-
摘要:
中国北方基岩海岛水文地质条件独特,气候变化和人类活动不同程度地影响着海岛地下水与海水相互作用过程,然而对包括海水入侵(SWI)和海底地下水排泄(SGD)的水文过程的定量认识比较缺乏。本研究基于2012—2016年我国北方某基岩群岛降水、地下水水位、水质动态监测数据,运用数理统计、空间插值和水力学方法,分析了基岩海岛地下水与海水相互作用的特征和影响因素。结果表明,降水和开采是影响地下水、海水相互作用的主要因素,地下水水位变化滞后于降水事件约10 d;南岛东北岸、南岸的大部分地区没有发生海水入侵,地下水向海排泄过程较稳定,2012—2016年SGD速率均值为0.2 m/d,向海NO3-N通量均值为81.8 mmol/(m2·d);北岛东南地区是海水入侵的严重区域,地下水水位长期低于海平面且逐年下降,2012—2016年SWI速率均值为0.3 m/d,向陆NO3-N通量均值为69.6 mmol/(m2·d)。分别计算南、北两岛枯水季(2014年4月)、丰水季(2013年9月)SGD水量,北岛SGD水量为3.5×104~4.5×104 m3/d,南岛SGD水量为0.4×104~1.1×104 m3/d。相关结果可为基岩海岛地下水资源管理和生态环境保护提供重要参考。
-
关键词:
- 基岩海岛 /
- 海水入侵 /
- 地下水向海排泄 /
- 地下水-海水相互作用
Abstract:The hydrogeological settings of bedrock islands in northern China are unique. Climate change and human activities can affect the interaction between groundwater and seawater around the islands to varying degrees, but there is a lack of quantitative understanding of such hydrological processes, including seawater intrusion (SWI) and submarine groundwater discharge (SGD). In this study, we analyzed the precipitation, groundwater levels, and water quality data (2012-2016) for identifying the characteristics and controlling factors of the interaction between groundwater and seawater in bedrock islands by using mathematical statistics, spatial interpolation, and hydraulics methods. The results show that precipitation and groundwater pumping are the main factors affecting the groundwater-seawater interaction. The variations of groundwater levels lag behind the rainfall events by about 10 days. There occurred no SWI in most areas on the northeastern and southern coasts of the South Island, with relative stable marine groundwater discharge. The average SGD velocity was 0.2 m/d, and the average NO3-N flux to the sea was 81.8 mmol/(m2·d). The southeast area of the North Island has been seriously threatened by SWI, and the groundwater levels have been below sea level for a long time and falling year by year. The average SWI rate is 0.3 m/d, and the average NO3-N flux towards the land is 69.6 mmol/(m2·d). The SGD rates of the South and NorthIslands were estimated for dry season (April 2014) and wet season (September 2013), respectively. It was 3.5×104−4.5×104 m3/d for the North Island, and 0.4×104−1.1×104 m3/d for the South Island. The results can provide important reference for coastal groundwater resource management and ecological environment protection in bedrock islands.
-
-
表 1 观测井离最近海岸的距离及水井基本情况
Table 1. The distance of the observation wells from the nearest shore and the informations of the observation wells
观测井编号 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 离近岸的距离/m 760 704 698 643 598 495 431 308 250 200 地面高程/m 18.6 6.7 25.9 17.5 25.3 17.1 5.1 15.4 3.1 24.4 井深/m 100 13 110 100 98 75 6.3 102 5 100 多年平均地下水水位/m −11.5 4.3 3.8 6.3 3.1 −7.4 4.9 −4.1 2.0 5.4 地下水埋深/m 30.1 2.4 22.1 11.3 22.3 24.5 0.1 19.5 1.1 19.0 表 2 海水入侵的现状评价等级划分[38]
Table 2. Classification of status evaluation of seawater intrusion
分级指标 Ⅰ Ⅱ Ⅲ 氯离子质量浓度/(mg·L−1) <250 250~1000 >1000 入侵程度 无入侵 轻度入侵 严重入侵 表 3 地下水观测井的SWI和SGD计算结果
Table 3. SWI and SGD calculation results of groundwater observation wells
地下水观测井编号 渗透系数/ (m·d−1) 多年平均水位和
海平面的水位差/m 井距离海岸的
垂直距离/m 地下水和海水的
交换速率/ (m·d−1) NO3-N质量
浓度 / (mg·L −1)时间 NO3-N通量
/(mmol· m−2·d−1)W1 20 −11.4 760 −0.3 26.3 2016-10-26 −562.58 28 2018-05-02 −598.95 W2 5 4.3 704 0.03 40 2015-06-22 86.24 36 2018-05-17 77.62 W3 20 3.7 698 0.11 1.2 2016-10-26 8.69 21 2018-05-02 158.6 W4 20 6.2 643 0.19 5.2 2015-06-22 72.39 3 2018-05-17 41.52 W5 20 3.1 598 0.1 − − − W6 20 −7.3 495 -0.3 21.8 2015-06-24 −460.54 26.8 2016-10-26 −566.16 19 2018-05-02 −401.39 W7 5 4.9 431 0.06 − − − W8 20 −4.1 308 −0.27 4.3 2015-06-22 −81.8 3 2018-05-17 −57.47 W9 5 2 250 0.04 − − − W10 20 5.4 200 0.54 1.4 2016-10-26 55.44 4 2018-05-02 154 注:多年平均水位和海平面的水位差 、井距离海岸的垂直距离 、NO3-N浓度数据来源于该岛自然资源局。NO3-N通量速率为正表示地下水排泄,速率为负表示海水入侵。 表 4 地下水水样的水化学特征统计
Table 4. Statistics on hydrochemical characteristics of groundwater samples
pH TDS
/(mg·L−1)总硬度(以CaCO3计)
/(mg·L−1)菌落总数
/(CFU·mL−1)质量浓度/(mg·L−1) 氯化物 硫酸盐 NO3-N Fe Mn 最大值 8.5 6979.0 901.0 210000.0 2730.0 291.0 40.0 0.31 0.09 最小值 7.0 25.5 15.0 ND 9.0 7.1 1.2 0.04 0.01 平均值 7.4 1093.5 411.0 10724.0 420.6 76.4 15.2 0.10 0.00 标准差 0.4 1325.0 210.0 38769.5 628.5 59.2 12.9 0.10 0.00 变异系数 0.1 1.2 0.5 3.6 1.5 0.8 0.8 0.60 1.00 注:ND表示未检出。 -
[1] 李海龙,王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展,2015,30(6):636 − 646. [LI Hailong,WANG Xuejing. Submarine groundwater discharge:A review[J]. Advances in Earth Science,2015,30(6):636 − 646. (in Chinese with English abstract)
[2] 周鹏鹏,李国敏,卢耀东,等. 大陆岛地下水动力学特征—以湛江东海岛为例[J]. 水文地质工程地质,2013,40(1):12 − 18. [ZHOU Pengpeng,LI Guomin,LU Yaodong,et al. The hydrodynamic characteristics of groundwater in continental island:An example from Donghai Island,Zhanjiang[J]. Hydrogeology & Engineering Geology,2013,40(1):12 − 18. (in Chinese with English abstract)
[3] 叶玉玲,廖小青,刘贯群. 国内外地下水入海通量研究现状与趋势[J]. 水文地质工程地质,2006,33(6):124 − 128. [YE Yuling,LIAO Xiaoqing,LIU Guanqun. A review of submarine groundwater discharge home and abroad[J]. Hydrogeology & Engineering Geology,2006,33(6):124 − 128. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.06.031
[4] VENGOSH A,GILL J,LEE DAVISSON M,et al. A multi-isotope (B,Sr,O,H,and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley,California:Hydrochemistry,dynamics,and contamination processes[J]. Water Resources Research,2002,38(1):1 − 17.
[5] VENGOSH A,SPIVACK A J,ARTZI Y,et al. Geochemical and boron,strontium,and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean Coast of Israel[J]. Water Resources Research,1999,35(6):1877 − 1894. doi: 10.1029/1999WR900024
[6] JØRGENSEN N O,ANDERSEN M S,ENGESGAARD P. Investigation of a dynamic seawater intrusion event using strontium isotopes (87Sr/86Sr)[J]. Journal of Hydrology,2008,348(3/4):257 − 269.
[7] RANJAN P,KAZAMA S,SAWAMOTO M,et al. Global scale evaluation of coastal fresh groundwater resources[J]. Ocean & Coastal Management,2009,52(3/4):197 − 206.
[8] PETELET-GIRAUD E,NÉGREL P,AUNAY B,et al. Coastal groundwater salinization:Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin,France)[J]. Science of the Total Environment,2016,566/567:398 − 415. doi: 10.1016/j.scitotenv.2016.05.016
[9] MAO Changping, TAN Hongbing, SONG Yinxian,et al. Evolution of groundwater chemistry in coastal aquifers of the Jiangsu,east China:Insights from a multi-isotope (δ2H,δ18O,87Sr/86Sr,and δ11B) approach[J]. Journal of Contaminant Hydrology,2020,235:103730. doi: 10.1016/j.jconhyd.2020.103730
[10] 郇恒飞,郭常来,崔健,等. 音频大地电磁测深法在锦州海水入侵调查中的应用[J]. 地质通报,2021,40(10):1720 − 1728. [HUAN Hengfei,GUO Changlai,CUI Jian,et al. Application of audio magnetotelluric sounding to the seawater intrusion survey of Jinzhou[J]. Geological Bulletion of China,2021,40(10):1720 − 1728. (in Chinese with English abstract)
[11] MOORE W S. The role of submarine groundwater discharge in coastal biogeochemistry[J]. Journal of Geochemical Exploration,2006,88(1/2/3):389 − 393.
[12] WANG Xuejing, LI Hailong, ZHENG Chunmiao,et al. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay,China[J]. Geochimica et Cosmochimica Acta,2018,225:52 − 65. doi: 10.1016/j.gca.2018.01.029
[13] ADOLF J E, BURNS J, WALKER J K,et al. Near shore distributions of phytoplankton and bacteria in relation to submarine groundwater discharge-fed fishponds,Kona coast,Hawaii,USA[J]. Estuarine,Coastal and Shelf Science,2019,219:341 − 353. doi: 10.1016/j.ecss.2019.01.021
[14] HAN Dongmei,CURRELL M J. Review of drivers and threats to coastal groundwater quality in China[J]. Science of the Total Environment,2022,806:150913. doi: 10.1016/j.scitotenv.2021.150913
[15] 崔震,陈广泉,徐兴永,等. 北长山岛海水入侵成因机理及现状评价[J]. 海洋环境科学,2015,34(6):930 − 936. [CUI Zhen,CHEN Guangquan,XU Xingyong,et al. Mechanism and assessment of seawater intrusion in the Northern Changshan Island[J]. Marine Environmental Science,2015,34(6):930 − 936. (in Chinese with English abstract)
[16] 庞忠和,高明. 基岩海岛地下水资源与环境—以庙岛群岛为例[J]. 勘察科学技术,1988(3):27 − 30. [PANG Zhonghe,GAO Ming. Groundwater resources and environment of bedrock islands:A case study of Miaodao Islands[J]. Investigation science and technology,1988(3):27 − 30. (in Chinese)
[17] RUTQVIST J. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings[J]. Crustal Permeability,2012:65 − 82.
[18] WANG Xuejing, LI Hailong, JIAO Jiu Jimmy,et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux[J]. Scientific Reports,2015,5:8814,1 − 7.
[19] ZHANG Yan, SANTOS I R, LI Hailong,et al. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales[J]. Geochimica et Cosmochimica Acta,2020,290:201 − 215. doi: 10.1016/j.gca.2020.08.026
[20] 汪迁迁. 镭氡同位素评估渤海湾海底地下水排泄及其陆源物质输送通量[D]. 北京: 中国地质大学(北京), 2020
WANG Qianqian. Estimating submarine groundwater discharge(SGD) and its associated terrestrial material fluxes into Bohai Bay using radium and radon isotopes[D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract)
[21] MA Qian, LI Hailong, WANG Xuejing, et al. Estimation of seawater–groundwater exchange rate:Case study in a tidal flat with a large-scale seepage face (Laizhou Bay,China)[J]. Hydrogeology Journal,2015,23:265 − 275. doi: 10.1007/s10040-014-1196-z
[22] JASECHKO S,PERRONE D,SEYBOLD H,et al. Groundwater level observations in 250000 coastal US wells reveal scope of potential seawater intrusion[J]. Nature Communications,2020,11:3229. doi: 10.1038/s41467-020-17038-2
[23] HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al. Mapping the global threat of land subsidence[J]. Science (New York, N Y), 2021, 371(6524): 34 − 36.
[24] SAWYER A H,DAVID C H,FAMIGLIETTI J S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities[J]. Science,2016,353(6300):705 − 707. doi: 10.1126/science.aag1058
[25] 郇恒飞, 郭常来, 崔健,等. 音频大地电磁测深法在锦州海水入侵调查中的应用[J]. 地质通报,2021,41(10):1720 − 1728. [HUAN Hengfei, GUO Changlai, CUI Jian, et al. Application of audio magnetotelluric sounding to the seawater intrusion survey of Jinzhou[J]. Geological Bulletion of China,2021,41(10):1720 − 1728. (in Chinese with English abstract)
[26] 朱君,李婷,陈超,等. 近海核电厂核素地下水释放通量的模型计算方法[J]. 吉林大学学报(地球科学版),2021,51(1):201 − 211. [ZHU Jun,LI Ting,CHEN Chao,et al. Model calculation method of Radionuclide groundwater release flux of offshore nuclear power plants[J]. Journal of Jilin University (Earth Science Edition),2021,51(1):201 − 211. (in Chinese with English abstract)
[27] 庞忠和. 中国东部沿海基岩海岛地下水资源分布特点:以庙岛群岛为例[J]. 地质科学,1987,22(3):291 − 299. [PANG Zhonghe. On the occurrence of the ground water resources of the rocky Islands along the East China coast:A case study of Miaodao Islands[J]. Chinese Journal of Geology,1987,22(3):291 − 299. (in Chinese with English abstract)
[28] 张志忠,丁雪,邹亮,等. 南长山岛地下水资源与环境[J]. 海洋地质前沿,2018,34(9):60 − 63. [ZHANG Zhizhong,DING Xue,ZOU Liang,et al. Groundwater resources and environment of south Changshan Island[J]. Marine Geology Frontiers,2018,34(9):60 − 63. (in Chinese with English abstract)
[29] 杜国云. 基岩海岸海水入侵特征及对策—以长岛县南北长山岛为例[J]. 海洋科学,2002(5):55 − 59. [DU Guoyun. Character and countermeasure of seawater intrusion on bedrock such as south and north Changshan Island[J]. Marine Sciences,2002(5):55 − 59. (in Chinese with English abstract)
[30] 山东省长岛海洋生态保护条例[J]. 山东省人民代表大会常务委员会公报, 2019(4): 458 − 467
The Regulation of Marine Ecological protection in Changdao, Shandong Province[J]. Bulletin of Standing Committee of Shandong Provincial People’s Congress, 2019(4): 458 − 467. (in Chinese)
[31] 李培英. 庙岛群岛的晚新生界与环境变迁[J]. 海洋地质与第四纪地质,1987,7(4):111 − 122. [LI Peiying. Late Cenozoic erathem and environmental vicissitudes of Miaodao archipelago,Shandong Province[J]. Marine Geology & Quaternary Geology,1987,7(4):111 − 122. (in Chinese with English abstract)
[32] 曹家欣,严润娥,王欢. 山东庙岛群岛的红色风化壳与棕红土及其古气候意义[J]. 中国科学(B辑),1994,24(2):216 − 224. [CAO Jiaxin,YAN Rune,WANG Huan. Red weathering crust and brown-red soil and their paleoclimatic significance in Miaodao Archipelago,Shandong Province[J]. Science in China (Series B),1994,24(2):216 − 224. (in Chinese)
[33] 肖楠森. 新构造裂隙水[J]. 水文地质工程地质,1981(4):22 − 25. [XIAO Nansen. Neotectonic fissure water[J]. Hydrogeology & Engineering Geology,1981(4):22 − 25. (in Chinese)
[34] 中国地质调查局. 水文地质手册[M]. 第2版. 北京: 地质出版社, 2012
China Geological Survey. Handbook of Hydrogeology[M]. 2nd ed. Beijing: Geological Publishing House, 2012. (in Chinese)
[35] 潘晓园. 胶州湾某砂质潮滩含水层系统地下水流盐分运移数值模拟研究[D]. 北京: 中国地质大学(北京), 2019
PAN Xiaoyuan. Numerical simulation of groundwater flow and salt transport in a sandy tidal aquifer system in Jiaozhou Bay, China[D]. Beijing: China University of Geosciences(Beijing), 2019. (in Chinese with English abstract)
[36] DOMENICO P A, SCHWARTZ F W. Physical and chemical hydrogeology[M]. 2nd ed. New York: Wiley, 1998.
[37] CHANG Kang-tsung. 地理信息系统导论[M]. 陈健飞, 译. 8版. 北京: 科学出版社, 2016
CHANG Kang-tsung. Introduction to Geographic Information Systems[M]. CHEN Jianfei, trans. 8th ed. Beijing: Science Press, 2016. (in Chinese)
[38] 自然资源部第一海洋研究所. 海水入侵监测与评价技术规程: HY/T 0314-2021[S]
First Institute of Oceanography, Ministry of Natural Resources. Technical specification for monitoring and evaluation of seawater intrusion: HY/T 0314—2021[S]. (in Chinese)
[39] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011: 53
ZHANG Renquan, LIANG Xing, JIN Menggui, et al. Fundamentals of hydrogeology[M]. 6th ed. Beijing: Geological Publishing House, 2011: 53. (in Chinese)
[40] 中华人民共和国国土资源部, 水利部. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017
Ministry of Land and Resources of the People’s Republic of China, Ministry of Water Resources. Groundwater quality standard: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[41] 郭巧娜. 滨海多层含水层系统中多组分地下水流及海底地下水排泄[D]. 武汉: 中国地质大学, 2010
GUO Qiaona. Multicomponent groundwater flow and submarine groundwater discharge in coastal multilayered aquifer systems[D]. Wuhan: China University of Geosciences, 2010. (in Chinese with English abstract)
[42] 崔震. 北长山岛海水入侵特征及风险评价研究[D]. 青岛: 国家海洋局第一海洋研究所, 2015
CUI Zhen. Analysis of seawater intrusion characteristics and assessment of seawater intrusion disaster in northern Changshan Island[D]. Qingdao: The First Institute of Oceanography, 2015. (in Chinese with English abstract)
[43] 付兆堂,姜拥军,冷恩基,等. 庙岛群岛地下水污染的成因与防治对策[J]. 地下水,2010,32(2):66. [FU Zhaotang,JIANG Yongjun,LENG Enji,et al. Causes and countermeasures of groundwater pollution in Miaodao Islands[J]. Groundwater,2010,32(2):66. (in Chinese)
[44] WARD M H,JONES R R,BRENDER J D,et al. Drinking water nitrate and human health:An updated review[J]. International Journal of Environmental Research and Public Health,2018,15(7):1557. doi: 10.3390/ijerph15071557
[45] 中华人民共和国卫生部, 建设部, 水利部, 等. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国质检出版社, 2006
Ministry of Health of the People’s Republic of China, Ministry of Construction, Ministry of Water Resources, et al. Sanitary standard for drinking water: GB 5749—2006[S]. Beijing: China Quality Inspection Press, 2006. (in Chinese)
-