The discovery of Late Mesoproterozoic alkali hornblende-aegirite syenite in E'shan area of central Yunnan and its constraints on Greenwell orogeny
-
摘要:
碱性岩通常形成于岩石圈拉张环境,其源于深部地幔物质的部分熔融,是深部地球动力学过程在地壳中的记录,也是探究地球深部物质组成、动力学过程及物理化学环境的良好对象。1:5万区域地质调查在峨山县甸中地区新发现一个正长岩岩体,岩性为碱闪霓石正长岩。系统的研究表明,碱闪霓石正长岩富硅(SiO2=67.40%~67.79%)、富碱(Na2O+K2O=12.50%~12.73%)、贫镁(MgO=0.10%~0.28%),K2O/Na2O=0.75~0.80,属一套钠质碱性岩系列(大西洋型)。岩石富集K、Rb等大离子亲石元素及Ta、Zr、Hf等高场强元素,而亏损Ti、P、U等高场强元素及Sr、Ba等大离子亲石元素。稀土元素配分曲线也较特殊,轻稀土元素向右陡倾,(La/Sm)N=3.61~4.79,重稀土元素向左缓倾,(Gd/Yb)N=0.53~0.62;具有中等程度的负Eu异常及弱负Ce异常,δEu=0.41~0.43,δCe=0.74~0.88,暗示岩浆可能形成于较高的氧逸度环境,总体上具有亏损中稀土元素的特点。LA-ICP-MS锆石U-Pb年龄为1007±10 Ma(MSWD=2.3,n=21),属中元古代末期,为扬子板块上已知形成时代最早的碱性岩体,限定了滇中地区格林威尔造山运动结束的时限。在Th/Hf-Ta/Hf图解上,样品均落入地幔热柱玄武岩区,暗示该碱性岩体可能为地幔柱成因,岩浆基本上未受到陆壳物质的混染,主体上可能属下地幔石榴子石橄榄岩的低程度部分熔融的产物;岩浆上升过程中可能与上地幔尖晶石橄榄岩发生了同化混染,重稀土元素含量快速升高;亏损中稀土元素、富Nb等特点暗示尖晶石地幔橄榄岩可能经历过俯冲流体的交代及中等程度的部分熔融。本次发现的碱闪霓石正长岩体应是格林威尔造山挤压作用向伸展作用转变的产物。
Abstract:Alkaline rocks are usually formed in the lithosphere stretching environment, which is derived from the partial melting of deep mantle material.As a record of deep geodynamic processes in the earth's crust, it is a good exploration of the deep matter composition, dynamic process and physical and chemical environment of the earth. In the 1:50000 regional geological survey, a syenite rock mass was newly discovered in the Dianzhong area of E'shan County, and its lithology is alkali homblende-aegirite-syenite.Systematic studies show that alkali hornblende-aegirite syenite rich in silicon (SiO2=67.40%~67.79%) and alkali (Na2O+K2O=12.50%~12.73%), depleted in magnesium (MgO=0.10%~0.28%) and K2O/Na2O=0.75~0.80, is a set of sodium alkaline rock series (Atlantic type).It is rich in large ion lithophile elements such as K and Rb, and high field strength elements such as Ta, Zr, and Hf, while depleted in high field strength elements such as Ti, P and U as well as large ion lithophile element, such as Sr, Ba.The rare earth distribution curve is also special, the light rare earth element is steeply inclined to the right, (La/Sm) N=3.61~4.79, and the heavy rare earth element is gently inclined to the left, (Ga/Yb) N=0.53~0.62.The moderately negative Eu anomaly and weak negative Ce anomaly (δEu=0.41~0.43, δCe=0.74~0.88) suggest that the magma may be formed in a higher oxygen fugacity environment and generally has the characteristics of depleted middle rare earth elements.LA-ICP-MS zircon U-Pb age is 1007±10 Ma (MSWD=2.3, n=21), which belongs to the end of the Middle Proterozoic.It is the earliest alkaline pluton formed on the Yangtze plate, which defines the time limit for the end of the Greenville Orogenic Movement in Central Yunnan Province.On the Th/Hf-Ta/Hf diagram, the samples fell into the "Mantle Hot Pillar Basalt" area, suggesting that the pluton might be the cause of the mantle plume, indicating that the magma is basically not contaminated by the continental crust, and the pluton might be the product of low partial melting of lower mantle garnet peridotite.During magma rise, it might be assimilated and mixed with the upper mantle spinel peridotite, and the content of heavy rare earth elements increases rapidly.The characteristics of depleted middle rare earth elements and enriched Nb compositions suggest that the mantle spinel peridotite might have experienced the metasomatism of subduction fluid and moderate partial melting.The alkali hornblende-aegirite syenite found here is the product of the conversion from Greenville Orogenic compression to extension.
-
-
图 3 碱闪霓石正长岩ANOR-Q′(a) 及A/CNK-A/NK (b) 图解[20]
Figure 3.
图 4 碱闪霓石正长岩球粒陨石标准化稀土元素配分模式图(a) 及原始地幔标准化微量元素蛛网图(b)(球粒陨石和原始地幔标准化数据据参考文献[21])
Figure 4.
表 1 碱闪霓石正长岩主量、微量和稀土元素分析结果
Table 1. Major, trace element and REE compositions of alkali hornblende-aegirite syenite
样品编号 D0121-1 D0121-2 D0121-3 D0121-4 D0121-5 样品编号 D0121-1 D0121-2 D0121-3 D0121-4 D0121-5 SiO2 67.79 67.77 67.64 67.8 68.03 Tb 0.23 0.25 0.18 0.26 0.32 TiO2 0.09 0.08 0.08 0.09 0.09 Dy 1.61 1.71 1.29 1.89 2.30 Al2O3 15.99 15.78 16.17 15.81 16.01 Ho 0.35 0.36 0.29 0.42 0.49 Fe2O3 1.44 1.65 1.55 1.62 1.48 Er 1.19 1.24 0.98 1.41 1.67 FeO 1.10 1.24 1.19 1.21 1.14 Tm 0.22 0.24 0.19 0.27 0.31 MnO 0.10 0.10 0.08 0.11 0.11 Yb 1.74 1.83 1.41 1.97 2.27 MgO 0.28 0.10 0.20 0.11 0.10 Lu 0.33 0.36 0.28 0.37 0.43 CaO 0.53 0.38 0.42 0.36 0.40 Y 9.07 9.51 7.34 11.6 13.8 Na2O 7.02 7.11 7.16 7.15 7.16 Rb 100.2 87.9 81.0 98.5 98.1 K2O 5.51 5.66 5.39 5.61 5.39 Ba 87.1 94.2 93.5 105.2 116.6 P2O5 0.07 0.03 0.04 0.03 0.04 Th 4.38 5.24 3.37 5.02 5.9 La 10.2 8.62 6.18 10.4 11.9 U 0.52 0.5 0.43 0.55 0.59 Ce 18.7 16.1 11.9 17.0 18.6 Nb 28.8 22.4 21.3 25.1 23.8 Pr 2.44 2.39 1.65 2.49 2.86 Ta 10.0 9.7 9.57 9.84 9.74 Nd 8.09 8.17 5.52 8.23 9.45 Hf 7.57 6.03 5.48 6.39 5.76 Sm 1.34 1.50 0.94 1.41 1.65 Sr 11.2 15.7 16.3 15.8 16.4 Eu 0.18 0.21 0.14 0.20 0.23 Zr 317.7 230.3 233.6 283.8 266.5 Gd 1.34 1.38 0.93 1.37 1.63 A/CNK 0.87 0.85 0.88 0.86 0.87 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6;主量元素原始分析数据首先按11项氧化物进行标准化,然后按里特曼法进行了全铁调整;A/CNK=Al2O3/(CaO+Na2O+K2O) 表 2 碱闪霓石正长岩(D0121)LA-ICP-MS锆石U-Th-Pb年龄
Table 2. LA-ICP-MS zircon U-Th-Pb age data of alkali hornblende-aegirite syenite (D0121)
测点号 元素含量/10-6 同位素比值 U-Pb年龄/Ma 谐和度 Th/U 采用年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 191.4 183.4 0.049 0.0013 0.2808 0.0084 0.0416 0.0008 150 65 251 7 263 5 95% 1 263 2 174.8 485 0.0709 0.001 1.6719 0.0311 0.1708 0.0026 954 30 998 12 1016 14 98% 0.4 1016 3 54.9 302.4 0.0711 0.0008 1.6647 0.0262 0.1695 0.0022 961 8 995 10 1009 12 98% 0.2 1009 4 36.6 60.2 0.0712 0.0017 1.7152 0.0397 0.1755 0.003 963 44 1014 15 1043 16 97% 0.6 1043 5 54.3 248.3 0.0716 0.0009 1.7204 0.0302 0.1741 0.0026 973 25 1016 11 1035 14 98% 0.2 1035 6 205.4 446.2 0.0724 0.0018 1.6908 0.0478 0.1687 0.0026 998 54 1005 18 1005 14 99% 0.5 1005 7 109.8 428.2 0.0727 0.0009 1.688 0.0329 0.168 0.0025 1006 21 1004 12 1001 14 99% 0.3 1001 8 315.8 515.4 0.0728 0.0012 1.7908 0.0392 0.1782 0.0032 1009 33 1042 14 1057 18 98% 0.6 1057 9 124.7 363.5 0.0725 0.0009 1.7067 0.0342 0.1707 0.0028 1011 27 1011 13 1016 16 99% 0.3 1016 10 248.4 650.5 0.0731 0.0009 1.6514 0.0304 0.1629 0.0022 1017 25 990 12 973 12 98% 0.4 973 11 62.7 207.3 0.0736 0.0011 1.7945 0.0421 0.1761 0.0033 1031 31 1043 15 1046 18 99% 0.3 1046 12 190.7 549.6 0.0738 0.0008 1.7082 0.0275 0.1674 0.0022 1035 22 1012 10 998 12 98% 0.3 998 13 101.7 623.3 0.0744 0.001 1.699 0.0304 0.1654 0.0025 1054 24 1008 11 987 14 97% 0.2 987 14 53.2 80.2 0.0747 0.0018 1.7521 0.0426 0.1694 0.0028 1059 47 1028 16 1009 15 98% 0.7 1009 15 57.6 100.8 0.0748 0.0013 1.7566 0.0363 0.1701 0.0027 1065 34 1030 13 1013 15 98% 0.6 1013 16 39.9 103.6 0.0758 0.0017 1.7906 0.0461 0.1711 0.003 1100 51 1042 17 1018 16 97% 0.4 1018 17 125.9 730.6 0.0765 0.0011 1.7272 0.0277 0.1637 0.0022 1107 32 1019 10 977 12 95% 0.2 977 18 296.7 485.3 0.0765 0.0014 1.4131 0.0355 0.1336 0.0026 1109 37 894 15 809 15 89% 0.6 809 19 413.8 919.7 0.078 0.0009 1.8042 0.0313 0.1671 0.0023 1147 23 1047 11 996 13 95% 0.4 996 20 261.7 1214.2 0.0787 0.0012 1.8197 0.0433 0.1668 0.003 1165 31 1053 16 994 17 94% 0.2 994 21 910.1 768 0.0794 0.0011 1.8883 0.0309 0.1723 0.0023 1183 28 1077 11 1025 12 95% 1.2 1025 22 162.9 340.9 0.0806 0.0014 1.6238 0.0412 0.1475 0.0041 1211 40 979 16 887 23 90% 0.5 887 23 259.9 539 0.0821 0.0018 1.8172 0.0682 0.16 0.0046 1250 47 1052 25 957 26 90% 0.5 957 24 791.8 1407.4 0.0841 0.001 1.9624 0.0329 0.1688 0.0027 1294 23 1103 11 1005 15 90% 0.6 1005 25 76.9 134.3 0.0895 0.0014 2.7851 0.0935 0.2245 0.0068 1417 30 1352 25 1306 36 96% 0.6 1417 26 201.7 268.3 0.0977 0.0013 3.1119 0.0582 0.2302 0.0039 1583 20 1436 14 1336 20 92% 0.8 1583 27 305.1 451 0.1005 0.0012 3.5897 0.0691 0.258 0.0039 1633 22 1547 15 1480 20 95% 0.7 1633 28 236 403.4 0.1017 0.0018 3.7442 0.0857 0.2665 0.0047 1655 27 1581 18 1523 24 96% 0.6 1655 29 311.9 419.9 0.1072 0.0013 4.5104 0.0758 0.3045 0.0043 1752 21 1733 14 1713 21 98% 0.7 1752 30 110 414.8 0.1127 0.0012 4.8624 0.0793 0.3116 0.0044 1843 19 1796 14 1749 22 97% 0.3 1843 31 266.3 1038.3 0.1405 0.0019 8.2983 0.1683 0.427 0.0072 2235 24 2264 18 2292 33 98% 0.3 2235 32 159.4 889.9 0.1472 0.0016 8.5598 0.1293 0.4207 0.0057 2313 19 2292 14 2264 26 98% 0.2 2313 33 177.2 519.2 0.1497 0.0019 9.0821 0.1805 0.4381 0.0063 2343 22 2346 18 2342 28 99% 0.3 2343 34 38.3 97.3 0.1829 0.0019 12.9887 0.2095 0.5134 0.0076 2679 18 2679 15 2671 32 99% 0.4 2679 -
[1] 裴先治, 李佐臣, 丁仨平, 等. 扬子地块西北缘轿子顶新元古代过铝质花岗岩锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义[J]. 地学前缘, 2009, 6(3): 232-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903026.htm
[2] 刘树文, 闫全人, 李秋根, 等. 扬子克拉通西缘康定杂岩中花岗质岩石的成因及其构造意义[J]. 岩石学报, 2009, 25(8): 1883-1896. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908015.htm
[3] 李献华, 周汉文, 李正祥, 等. 扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征[J]. 地球化学, 2001, 30(4): 315-322. doi: 10.3321/j.issn:0379-1726.2001.04.003
[4] 李献华, 王选策, 李武显, 等. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷[J]. 地球化学, 2008, 37(4): 382-399. doi: 10.3321/j.issn:0379-1726.2008.04.012
[5] 黎彤, 袁怀雨, 吴胜昔. 中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J]. 大地构造与成矿学, 1998, 22(1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199801004.htm
[6] 凌文黎, 高山, 程建萍, 等. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩LA ICPMS锆石U-Pb同位素年代学的约束[J]. 岩石学报, 2006, 22(2): 387-397. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602011.htm
[7] 王生伟, 廖震文, 孙晓明, 等. 会东菜园子花岗岩的年龄、地球化学——扬子地台西缘格林威尔造山运动的机制探讨[J]. 地质学报, 2013, 87(1): 54-70. doi: 10.3969/j.issn.1006-0995.2013.01.014
[8] 姜勇彪, 张世红, 吴怀春, 等. 华南地块西南缘格林威尔期区域构造解析[J]. 大地构造与成矿学, 2006, 30(2): 127-135. doi: 10.3969/j.issn.1001-1552.2006.02.001
[9] 王梦玺, 王焰, 赵红军. 扬子板块北缘周庵超镁铁质岩体锆石U-Pb年龄和Hf-O同位素特征: 对源区性质和Rodinia超大陆裂解时限的约束[J]. 科学通报, 2012, 57(34): 3283-3294. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201234009.htm
[10] 颜丹平, 周美夫, 宋鸿林, 等. 华南在Rodinia古陆中位置的讨论——扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比[J]. 地学前缘, 2002, 9(4): 249-256. doi: 10.3321/j.issn:1005-2321.2002.04.004
[11] 朱维光, 刘秉光, 邓海琳, 等. 扬子地块西缘新元古代镁铁-超镁铁质岩研究进展[J]. 矿物岩石地球化学通报, 2004, 23(3): 255-264. doi: 10.3969/j.issn.1007-2802.2004.03.013
[12] 杜利林, 耿元生, 杨崇辉, 等. 扬子地台西缘新元古代TTG的厘定及其意义[J]. 岩石矿物学杂志, 2006, 25(4): 273-281. doi: 10.3969/j.issn.1000-6524.2006.04.002
[13] 李鹏春, 陈广浩, 许德如, 等. 湘东北新元古代过铝质花岗岩的岩石地球化学特征及其成因讨论[J]. 大地构造与成矿学, 2007, 31(1): 126-136. doi: 10.3969/j.issn.1001-1552.2007.01.015
[14] 赵凤清, 赵文平, 左义成, 等. 陕西汉中地区新元古代岩浆岩U-Pb年代学[J]. 地质通报, 2006, 25(3): 383-389. doi: 10.3969/j.issn.1671-2552.2006.03.007 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20060361&flag=1
[15] Hu Z C, Liu Y S, Gao S, et al. A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 78: 50-57. doi: 10.1016/j.sab.2012.09.007
[16] 刘军平, 胡绍斌, 李静, 等. 滇西云县地区团梁子岩组变质岩锆石U-Pb定年及其构造意义[J]. 地质通报, 2018, 37(11): 2079-2086. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181114&flag=1
[17] Ludwig K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkelery: Ber keley Geochronology Center, California, 2003. http://www.researchgate.net/publication/313569312_Isoplot_300_A_Geochronological_Toolkit_for_Microsoft_Excel_Berkeley
[18] 王海然, 赵红格, 乔建新, 等. 锆石U-Pb同位素测年原理及应用[J]. 地质与资源, 2013, 22(3): 229-242. doi: 10.3969/j.issn.1671-1947.2013.03.012
[19] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[20] Richwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5
[21] Sun S S, McDonough W F. Chemical and isotope systematicas of oceanic basalts: implic-ations for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42: 313-345.
[22] 李静, 刘桂春, 刘军平, 等. 滇中地区早前寒武纪地质研究进展[J]. 地质通报, 2018, 37(11): 1957-1969. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181101&flag=1
[23] 刘军平, 曾文涛, 徐云飞, 等. 滇中易门地区约1.85Ga凝灰岩的厘定及其地质意义[J]. 地质通报, 2018, 37(11): 2055-2062. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181111&flag=1
[24] 刘军平, 王小虎, 关学卿, 等. Columbia超大陆汇聚在扬子陆块西南缘的响应——来自热液石英脉锆石U-Pb年龄的证据[J]. 中国地质, 2021, 48(5): 1653-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202105026.htm
[25] 刘军平, 李静, 孙柏东, 等. 滇中易门地区发现化石新物种[J]. 沉积与特提斯地质, 2018, 38(1): 37-40. doi: 10.3969/j.issn.1009-3850.2018.01.004
[26] 李静, 刘军平, 孙柏东, 等. 滇中易门地区古元古界易门群亮山组多细胞生物的年代学约束[J]. 地质通报, 2018, 37(11): 2087-2098. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181115&flag=1
[27] 刘军平, 曾文涛, 孙柏东, 等. 云南峨山地区东川群黑山组流纹质碎斑熔岩锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 2018, 38(3): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201803011.htm
[28] 刘军平, 夏彩香, 孙柏东, 等. 滇中易门地区新元古代澄江组凝灰岩锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 2019, 39(1): 14-21. doi: 10.3969/j.issn.1009-3850.2019.01.002
[29] 刘军平, 李静, 王根厚, 等. 扬子板块西南缘基性侵入岩锆石定年及地球化学特征——Columbia超级大陆裂解的响应[J]. 地质论评, 2020, 66(2): 350-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002009.htm
[30] 刘军平, 孙柏东, 王晓峰, 等. 滇中禄丰地区中元古代早期球颗玄武岩的锆石U-Pb年龄、地球化学特征及其大地构造意义[J]. 地质论评, 2020, 66(1): 35-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202001004.htm
[31] 陆松年, 杨春亮, 李怀坤, 等. 华北古大陆与哥伦比亚超大陆[J]. 地学前缘, 2002, 9(9): 226-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200204001.htm
[32] 刘军平, 孙柏东, 崔晓庄, 等. 云南安宁地区石虎山花岗岩年代学、地球化学特征和锆石Hf同位素组成及其成因[J]. 中国地质, 2020, 47(3): 693-708. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003011.htm
[33] 包志伟, 王强, 白国典, 等. 东秦岭方城新元古代碱性正长岩形成时代及其动力学意义[J]. 科学通报, 2008, 53(6): 684-694. doi: 10.3321/j.issn:0023-074X.2008.06.012
[34] Chen Z, Lu S, Li H, et al. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences[J]. J Asian Earth Sci., 2006, 28: 99-115. doi: 10.1016/j.jseaes.2005.03.011
[35] 卢欣祥, 董有, 尉向东, 等. 东秦岭吐雾山A型花岗岩的时代及其构造意义[J]. 科学通报, 1999, 44(9): 975-978. doi: 10.3321/j.issn:0023-074X.1999.09.018
[36] 王德滋, 赵广涛, 邱检生. 中国东部晚中生代A型花岗岩的构造制约[J]. 高校地质学报, 1995, 1(2): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX502.001.htm
[37] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 231(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
[38] Mao H W, Hu Q Y, Yang L X, et al. When water meets iron at Earth's core-mantle boundary[J]. National Science Review, 2017, 4: 870-878. doi: 10.1093/nsr/nwx109
[39] 刘军平, 熊波, 李静, 等. 扬子西缘东川落雪地区元古宙地层中3890Ma锆石的发现[J]. 地质学报, 2021, 95(5): 1606-1613. doi: 10.3969/j.issn.0001-5717.2021.05.021
[40] 刘军平, 王晓峰, 王小虎, 等. 滇中甸中地区中二叠世晚期镁铁-超镁铁质岩体特征及其与峨眉地幔柱关系——来自锆石U-Pb年龄及岩石地球化学证据[J]. 地质论评, 2020, 66(5): 1284-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005019.htm
[41] 任光明, 庞维华, 潘桂棠, 等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报, 2017, 36(11): 2061-2075. doi: 10.3969/j.issn.1671-2552.2017.11.016 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20171116&flag=1
[42] 刘军平, 宛胜, 李静, 等. 滇中易门地区古元古界易门群罗洼垤组火山岩锆石U-Pb年龄及其构造热事件[J]. 地质通报, 2021, 40(7): 1024-1032. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210702&flag=1
[43] 陈海福, 何书跃, 张爱奎, 等. 东昆仑卡尔却卡地区中志留世A型花岗岩岩石成因及构造环境[J]. 地质通报, 2021, 40(8): 1380-1393. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210814&flag=1
① 云南省地质调查院. 云南1: 5万二街、易门县等4幅区域地质调查报告. 2019.
② 云南省地质调查院. 《云南省区域地质志》(第二版, 修测). 2019.
③ 云南省地质调查院. 云南1: 5万州城、米甸街等4幅区域地质调查报告. 2016.
④ 云南省地质矿产勘查开发局. 云南1: 5万杨武幅、落水洞幅区域地质调查报告. 1998.
⑤ 云南省地质调查院. 云南1: 5万下拉古、环州村等5幅区域地质调查报告. 2014.
⑥ 云南省地质矿产局. 云南1: 5万塔甸幅、化念农场幅区域地质调查报告. 1990.
-