-
摘要:
气-水相对渗透率是天然气水合物现场试采的关键参数。如何测量和评估储层相对渗透率是提高产气效率、实现天然气水合物产业化需要解决的基础问题。从含水合物沉积物相对渗透率的实验测试、数值模拟和模型建立3个方面,总结了含水合物沉积物相对渗透率的研究进展,研究发现,现有含水合物沉积物实验测试大多采用非稳态法,相对渗透率曲线图显示:在同一含水饱和度下,水合物饱和度越大,水的相对渗透率越小,气的相对渗透率变化规律较为复杂;水合物饱和度的变化改变了沉积物的孔隙空间结构,进而影响气-水相对渗透率。数值模拟大多利用孔隙网络模型或持水曲线进行相对渗透率计算,探索水合物生长习性、孔隙赋存特征,并揭示颗粒尺寸、水合物饱和度、润湿性、表面张力等不同因素对气-水相对渗透率的影响差异。梳理多种相对渗透率模型,发现新近提出的考虑毛细作用和孔径分布的含水合物介质相对渗透率模型在模拟含水合物沉积物中的多相流以及解释水合物饱和度的变化方面具有优势。建议下一步克服该模型计算成本较高的缺陷,实现含水合物沉积物多相流物理精确建模。
Abstract:Gas-water relative permeability is a key parameter in the trial production of natural gas hydrate. Measurement and evaluation of the parameter of the hydrate reservoir is essential for enhancing gas production efficiency and realizing the industrialization of natural gas hydrate production. This paper provides a review on the research progress in the relative permeability of hydrate-bearing sediments. It is summarized from three aspects, i.e. experimental measurement, numerical simulation, and model establishment. It is found that the unsteady-state method is widely employed in the permeability measurements for hydrate-bearing sediment. The relative permeability curve suggests that higher hydrate saturation will cause lower water relative permeability at a given water saturation, but the variation of gas relative permeability is complicated; the pore-structure of the sediment changes along with the hydrate saturation, which further results in the changes of gas-water relative permeability. Numerical simulation mostly calculates relative permeability with a pore network model or a water retention curve to explore hydrate growth habits and pore-filling characteristics and the effect of various factors such as particle size, hydrate saturation, wettability, and interface tension and their influence on gas-water relative permeability. A newly developed relative permeability model for hydrate-bearing media considering the influences of the capillarity and pore-size distribution (referred to as RPHCP) is introduced in this work, which shows obvious advantages in simulating the multi-phase flow of hydrate-bearing sediments and explaining the changes of hydrate saturation compared to other models. RPHCP model is recommended to overcome the defect of the high cost of computation of RPHCP model to achieve precise modeling of multiphase flow in hydrate-bearing sediments.
-
图 2 气-水相对渗透率随水合物饱和度变化关系[59]
Figure 2.
图 3 不同水合物饱和度下气-水相对渗透率[60]
Figure 3.
图 4 水合物分解前后的相对渗透率变化[61]
Figure 4.
图 5 含水合物沉积物与不含水合物沉积物相对渗透率对比[54]
Figure 5.
图 6 基于van Genuchten模型的相对渗透率曲线[83]
Figure 6.
图 7 不同水合物生长模式和不同水合物饱和度下的相对渗透率曲线[72]
Figure 7.
图 8 通过PNM计算的含水合物白云石砂岩中的气-水两相相对渗透率曲线[95]
Figure 8.
图 9 不同粒径下的气-水两相相对渗透率[106]
Figure 9.
图 10 不同原始粒径下的相对渗透率曲线[107]
Figure 10.
图 11 不同润湿性条件下石英砂水合物多孔介质气-水相对渗透率曲线[110]
Figure 11.
图 12 不同表面张力下的气-水相对渗透率[111]
Figure 12.
表 1 相对渗透率模型
Table 1. Relative permeability models
模型 模型形式 模型参数 描述 优缺点 SINGH 等[89] kri为气体或水的相对渗透率,kpm是水合物饱和度为Sh时沉积物的绝对渗透率,βi与ηi为经验参数 考虑毛管力对气水两相渗流的影响, 引入了4 个经验参数(气、水各2个参数) 这4 个参数只需要根据任一给定的水合物饱和度下的实验参数拟合求取一次,便可在其他水合物饱和度下预测含水合物沉积物气-水渗透率 SINGH等[113] krw、krg、Sw、Pc分别是水的相对渗透率、气体相对渗透率、水的饱和度和毛细管压力 基于Purcell方程,提出的一种利用毛细管压力数据推断岩石渗透率的方法 可用于估算常规储层岩石两相流中水的相对渗透率,但不能用于存在多于两相或水不是润湿相的其他流动问题 LEI等[115] λ是所有水合物生长模式中PF的比例,可通过实验测试确定。参数λ在0(即WC水合物)到1(即PF水合物)的范围内变化 假设水合物均匀分布在多孔介质的圆柱形孔隙中,有两种主要的水合物生长模式,即PF水合物、WC水合物以及两者的组合。考虑了有效应力引起的含水合物沉积物孔隙结构的变化 利用实验渗透率数据,可以使用反演建模来估算孔隙尺度参数和岩石岩性;可作为确定含水合物沉积物剩余水饱和度的替代方法 LIU等[116] 最大直径λmax、面积Df和弯曲度Dt;Df和Dt是分形维数 该模型将孔隙中的水和气视为两束分形毛细管,并考虑了孔隙特征和孔隙尺度水、气分布的物理特性 所提出的模型刻画了水和气体的孔隙尺度分布,并反映了水在石英砂岩表面的亲水性 SINGH等[120] (kri)eff = β为孔隙形状校正系数,(kri)PF和(kri)GC分别为孔隙充填型和颗粒包裹型水合物的相对渗透率 综合考虑孔隙形状、平均孔径、孔隙度、束缚水饱和度、水合物饱和度等岩石特性,气、水饱和度和黏度等流体特性以及水合物生长模式 该模型可以进行相关物理参数对相对渗透率的敏感性分析以及使用反演建模对岩石参数(如孔隙度、孔隙大小和残余水饱和度)进行估算 van GENUCHTEN[82] Sw为含水饱和度,Srw为束缚水饱和度,Srw为残余水饱和度,Swmax为气体相对渗透率开始出现时的含水饱和度,m为孔隙分布指数 最初用于非饱和土壤中的气-水相对渗透率计算 BROOKS和COREY[69] Sw为含水饱和度,Srw为束缚水饱和度,Srg是残余气饱和度,nw和ng分别是水和气渗透率的拟合参数 -
[1] SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature,2003,426(6964):353-359. doi: 10.1038/nature02135
[2] KLEINBERG R L. Exploration strategy for economically significant accumulations of marine gas hydrate[J]. Geological Society,London,Special Publications,2009,319(1):21-28. doi: 10.1144/SP319.3
[3] WAITE W F,SANTAMARINA J C,CORTES D D,et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics,2009,47(4):RG4003.
[4] DEMIRBAS A. Methane hydrates as potential energy resource:Part 2 – methane production processes from gas hydrates[J]. Energy Conversion and Management,2010,51(7):1562-1571. doi: 10.1016/j.enconman.2010.02.014
[5] GABITTO J F,TSOURIS C. Physical properties of gas hydrates:a review[J]. Journal of Thermodynamics,2010,2010:1-12.
[6] BOSWELL R,YONEDA J,WAITE W F. India National Gas Hydrate Program Expedition 02 summary of scientific results:evaluation of natural gas-hydrate-bearing pressure cores[J]. Marine and Petroleum Geology,2019,108:143-153. doi: 10.1016/j.marpetgeo.2018.10.020
[7] YOO D G,KANG N K,YI B Y,et al. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin,East Sea[J]. Marine and Petroleum Geology,2013,47:236-247. doi: 10.1016/j.marpetgeo.2013.07.001
[8] SONG Y C,YANG L,ZHAO J F,et al. The status of natural gas hydrate research in China:a review[J]. Renewable and Sustainable Energy Reviews,2014,31:778-791. doi: 10.1016/j.rser.2013.12.025
[9] YONEDA J,MASUI A,KONNO Y,et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine and Petroleum Geology,2015,66:471-486. doi: 10.1016/j.marpetgeo.2015.02.029
[10] KURIHARA M, SATO A, FUNATSU K, et al. Analysis of Production Data for 2007/2008 Mallik gas hydrate production tests in Canada[C]//Society of Petroleum Engineers, Beijing: 2010.
[11] HUNTER R B,COLLETT T S,BOSWELL R,et al. Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope:overview of scientific and technical program[J]. Marine and Petroleum Geology,2011,28(2):295-310. doi: 10.1016/j.marpetgeo.2010.02.015
[12] KONNO Y,FUJII T,SATO A,et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan:toward future commercial production[J]. Energy & Fuels,2017,31(3):2607-2616.
[13] YAMAMOTO K,WANG X X,TAMAKI M,et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances,2019,9(45):25987-26013. doi: 10.1039/C9RA00755E
[14] CHEN L,FENG Y C,OKAJIMA J,et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu,South China Sea[J]. Journal of Natural Gas Science and Engineering,2018,53:55-66. doi: 10.1016/j.jngse.2018.02.029
[15] 叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557-568.
[16] 吴能友,李彦龙,万义钊,等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业,2020,40(8):100-115. doi: 10.3787/j.issn.1000-0976.2020.08.008
[17] 何家雄,钟灿鸣,姚永坚,等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿,2020,36(12):1-14.
[18] 陈强,胡高伟,李彦龙,等. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿,2020,36(9):44-55.
[19] 刘昌岭,郝锡荦,孟庆国,等. 气体水合物基础特性研究进展[J]. 海洋地质前沿,2020,36(9):1-10.
[20] 张永超,刘昌岭,吴能友,等. 含水合物沉积物孔隙结构特征与微观渗流模拟研究[J]. 海洋地质前沿,2020,36(9):23-33.
[21] 王屹,李小森. 天然气水合物开采技术研究进展[J]. 新能源进展,2013,1(1):69-79. doi: 10.3969/j.issn.2095-560X.2013.01.007
[22] 王文博,崔伟,肖加奇. 天然气水合物降压开采中渗透率对低压传递的影响[J]. 节能,2019,38(12):96-101.
[23] WAN Y Z,WU N Y,HU G W,et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China Sea[J]. Natural Gas Industry B,2018,5(6):631-643. doi: 10.1016/j.ngib.2018.11.012
[24] LI Y L,LIU L L,JIN Y R,et al. Characterization and development of marine natural gas hydrate reservoirs in Clayey-silt sediments:a review and discussion[J]. Advances in Geo-Energy Research,2021,5(1):75-86. doi: 10.46690/ager.2021.01.08
[25] SUN Y H,LU H F,LU C,et al. Hydrate dissociation induced by gas diffusion from pore water to drilling fluid in a cold wellbore[J]. Advances in Geo-Energy Research,2018,2(4):410-417. doi: 10.26804/ager.2018.04.06
[26] 蔡建超,夏宇轩,徐赛,等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报,2020,52(1):208-223.
[27] 肖罗坤,董艳辉,李守定,等. 孔隙介质中天然气水合物相变过程的影响因素研究进展[J]. 工程地质学报,2021,29(1):183-196.
[28] 曾家明,李栋梁,梁德青,等. 天然气水合物储层渗透率研究进展[J]. 新能源进展,2021,9(1):25-34.
[29] 刘永革, 侯健, 夏志增, 等. 一种不同水合物饱和度状态下气水相对渗透率的单向流动测定方法[P]. 2016–05–04.
[30] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展,2012,27(7):733-746.
[31] 孙可明,翟诚,辛利伟,等. 不同饱和度水合物沉积物的三轴加载渗透率试验[J]. 天然气工业,2017,37(12):61-67. doi: 10.3787/j.issn.1000-0976.2017.12.009
[32] 刘乐乐,张宏源,刘昌岭,等. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用[J]. 海洋地质与第四纪地质,2017,37(5):159-165.
[33] 张永超,刘昌岭,刘乐乐,等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质,2021,41(3):193-202.
[34] 李承峰,刘乐乐,孙建业,等. 基于数字岩心的含水合物石英砂微观渗流有限元分析[J]. 海洋地质前沿,2020,36(9):68-72.
[35] LAI J,WANG G W,WANG Z Y,et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews,2018,177:436-457. doi: 10.1016/j.earscirev.2017.12.003
[36] REN X W,ZHAO Y,DENG Q L,et al. A relation of hydraulic conductivity : void ratio for soils based on Kozeny-Carman equation[J]. Engineering Geology,2016,213:89-97. doi: 10.1016/j.enggeo.2016.08.017
[37] REN X W,SANTAMARINA J C. The hydraulic conductivity of sediments:a pore size Perspective[J]. Engineering Geology,2018,233:48-54. doi: 10.1016/j.enggeo.2017.11.022
[38] MINAGAWA H, NISHIKAWA Y, IKEDA I, et al. Measurement of methane hydrate sediment permeability using several chemical solutions as Inhibitors[C]//International Society of Offshore and Polar Engineers (ISOPE), Lisbon: 2007.
[39] MORIDIS G J, KOWALSKY M B, PRUESS K. TOUGH+Hydrate v1.0 user’s manual: a code for the simulation of system behavior in hydrate-bearing geologic media: LBNL-149E, 927149[C]//Lawrence Berkeley National Laboratory, California: 2008: LBNL-149E, 927149.
[40] KNEAFSEY T J,SEOL Y,GUPTA A,et al. Permeability of Laboratory-formed methane-hydrate-bearing sand:Measurements and observations using X-ray computed Tomography[J]. SPE Journal,2011,16(1):78-94. doi: 10.2118/139525-PA
[41] LI C H,ZHAO Q,XU H J,et al. Relation between relative permeability and hydrate saturation in Shenhu area,South China Sea[J]. Applied Geophysics,2014,11(2):207-214. doi: 10.1007/s11770-014-0432-6
[42] DELLI M L. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering,2014,120:1-9. doi: 10.1016/j.petrol.2014.05.011
[43] DAIGLE H. Relative permeability to water or gas in the presence of hydrates in porous media from critical path analysis[J]. Journal of Petroleum Science and Engineering,2016,146:526-535. doi: 10.1016/j.petrol.2016.07.011
[44] JIN Y R,YANG D Y,LI S X,et al. Hydrate dissociation conditioned to depressurization below the quadruple point and salinity addition[J]. Fuel,2019,255:115758. doi: 10.1016/j.fuel.2019.115758
[45] SHEN P F,LI G,LI B,et al. Permeability measurement and discovery of dissociation process of hydrate sediments[J]. Journal of Natural Gas Science and Engineering,2020,75:103155. doi: 10.1016/j.jngse.2020.103155
[46] JI Y K, HOU J, ZHAO E M, et al. Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low‐field NMR technique[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2):1–17.
[47] SHEN P F,LI G,LI B,et al. Coupling effect of porosity and hydrate saturation on the permeability of methane Hydrate-bearing sediments[J]. Fuel,2020,269:117425. doi: 10.1016/j.fuel.2020.117425
[48] KANG D J,LU J A,ZHANG Z J,et al. Fine-grained gas hydrate reservoir properties estimated from well logs and lab measurements at the Shenhu gas hydrate production test site,the northern slope of the South China Sea[J]. Marine and Petroleum Geology,2020,122:104676. doi: 10.1016/j.marpetgeo.2020.104676
[49] MURPHY Z W, DICARLO D A, FLEMINGS P B, et al. Hydrate is a nonwetting phase in porous media[J]. Geophysical Research Letters, 2020, 47(16):e2020GL089289.
[50] LI G,XU Z L,LI X S,et al. Permeability investigation and hydrate migration of hydrate–bearing silty sands and silt[J]. Journal of Natural Gas Science and Engineering,2021,89:103891. doi: 10.1016/j.jngse.2021.103891
[51] SEOL Y,KNEAFSEY T J. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media[J]. Journal of Geophysical Research,2011,116(B8):B08102.
[52] PAN L L, LEI L, SEOL Y. Pore-scale influence of methane hydrate on permeability of porous media[R]. Geophysics, 2020.
[53] ZHAO Q,DUNN K J,LIU X W. A simulation study of formation permeability as a function of methane hydrate concentration[J]. Applied Geophysics,2011,8(2):101-109. doi: 10.1007/s11770-011-0283-3
[54] CHOI J H,MYSHAKIN E M,LEI L,et al. An experimental system and procedure of Unsteady-state relative permeability test for gas hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2020,83:103545. doi: 10.1016/j.jngse.2020.103545
[55] BUCKLEY S E,LEVERETT M C. Mechanism of fluid displacement in sands[J]. Transactions of the AIME,1942,146(1):107-116. doi: 10.2118/942107-G
[56] JOHNSON E F,BOSSLER D P,BOSSLER V O N. Calculation of relative permeability from displacement experiments[J]. Transactions of the AIME,1959,216(1):370-372. doi: 10.2118/1023-G
[57] JONES S C,ROSZELLE W O. Graphical techniques for determining relative permeability from displacement experiments[J]. Journal of Petroleum Technology,1978,30(5):807-817. doi: 10.2118/6045-PA
[58] TOTH J, BODI T, SZUCS P, et al. Convenient formulae for determination of relative permeability from unsteady-state fluid displacements in core plugs[J]. Journal of Petroleum Science and Engineering, 2002, 36(1/2): 33–44.
[59] JOHNSON A,PATIL S,DANDEKAR A. Experimental investigation of Gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28(2):419-426. doi: 10.1016/j.marpetgeo.2009.10.013
[60] AHN T,LEE J,HUH D G,et al. Experimental study on Two-phase flow in artificial hydrate-bearing sediments[J]. Geosystem Engineering,2005,8(4):101-104. doi: 10.1080/12269328.2005.10541244
[61] XUE K H,YANG L,ZHAO J F,et al. The study of flow characteristics during the decomposition process in Hydrate-bearing porous media using magnetic resonance imaging[J]. Energies,2019,12(9):1736. doi: 10.3390/en12091736
[62] TOTH J,BODI T,SZUCS P,et al. Practical method for analysis of immiscible displacement in laboratory core tests[J]. Transport in Porous Media,1998,31(3):347-363. doi: 10.1023/A:1006570117639
[63] ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research,2001,37(2):265-271. doi: 10.1029/2000WR900254
[64] CAMPBELL G S. A simple method for determining unsaturated conductivity from moisture retention data[J]. Soil Science,1974,117(6):311-314. doi: 10.1097/00010694-197406000-00001
[65] FISCHER U,CELIA M A. Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a Pore-scale network model[J]. Water Resources Research,1999,35(4):1089-1100. doi: 10.1029/1998WR900048
[66] MUALEM Y. Hydraulic conductivity of unsaturated soils: prediction and formulas[M]//KLUTE A, ed. //SSSA Book Series. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy, 2018: 799–823.
[67] VOGEL T,CISLEROVA M. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve[J]. Transport in Porous Media,1988,3(1):1-15. doi: 10.1007/BF00222683
[68] PARKER J C,LENHARD R J,KUPPUSAMY T. A parametric model for constitutive properties governing multiphase flow in porous media[J]. Water Resources Research,1987,23(4):618-624. doi: 10.1029/WR023i004p00618
[69] BROOKS R H, COREY A T. Hydraulic properties of porous media and their relation to drainage design[J]. Transactions of the ASAE,1964,7(1):0026-0028. doi: 10.13031/2013.40684
[70] MAHABADI N,DAI S,SEOL Y,et al. The water retention curve and relative permeability for gas production from hydrate‐bearing sediments:pore‐network model simulation[J]. Geochemistry Geophysics Geosystems,2016,17(8):3099-3110. doi: 10.1002/2016GC006372
[71] LIU L L,ZHANG Z,LI C F,et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic,mechanical,and electrical properties of hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2020,75:103109. doi: 10.1016/j.jngse.2019.103109
[72] LI G Y, ZHAN L T, YUN T, et al. Pore-scale controls on the gas and water transport in hydrate-bearing sediments[J]. Geophysical Research Letters, 2020, 47(12): e2020GL086990.
[73] STONE H L. Probability model for estimating Three-phase relative permeability[J]. Journal of Petroleum Technology,1970,22(2):214-218. doi: 10.2118/2116-PA
[74] FREDLUND D G,XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(6):1026-1026. doi: 10.1139/t94-120
[75] MORIDIS G J, REAGAN M T. Strategies for gas production from oceanic class 3 hydrate accumulations[C]//All Days. Houston, Texas: OTC, 2007: OTC-18865-MS.
[76] ANDERSON B J,KURIHARA M,WHITE M D,et al. Regional long-term production modeling from a single well test,Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28(2):493-501. doi: 10.1016/j.marpetgeo.2010.01.015
[77] GAMWO I K,LIU Y. Mathematical modeling and numerical simulation of methane production in a hydrate reservoir[J]. Industrial & Engineering Chemistry Research,2010,49(11):5231-5245.
[78] HONG H,POOLADI DARVISH M. Simulation of depressurization for gas production from gas hydrate reservoirs[J]. Journal of Canadian Petroleum Technology,2005,44(11):39-46.
[79] MORIDIS G J,SLOAN E D. Gas production potential of disperse Low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management,2007,48(6):1834-1849. doi: 10.1016/j.enconman.2007.01.023
[80] REAGAN M T,MORIDIS G J. Dynamic response of oceanic hydrate deposits to ocean temperature change[J]. Journal of Geophysical Research:Oceans,2008,113(C12):C12023.
[81] RUTQVIST J, MORIDIS G J. Numerical studies on the geomechanical stability of hydrate-bearing sediments[C]//All Days. Houston, Texas: OTC, 2007: OTC-18860-MS.
[82] VAN GENUCHTEN M Th. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898. doi: 10.2136/sssaj1980.03615995004400050002x
[83] DAI S,KIM J,XU Y,et al. Permeability anisotropy and relative permeability in sediments from the National Gas Hydrate Program Expedition 02,offshore India[J]. Marine and Petroleum Geology,2019,108:705-713. doi: 10.1016/j.marpetgeo.2018.08.016
[84] GUPTA S,HELMIG R,WOHLMUTH B. Non-isothermal,multi-phase,multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences,2015,19(5):1063-1088. doi: 10.1007/s10596-015-9520-9
[85] KONNO Y,MASUDA Y,AKAMINE K,et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization Method[J]. Energy Conversion and Management,2016,108:439-445. doi: 10.1016/j.enconman.2015.11.030
[86] KONNO Y,OYAMA H,NAGAO J,et al. Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough,Japan[J]. Energy & Fuels,2010,24(12):6353-6358.
[87] MYSHAKIN E M,SEOL Y,LIN J-S,et al. Numerical simulations of Depressurization-induced gas production from an interbedded turbidite gas hydrate-bearing sedimentary section in the offshore India:Site NGHP-02-16 (Area-B)[J]. Marine and Petroleum Geology,2019,108:619-638. doi: 10.1016/j.marpetgeo.2018.10.047
[88] RUAN X K,SONG Y C,LIANG H F,et al. Numerical simulation of the gas production behavior of hydrate dissociation by depressurization in Hydrate-bearing porous medium[J]. Energy & Fuels,2012,26(3):1681-1694.
[89] SINGH H,MAHABADI N,MYSHAKIN E M,et al. A mechanistic model for relative permeability of gas and water flow in hydrate‐bearing porous media with capillarity[J]. Water Resources Research,2019,55(4):3414-3432. doi: 10.1029/2018WR024278
[90] FATT I. The network model of porous media[J]. Transactions of the AIME,1956,207(01):144-181. doi: 10.2118/574-G
[91] BLUNT M J. Multiphase flow in permeable media: a pore-scale perspective[M]. Cambridge, United Kingdom ; New York, NY: Cambridge University Press, 2017.
[92] LINDQUIST W B,LEE S-M,COKER D A,et al. Medial axis analysis of void structure in Three-dimensional tomographic images of porous media[J]. Journal of Geophysical Research:Solid Earth,1996,101(B4):8297-8310. doi: 10.1029/95JB03039
[93] SILIN D B, JIN G, PATZEK T W. Robust Determination of the pore space morphology in sedimentary rocks[C]//All Days. Denver, Colorado: SPE, 2003: SPE-84296-MS.
[94] ALKHARUSI A S,BLUNT M J. Network extraction from sandstone and carbonate pore space Images[J]. Journal of Petroleum Science and Engineering,2007,56(4):219-231. doi: 10.1016/j.petrol.2006.09.003
[95] YANG M J,SUN H R,CHEN B B,et al. Effects of Water-gas two-phase flow on methane hydrate dissociation in porous media[J]. Fuel,2019,255:115637. doi: 10.1016/j.fuel.2019.115637
[96] LI M,GUO Y H,LI Z F,et al. Pore-throat combination types and gas-water relative permeability responses of tight gas sandstone reservoirs in the Zizhou area of East Ordos Basin,China[J]. Acta Geologica Sinica-English Edition,2019,93(3):622-636. doi: 10.1111/1755-6724.13872
[97] YANG H J,BALHOFF M T. Pore-network modeling of particle retention in porous Media[J]. AIChE Journal,2017,63(7):3118-3131. doi: 10.1002/aic.15593
[98] CAI J C,XIA Y X,LU C,et al. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology,2020,115:104282. doi: 10.1016/j.marpetgeo.2020.104282
[99] 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 第1 版. 北京: 化学工业出版社, 2008.
[100] YANG L,AI L,XUE K H,et al. Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT Observation[J]. Energy,2018,163:27-37. doi: 10.1016/j.energy.2018.08.100
[101] VALVATNE P H, PIRI M, LOPEZ X, et al. Predictive Pore-scale modeling of single and multiphase flow[J]. Transport in Porous Media, 2005, 58(1/2): 23–41.
[102] ZHANG L X,GE K,WANG J Q,et al. Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT[J]. Marine and Petroleum Geology,2020,113:104157. doi: 10.1016/j.marpetgeo.2019.104157
[103] WANG D G,WANG C C,LI C F,et al. Effect of gas hydrate formation and decomposition on flow properties of Fine-grained quartz sand sediments using X-ray CT based pore network model simulation[J]. FUEL,2018,226(1):516-526.
[104] WANG J Q,ZHAO J F,YANG M J,et al. Permeability of Laboratory-formed porous media containing methane hydrate:observations using X-ray computed tomography and simulations with pore network models[J]. Fuel,2015,145:170-179. doi: 10.1016/j.fuel.2014.12.079
[105] MAHABADI N,JANG J. Relative water and gas permeability for gas production from Hydrate-bearing sediments[J]. Geochemistry,Geophysics,Geosystems,2014,15(6):2346-2353.
[106] WANG J Q,ZHAO J F,ZHANG Y. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT[J]. Fuel,2016,163(1):34-40.
[107] WANG Y S,YANG Y F,WANG K,et al. Changes in relative permeability curves for natural gas hydrate decomposition due to particle migration[J]. Journal of Natural Gas Science and Engineering,2020,84:103634. doi: 10.1016/j.jngse.2020.103634
[108] ANDERSON W G. Wettability literature survey—Part 5:The effects of wettability on relative permeability[J]. Journal of Petroleum Technology,1987,39(11):1453-1468. doi: 10.2118/16323-PA
[109] ANDREW M,BIJELJIC B,BLUNT M J. Pore-scale contact angle measurements at reservoir conditions using X-ray Microtomography[J]. Advances in Water Resources,2014,68:24-31. doi: 10.1016/j.advwatres.2014.02.014
[110] WANG J Q,ZHAO J F,ZHANG Y. Analysis of the influence of wettability on permeability in Hydrate-bearing porous media using pore network models combined with computed tomography[J]. Journal of Natural Gas Science and Engineering,2015,26:1372-1379. doi: 10.1016/j.jngse.2015.08.021
[111] WANG J Q,ZHANG L X,ZHAO J F,et al. Variations in permeability along with interfacial tension in Hydrate-bearing porous Media[J]. Journal of Natural Gas Science and Engineering,2018,51:141-146. doi: 10.1016/j.jngse.2017.12.029
[112] MAHABADI N,ZHENG X,JANG J. The effect of hydrate saturation on water retention curves in hydrate‐bearing sediments[J]. Geophysical Research Letters,2016,43(9):4279-4287. doi: 10.1002/2016GL068656
[113] SINGH H,MYSHAKIN E M,SEOL Y. A novel relative permeability model for gas and water flow in Hydrate-bearing sediments with laboratory and field-scale application[J]. Scientific Reports,2020,10(1):5697. doi: 10.1038/s41598-020-62284-5
[114] PURCELL W R. Capillary pressures - their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology,1949,1(2):39-48. doi: 10.2118/949039-G
[115] LEI G,LIAO Q Z,LIN Q L,et al. Stress dependent Gas-water relative permeability in gas hydrates:A theoretical model[J]. Advances in Geo-Energy Research,2020,4(3):326-338. doi: 10.46690/ager.2020.03.10
[116] LIU L L,DAI S,NING F L,et al. Fractal characteristics of unsaturated sands: implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2019,66:11-17. doi: 10.1016/j.jngse.2019.03.019
[117] 刘乐乐,刘昌岭,孟庆国,等. 分形理论在天然气水合物研究领域的应用[J]. 海洋地质前沿,2020,36(9):11-22.
[118] 李世龙,李刚,魏纳,等. 含甲烷水合物的石英砂渗透率实验和分形模型对比研究[J]. 新能源进展,2020,8(4):264-271. doi: 10.3969/j.issn.2095-560X.2020.04.003
[119] 刘乐乐,张准,宁伏龙,等. 含水合物沉积物渗透率分形模型[J]. 中国科学:物理学 力学 天文学,2019,49(3):165-172.
[120] SINGH H,MYSHAKIN E M,SEOL Y. A nonempirical relative permeability model for Hydrate-bearing sediments[J]. SPE Journal,2019,24(2):547-562. doi: 10.2118/193996-PA