The Cambrian sedimentary sequences and paleogeographic evolution in the Bachu-Maigaiti area, southwestern Tarim Basin.
-
摘要:
塔里木盆地巴楚–麦盖提地区(巴麦地区)是重要的含油气地区。基于最新的钻井和地震资料,本文将该地区寒武系划分为13个三级层序,同时,总结了三级层序界面及层序内部特征,对层序格架下的沉积序列及各时期的岩相古地理进行了精细刻画,并且提出,巴麦地区经历了从碳酸盐缓坡到镶边碳酸盐台地的演化过程。通过对巴楚隆起上的钻井、测井资料和地震相应特征的研究,对缺乏钻井等实物资料的麦盖提斜坡地区沉积环境进行了合理的推测,最终以组为单位编制了岩相古地理图。研究结果显示,塔里木盆地巴楚–麦盖提地区在寒武纪的沉积演化中(SQ1-SQ13)经历了两次大规模海侵,形成寒武系盐下良好的生储盖组合,其中,麦盖提地区是塔里木盆地西南部寒武系勘探领域形成大型油气藏的最有利区带,具有良好的勘探前景。
Abstract:The Bachu-Maigaiti area in the Tarim Basin is an important oil-gas-bearing area. Based on the latest drilling and seismic data, this paper divides the Cambrian into 13 third-order sequences in the Bachu-Maigaiti area of the Tarim Basin. Detailed descriptions of the sedimentary sequences and lithofacies and paleogeography of each period were provided. It was proposed that the Bachu-Maigaiti area experienced an evolution process from a carbonate gentle slope to a rimmed carbonate platform. Through the study of up-drilling, logging data, and seismic characteristics of the Bachu uplift, the sedimentary environment of the Maigaiti slope, which lacks physical data such as drilling, was reasonably speculated, and finally the lithofacies paleogeographic map was compiled in units of groups. The results show that the Bachu-Maigaiti area in the Tarim Basin experienced two large-scale transgressions during the Cambrian sedimentary evolution (SQ1-SQ13), forming a good source-reservoir-cap assemblage in the Cambrian subsalt. In this context, the Maigaiti slope is the most favorable area for the formation of large oil and gas reservoirs in the Cambrian exploration area in the southwest of the Tarim Basin, and has good exploration prospects.
-
Key words:
- Bachu-Maigaiti area /
- Cambrian /
- sedimentary sequence /
- Third-Order Sequence /
- Paleogeography
-
-
图 9 麦盖提斜坡礁滩相地震反射剖面图(剖面位置标注于图8b)
Figure 9.
表 1 巴楚–麦盖提地区寒武系三级层序划分
Table 1. Three-order sequence division of Cambrian in Bachu-Maigaiti area
组 沉积
时长三级层序 三级层序编号 三级层序界面 二级层序界面 一级层序界面 下丘塔里格 11.6 Ma 3个(约3.86 Ma) SQ13 T80 SQ12 SQ11 T81 阿瓦塔格 7.5 Ma 2个(约3.75 Ma) SQ10 SQ9 T82 沙依里克 4 Ma 1个(4.0 Ma) SQ8 T83 吾松格尔 5 Ma 2个(2.5 Ma) SQ7 SQ6 肖尔布拉克 15 Ma 3个(5 Ma) SQ5 T84 SQ4 SQ3 玉尔吐斯 12 Ma 2个(6.0 Ma) SQ2 SQ1 T90 表 2 巴楚–麦盖提地区寒武系沉积相划分(据牟传龙,2022)
Table 2. Division of sedimentary facies of Cambrian in Bachu-Maigaiti area(after Mou, 2022)
沉积相 沉积亚相 次相 微相 代表井及层位 镶边碳酸盐
台地蒸发台地 蒸发台坪 膏云坪、云坪、膏泥坪、云泥坪、泥坪 巴探5、方1、和4井阿瓦塔格组、吾松格尔组 蒸发潟湖 膏盐湖、盐湖(盐岩、膏盐岩、
云膏岩、泥膏岩)康2井阿瓦塔格组 局限台地 局限台坪 藻坪、云坪、灰云坪、泥云坪、
云泥坪康2、方1井阿瓦塔格组、肖尔布拉克组 台内滩 砂屑滩、生屑滩 方1井阿瓦塔格组、肖尔布拉克组 潟湖 泥坪 和4、巴探5井阿瓦塔格组、肖尔布拉克组 开阔台地 滩间 云灰坪、灰云坪 同1、方1、和4井沙依里克组 台内滩 砂屑滩、鲕粒滩、生屑滩 玛北1井沙依里克组 陆棚 陆棚 陆棚泥 塔西南坳陷玉尔吐斯组 碳酸盐缓坡 缓坡 后缓坡 膏云坪、泥云坪、泥坪 麦盖提斜坡肖尔布拉克组 浅水缓坡 砾屑滩、砂屑滩、生屑滩
(藻屑滩)麦盖提斜坡肖尔布拉克组 深水缓坡 缓坡泥、缓坡灰泥 麦盖提斜坡肖尔布拉克组 -
[1] 曹自成, 朱秀香, 吴鲜, 等, 2021. 塔里木盆地巴楚隆起盐下白云岩中油气来源[J]. 石油实验地质, 43(4): 648-654 doi: 10.11781/sysydz202104648
Cao Z C, Zhu X X, Wu X, et al. , 2021. Source of hydrocarbons discovered from Cambrian sub-salt dolomite in Bachu uplift area, Tarim Basin[J]. Petroleum Geology & Experiment, 43(4): 648-654. doi: 10.11781/sysydz202104648
[2] 陈刚, 汤良杰, 余腾孝, 等, 2015. 塔里木盆地巴楚-麦盖提地区前寒武系不整合对基底古隆起及其演化的启示[J]. 现代地质, 29(3): 576-583
Chen G, Tang L J, Yu T X, et al. , 2015. Implications of Precambrian Unconformity to Basement Paleo-uplift and Its Tectonic Evolution of Bachu-Markit Area, Tarim Basin[J]. Geoscience, 29(3): 576-583.
[3] 陈永权,严威,韩长伟,等, 2015. 塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定——基于地震证据的新认识 [J]. 天然气地球科学, 26(10): 1831-1843.
Chen Y Q, Yan W, Han C W, et al., 2015. Redefinition on Structural Paleogeography and Lithofacies Paleogeography Framework from Cambrian to Early Ordovician in the Tarim Basin: A New Approach Based on Seismic Stratigraphy Evidence[J]. Natural Gas Geoscience, 26(10): 1831-1843.
[4] 陈永权, 严威, 韩长伟, 等, 2019. 塔里木盆地寒武纪/前寒武纪构造-沉积转换及其勘探意义[J]. 天然气地球科学, 30(1): 39-50
Chen Y Q, Yan W, Han C W, et al. , 2019. Structural and sedimentary basin transformation at the Cambrian/Neoproterozoic interval in Tarim Basin: Implication to subsalt dolostone exploration[J]. Natural Gas Geoscience, 30(1): 39-50.
[5] 崔海峰, 田雷, 张年春, 等, 2016. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征[J]. 天然气地球科学, 43(3): 327-339
Cui H F, Tian L, Zhang N C, et al. , 2016. Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest Depression of Tarim Basin[J]. Natural Gas Geoscience, 43(3): 327-339.
[6] 丁文龙,漆立新,云露,等. 2012. 塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用 [J]. 岩石学报, 28 (8): 2542-2556.
Ding W L, Qi L X, Yun L, et al., 2012. The tectonic evolution and its controlling effects on the development of Ordovician reservoir in Bachu-Markit Tarim basin. Acta Petrologica Sinica, 28(8): 2542-2556.
[7] 杜金虎, 潘文庆, 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 现代地质, 31(1): 102-118
Du H J, Pan W Q, 2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Geoscience, 31(1): 102-118.
[8] 冯增昭, 鲍志东, 吴茂炳, 等, 2006. 塔里木地区寒武纪岩相古地理[J]. 古地理学报, 8(4): 427 − 439
Feng Z Z, Bao Z D, Wu B M, et al., 2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography[J]. 8(4): 427 − 439.
[9] 高华华, 何登发, 童晓光, 等, 2017. 塔里木盆地寒武纪构造-沉积环境与原型盆地演化[J]. 现代地质, 31(1): 102-118
Gao H H, He D F, Tong X G, et al. , 2017. Tectonic-depositional Environment and Proto-type Basin Evolution of the Cambrian in the Tarim Basin[J]. Geoscience, 31(1): 102-118.
[10] 何登发, 贾承造, 德生, 等, 2005. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 26(1): 64-77
He D F, Jia C Z, De S, et al. , 2005. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 26(1): 64-77.
[11] 何金有, 邬光辉, 徐备, 等, 2010. 塔里木盆地震旦系-寒武系不整合面特征及油气勘探意义[J]. 地质科学, 45(3): 698-706
He J Y, Wu G H, Xu B, et al. , 2010. Characteristics and petroleum exploration significance of unconformity between Sinian and Cambrian in Tarim Basin[J]. Chinese Journal of Geology, 45(3): 698-706.
[12] 黄擎宇, 胡素云, 潘文庆, 等, 2016. 台内微生物丘沉积特征及其对储层发育的控制——以塔里木盆地柯坪—巴楚地区下寒武统肖尔布拉克组为例 [J]. 天然气工业, 36(6): 21-29.
Huang Q Y, Hu S Y, Pan W Q, et al., 2016. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: A case study of the Lower Cambrian Xiaoerbulake Fm in the Keping-Bachu area, Tarim Basin[J]. Natural Gas Industry, 36(6): 21-29.
[13] 胡明毅,孙春燕,高达, 2019.塔里木盆地下寒武统肖尔布拉克组构造-岩相古地理特征 [J]. 石油与天然气地质, 40 (1): 12-23.
Hu M Y, Sun H Y, Gao D et al., 2019. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 40(1): 12-23.
[14] 金之钧, 王清晨. 2004. 中国典型叠合盆地与油气成藏研究新进展-以塔里木盆地为例[J]. 中国科学(D辑: 地球科学), (S1): 1 − 12
Jin Z J, Wang Q C. 2004. New Progress in the Study of Typical Stacked Basins and Hydrocarbon Formation in China—Take the Tarim Basin as an Example[J]. Science in China Series D: Earth Sciences, (S1): 1 − 12.
[15] 李久梅 , 2018. 塔里木盆地玉北及邻区构造演化及寒武-奥陶系构造古地貌重建[D]. 北京: 中国石油大学.
Li J M, 2018. Tectonic evolution and Cambrian-Ordovician tectonic palaeomorphological reconstruction of Yubei and neighbouring areas in Tarim Basin[D]. Bei Jing: China University of Petroleum.
[16] 李勇, 陈才, 冯晓军, 等, 2016. 塔里木盆地西南部南华纪裂谷体系的发现与意义[J]. 岩石学报, 32(3): 825-832
Li Y, Chen C, Feng X J, et al. , 2016. New discovery of Nanhuaian rift system in southwestern Tarim basin and its geological significance[J]. Acta Petrologica Sinica, 32(3): 825-832.
[17] 林畅松, 李思田, 刘景彦, 等, 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 27(1): 210-218
Lin C S, Li S T, Liu J Y, et al. , 2011. Tectonic framework and paleogeographic evolution of the Tarim basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 27(1): 210-218.
[18] 牟传龙, 梁薇, 周恳恳, 等, 2012. 中上扬子地区早寒武世(纽芬兰世-第二世)岩相古地理[J]. 沉积与特提斯地质, 32(3): 41-53 doi: 10.3969/j.issn.1009-3850.2012.03.004
Mou C L, Liang W, Zhou K K, et al. , 2012. Sedimentary facies and palaeogeography of the middle-upper Yangtze area during the Early Cambrian(Terreneuvian-Series 2)[J]. Sedimentary Geology and Tethyan Geology, 32(3): 41-53. doi: 10.3969/j.issn.1009-3850.2012.03.004
[19] 牟传龙, 王启宇, 王秀平, 等, 2016. 岩相古地理研究可作为页岩气地质调查之指南[J]. 地质通报, 35(1): 10 − 19
Mou C L, Wang Q Y, Wang X P, et al., 2016. A study of lithofacies-palaeogeography as a guide to geological survey of shale gas[J]. Geological Bulletin of China, 35(1): 10 − 19.
[20] 牟传龙, 2022. 关于相的命名及其分类的建议[J]. 沉积与特提斯地质, 42(03): 331 − 339
Mou C L, 2022. Suggested naming and classification of the word facies. Sedimentary Geology and Tethyan Geology, 42(3): 331 − 339.
[21] 潘文庆, 陈永权, 熊益学, 等, 2015. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 26(7): 1224-1232
Pan W Q, Chen Y Q, Xiong Y X, et al. , 2015. Sedimentary Facies Research and Implications to Advantaged Exploration Regions on Lower Cambrian Source Rocks, Tarim Basin[J]. Natural Gas Geoscience, 26(7): 1224-1232.
[22] 乔占峰, 沈安江, 倪新峰, 等, 2019. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义[J]. 石油与天然气地质, 40(2): 392-402
Qiao Z F, Shen A J, Ni X F, et al. , 2019. Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin, northwest China, and its implications for exploration[J]. Oil & Gas Geology, 40(2): 392-402.
[23] 石开波, 刘波, 姜伟民, 等, 2018. 塔里木盆地南华纪-震旦纪构造-沉积格局[J]. 石油与天然气地质, 39(5): 862-877 doi: 10.11743/ogg20180502
Shi K B, Liu B, Jiang W M, et al. , 2018. Nanhua-Sinian tectono-sedimentary framework of Tarim Basin, NW China[J]. Oil & Gas Geology, 39(5): 862-877. doi: 10.11743/ogg20180502
[24] 宋金民,罗平,杨式升,等, 2014. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征 [J]. 石油勘探与开发, 41(4): 404-413+437.
Song J M, Luo P, Yang S W, et al., 2014. Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J], Petroleum Exploration and Development, 41(4): 404-413+437.
[25] 田雷, 崔海峰, 刘军, 等, 2018. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质, 39(5): 1011-1021 doi: 10.11743/ogg20180515
Tian L, Cui H J, Liu J, et al. , 2018. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 39(5): 1011-1021. doi: 10.11743/ogg20180515
[26] 王道伟, 王铁冠, 李美俊, 等, 2016. 塔中隆起中深5井与中深1井和烷基分布特征与油源启示[J]. 地球化学, 45(5): 451-461 doi: 10.3969/j.issn.0379-1726.2016.05.002
Wang D W, Wang T G, Li M J, et al. , 2016. The distribution of chrysene and methylchrysenes in oils from wells ZS5 and ZS1 in the Tazhong Uplift and its implications in oil-to-source correlation[J]. Geochimica, 45(5): 451-461. doi: 10.3969/j.issn.0379-1726.2016.05.002
[27] 王招明, 谢会文, 陈永权, 等, 2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 19(2): 1-13 doi: 10.3969/j.issn.1672-7703.2014.02.001
Wang Z M, Xie H W, Chen Y Q, et al. , 2014. Discovery and Exploration of Cambrian Subsalt Dolomite Original Hydrocarbon Reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 19(2): 1-13. doi: 10.3969/j.issn.1672-7703.2014.02.001
[28] 熊冉, 张天付, 乔占峰, 等, 2019. 塔里木盆地奥陶系蓬莱坝组碳酸盐岩缓坡沉积特征及油气勘探意义[J]. 沉积于特提斯地质, 39(1): 42-49
Xiong R, Zhang T F, Qiao Z F, et al. , 2019. The carbonate ramp deposits from the Ordovician Penglaiba Formation in the Tarim Basin, Xinjiang: sedimentary characteristics and their implications for petroleum exploration[J]. Sedimentary Geology and Tethyan Geology, 39(1): 42-49.
[29] 许效松, 汪正江, 万方, 等, 2005. 塔里木盆地早古生代构造古地理演化与烃源岩[J]. 地学前缘, 12(3): 49-57 doi: 10.3321/j.issn:1005-2321.2005.03.007
Xu X S, Wang Z H, Wan F, et al. , 2005. Tectonic paleogeographic evolution and source rocks of the Early Paleozoic in the Tarim Basin[J]. Earth Science Frontiers, 12(3): 49-57. doi: 10.3321/j.issn:1005-2321.2005.03.007
[30] 许志琴, 李思田, 张建新, 等, 2011. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 27(1): 1 − 22
Xu Z Q, Li S T, Zhang J X, et al., 2011. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block[J]. Acta Petrologica Sinica, 27(1): 1 − 22.
[31] 杨俊丰, 2018. 巴楚隆起下寒武统肖尔布拉克组白云岩储层特征及分布[D]. 成都: 西南石油大学.
Yang J F, 2018. Characteristics and distribution of dolomite reservoirs in the Lower Cambrian Shorbulak Formation, Bachu Rise[D]. Cheng Du: Southwest University of Petroleum.
[32] 杨鑫, 徐旭辉, 陈强路, 等, 2014. 塔里木盆地前寒武纪古构造格局及其对下寒武统烃源岩发育的控制作用[J]. 天然气地球科学, 25(8): 1164 − 1171
Yang X, Xu X H, Chen L Q, et al., 2014. Palaeotectonics Pattern in Pre-Cambrian and Its Control on the Deposition of the Lower Cambrian Source Rocks in Tarim Basin, NW China[J]. Natural Gas Geoscience, 25(8): 1164 − 1171.
[33] 杨伟利, 王毅, 杨晓影, 等, 2017. 塔里木盆地寒武纪岩相古地理与油气 [J]. 长江大学学报(自科版), 14(11): 1-6+8.
Yang W L, Wang Y, Yang X Y et al., 2017. The Lithofacies Paleogeographic Characteristics of Cambrian and Oil and Gas in Tarim Basin[J]. Journal of Yangtze University (Natural Science Edition),14(11): 1-6+8.
[34] 易士威, 李明鹏, 郭绪杰, 等, 2019.塔里木盆地寒武系盐下勘探领域的重大突破方向 [J]. 石油学报, 40 (11): 1281-1295.
Yi S W, Li M P, Guo X J, et al., 2019. Breakthrough direction of Cambrian per-salt exploration fields in Tarim Basin[J]. Acta Petrolei Sinica, 40(11): 1281-1295.
[35] 易士威, 李明鹏, 郭绪杰, 等, 2020. 塔里木盆地南华纪古裂谷对寒武系沉积的控制及勘探意义[J]. 石油学报, 41(11): 1293-1308 doi: 10.7623/syxb202011001
Yi S W, Li M P, Guo X J, et al. , 2020. Ontrol of the Nanhua paleo-rift on Cambrian sedimentation and its exploration significance in Tarim Basin[J]. Acta Petrolei Sinica, 41(11): 1293-1308. doi: 10.7623/syxb202011001
[36] 岳勇, 罗少辉, 2019. 塔里木盆地玉北地区构造特征及对奥陶系成藏输导体系的控制[J]. 地质科技情报, 38(5): 20-30
Yue Y, Luo S H, 2019. Structural Characteristics and Their Control over Ordovician Hydrocarbon Migration Pathway System in Yubei Area, Tarim Basin[J]. Geological Science and Technology Information, 38(5): 20-30.
[37] Zhang C L, Ye X T, Zou H B, et al. , 2016. Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China: New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J]. Precambrian Research, 280: 31-45. doi: 10.1016/j.precamres.2016.04.011
[38] Zhang C L, Zou H B, Li H K, 2013. Tectonic framework and evolution of the Tarim Block, NW China[J]. Gondwana Res. 23: 1306 − 1315.
[39] Zhang F Q, Dilek Yildirim, Cheng G X, et al. , 2019. Late Neoproterozoic-early Paleozoic seismic structure-stratigraphy of the SW Tarim Block (China), its passive margin evolution and the Tarim-Rodinia breakup[J]. Precambrian Research, 334: 105456. doi: 10.1016/j.precamres.2019.105456
[40] 张天付, 黄理力, 倪新峰, 等, 2020. 塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义——亚洲第一深井轮探1井突破的启示[J]. 石油与天然气地质, 41(5): 928-940 doi: 10.11743/ogg20200504
Zhang T F, Huang L L, Ni X F, et al. , 2020. Lithological combination, genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Basin: Insight through the deepest Asian onshore well-Well Luntan 1[J]. Oil & Gas Geology, 41(5): 928-940. doi: 10.11743/ogg20200504
[41] Zhang T, Li Y F, Fan T L, et al. , 2020. Marine carbon and sulfur cycling across the Ediacaran-Cambrian boundary in Tarim Block and its implications for paleoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 1–15.
[42] 张宇航, 汤良杰, 邱海峻, 等, 2013. 塔里木盆地巴楚隆起西段边界断层联接及变形特征[J]. 地球科学, 38(3): 573-580
Zhang Y H, Tang L J, Qiu H J, et al. , 2013. Linkages of the Boundary Faults and Deformation Features in the West of Bachu Uplift, Tarim Basin[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 38(3): 573-580.
[43] Zhao G C, Cawood P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-45. doi: 10.1016/j.precamres.2012.09.017
[44] Zhao G C, Wang Y J, Huang B C, et al. , 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003
[45] 张哨楠, 2020. 塔里木盆地玉北地区奥陶系储层成因研究[J]. 沉积与特提斯地质, 40(3): 72-86
Zhang S N, 2020. Formation of the Ordovician Reservoir in Yubei Area, Tarim Basin[J]. Sedimentary Geology and Tethyan Geology, 40(3): 72-86.
[46] 赵宗举, 罗家洪, 张运波, 等, 2011. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 32(6): 937-948 doi: 10.7623/syxb201106003
Zhao Z J, Luo J H, Zhang H B, et al. , 2011. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica, 32(6): 937-948. doi: 10.7623/syxb201106003
[47] 赵宗举, 吴兴宁, 潘文庆, 等, 2009. 塔里木盆地奥陶纪层序岩相古地理[J]. 沉积学报, 27(5): 939-955
Zhao Z J, Wu X N, Pan W Q, et al. , 2009. Sequence Lithofacies Paleogeography of Ordovician in Tarim Basin[J]. Acta Sedimentologica Sinica, 27(5): 939-955.
[48] Zhu G Y, Li T T, Zhang Z Y, et al. , 2020. Distribution and geodynamic setting of the Late Neoproterozoic-Early Cambrian hydrocarbon source rocks in the South China and Tarim Blocks[J]. Journal of Asian Earth Sciences, 201: 104504. doi: 10.1016/j.jseaes.2020.104504
[49] 朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 27(1): 8-21 doi: 10.11764/j.issn.1672-1926.2016.01.0008
Zhu G Y, Chen F R, Chen Z Y, et al. , 2016. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 27(1): 8-21. doi: 10.11764/j.issn.1672-1926.2016.01.0008
[50] 朱筱敏, 杨俊生, 张喜林. 2004. 岩相古地理研究与油气勘探[J]. 古地理学报, 6(1): 101 − 109.
Zhu X M, Yang J S, Zhang X L, 2004. Application of lithofacies palaeogeography in petroleum exploration[J]. Journal of Palaeogeography, 6(1): 101 − 109.
[51] 朱永进,倪新锋,刘玲利, 等, 2019.裂后沉降期碳酸盐岩缓坡沉积响应及成储特征——以塔里木盆地下寒武统肖尔布拉克组为例 [J]. 沉积学报, 37 (5): 1044-1057.
Zhu Y J, Ni X F, Liu L L et al., 2019. Depositional Differentiation and Reservoir Potential and Distribution of Ramp Systems during Post⁃rift Period: An example from the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin, NW China[J]. Acta Sedimentologica, 37(5): 1044-1057.
[52] 朱永进, 沈安江, 刘玲利, 等, 2020. 塔里木盆地晚震旦世-中寒武世构造沉积充填过程及油气勘探地位[J]. 沉积学报, 38(2): 398-410
Zhu Y J, Shen A J, Liu L L, et al. , 2020. Tectonic-sedimentary Filling History through the Later Sinian to the Mid-Cambrian in Tarim Basin and Its Explorational Potential[J]. Acta Sedimentologica Sinica, 38(2): 398-410.
-