报, 1995, 38(S1): 275-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S1.027.htm

    [14]

    Cho Y, Ozkan E, Apaydin O G. Pressure-dependent natural-fracture permeabilityin shale and its effect on shale-gas well production[M]. Paper SPE, 2013: 159801.

    [15]

    Chalmers G, Ross D, Bustin R. Geological controls on matrix permeability ofDevonian gas shales in the Horn River and Liard basins, northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2012, (103): 120-131. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0166516212001401&originContentFamily=serial&_origin=article&_ts=1471375787&md5=a8ab08c04009e9b0e1ec570bd2b075ce

    [16]

    Petunin V V, Yin X, Tutuncu A N. Porosity and permeability changes in sandstones and carbonates under stress and their correlation to rock texture[M]. Paper SPE, 2011: 147401.

    [17]

    Meng Z P, Li G Q. Experimental research on the permeability of high-rank coal under varying stress and its influencing factors[J]. Engineering Geology, 2013, (162): 108-117. http://www.ingentaconnect.com/content/jccs/jccs/2012/00000037/00000003/art00012

    [18]

    Abass H H, Ortiz I, Khan M R., et al. Understanding stress dependant permeability of matrix, natural fractures, and hydraulic fractures in carbonate formations[M]. Paper SPE, 2007: 110973.

    [19]

    Julia F W, Robert M Reed, Jon Holder. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. American Association of Petroleum Geologists Bulletin, 2007, 91(4), 603-622. doi: 10.1306/11010606061

    [20]

    David C, Wong T, Zhu W, et al. Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust[J]. Pure and Applied Geophysics, 1994, (143): 425-456. doi: 10.1007/BF00874337

    [21]

    Dehghanpour H, Zubair H A, Chhabra A, et al. Liquid intake of organic shales[J]. Energy & Fuels, 2012, 26(9): 5750-5758. http://pubs.acs.org/doi/abs/10.1021/ef3009794

    [22]

    Dehghanpour H, Lan Q, Saeed Y, et al. Spontaneous Imbibition of Brine and Oil in Gas Shales: Effect of Water Adsorption and Resulting Microfractures[J]. Energy & Fuels, 2013, 27(6): 3039-3049. http://pubs.acs.org/doi/abs/10.1021/ef4002814

    [23]

    Xu M, Dehghanpour H. Advances in Understanding wettability of gas shales[J]. Energy & Fuels, 2014: 4362-4375. http://www.onacademic.com/detail/journal_1000036675409510_3029.html

    [24]

    Hu Y, Devegowda D, Striolo A, et al. Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed-wettability[C]//SPE unconventional resources conference, Society of Petroleum Engineers Alberta, Canada, 2014.

    [25]

    Zhu W, Montesi L, Wong T. Characterizing the permeability-porosity relationship during compactive cataclastic flow[M]. Paper ARMA, 2008.

    [26]

    Kwon O. Permeability of Wilcox shale and its effective pressure law[J]. Journal of Geophysical Research, 2001, (106): 19339-19353.

    [27]

    Meng Y, Li Z P, Lai F P, et al. Characteristics of black shale in the Upper Ordovician Wufeng and lower Silurian Longmaxi formations in the Sichuan Basin and its periphery, China[J]. Australian Journal of Earth Sciences, 2017, (5): 667-687. http://www.tandfonline.com/doi/full/10.1080/08120099.2017.1321581

    [28]

    腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    [29]

    周彤, 王海波, 李凤霞, 等. 层理发育的页岩气储集层压裂缝扩展模拟[J]. 石油勘探与开发, 2020, 47(5): 1039-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005021.htm

  • 加载中

(8)

(2)

计量
  • 文章访问数:  2249
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2021-06-04
修回日期:  2021-08-06
刊出日期:  2021-09-15

目录