中国地质调查局 中国地质科学院主办
科学出版社出版

云南中高山丘陵区土壤重金属元素空间分布格局及驱动机制

徐磊, 管继云, 巴永, 陈伟志, 黄加忠, 程琰勋, 张亚, 瞿镪, 赵萌生. 2024. 云南中高山丘陵区土壤重金属元素空间分布格局及驱动机制[J]. 中国地质, 51(1): 304-326. doi: 10.12029/gc20230427003
引用本文: 徐磊, 管继云, 巴永, 陈伟志, 黄加忠, 程琰勋, 张亚, 瞿镪, 赵萌生. 2024. 云南中高山丘陵区土壤重金属元素空间分布格局及驱动机制[J]. 中国地质, 51(1): 304-326. doi: 10.12029/gc20230427003
XU Lei, GUAN Jiyun, BA Yong, CHEN Weizhi, HUANG Jiazhong, CHENG Yanxun, ZHANG Ya, QU Qiang, ZHAO Mengsheng. 2024. Spatial distribution pattern and driving mechanism of heavy metal elements in soils of middle−alpine hilly region, Yunnan Province[J]. Geology in China, 51(1): 304-326. doi: 10.12029/gc20230427003
Citation: XU Lei, GUAN Jiyun, BA Yong, CHEN Weizhi, HUANG Jiazhong, CHENG Yanxun, ZHANG Ya, QU Qiang, ZHAO Mengsheng. 2024. Spatial distribution pattern and driving mechanism of heavy metal elements in soils of middle−alpine hilly region, Yunnan Province[J]. Geology in China, 51(1): 304-326. doi: 10.12029/gc20230427003

云南中高山丘陵区土壤重金属元素空间分布格局及驱动机制

  • 基金项目: 中国地质调查局项目(ZD20220211,ZD20220210,DD20230482)。
详细信息
    作者简介: 徐磊,男,1992年生,硕士,工程师,主要研究方向为地质矿产及生态地质调查;E-mail: 1790968844@qq.com
    通讯作者: 赵萌生,男,1989年生,硕士,工程师,主要研究方向为地质矿产及生态地质调查;E-mail: 724374968@qq.com
  • 中图分类号: X53

Spatial distribution pattern and driving mechanism of heavy metal elements in soils of middle−alpine hilly region, Yunnan Province

  • Fund Project: Supported by the projects of China Geological Survey (No. ZD20220211, No. ZD20220210, No. DD20230482).
More Information
    Author Bio: XU Lei, male, born in 1992, master, engineer, mainly engaged in geological, mineral resources and ecological geological investigation and research; E-mail: 1790968844@qq.com .
    Corresponding author: ZHAO Mengsheng, male, born in 1989, master, engineer, mainly engaged in geological, mineral resources and ecological geological investigation and research; E-mail: 724374968@qq.com.
  • 研究目的

    查清滇中中高山丘陵区土壤重金属地球化学特征及驱动机制,服务于高原特色农业发展和乡村振兴战略的实施。

    研究方法

    以滇中大姚县、姚安县和南华县为研究区,依据1∶25万土地质量地球化学调查数据,采用地统计学分析土壤重金属来源、空间分布格局及驱动机制,建立滇中中高山丘陵区土壤重金属表生地球化学过程驱动模式。

    研究结果

    研究区表层土壤中Cd、Hg含量均值高于深层土壤背景值,Cr、Ni高于云南省土壤背景值,除As、Hg、Sb外的其他重金属显著高于全国土壤背景值,局部地区土壤可能存在As、Cd、Pb生态风险。构建的最小数据集的元素为As、Co、Cr、TFe、Ni、Pb、Sb、Sn、V、Zn,莫兰指数显示均具有显著的正空间自相关性。空间分布特征呈现变质岩和侵入岩重金属含量高、碎屑岩和第四系冲积物含量低的特点。多元统计分析与重金属空间分布特征表明Co、Cr、TFe、Mn、Ni、V主要来源于成土母质,As、Sb、Sn受原生地层与成矿地质背景影响较大,Cd、Pb、Zn主要受工矿活动等人类活动影响。

    结论

    重金属元素的分布与地层分布高度耦合,地质背景控制了表层土壤重金属的空间分布格局,不同土壤类型和土地利用类型土壤重金属含量显著差异。岩石风化作用驱动了重金属的垂向迁移和富集,重金属含量与高程呈显著的多项式线性拟合趋势,有机质和pH是不同高程区间控制重金属行为的主控因素。研究区强烈的表生地球化学作用重塑了重金属的宏观分布,受自身化学性质的制约以及环境条件(坡度、pH、有机质等)的影响在土壤中发生分配、迁移、富集,人类活动影响了局部重金属的分布格局。

  • 加载中
  • 图 1  研究区地理位置及地质背景图 1

    Figure 1. 

    图 2  研究区地势分布图及土壤类型图

    Figure 2. 

    图 3  样品采集点位图及矿产分布图

    Figure 3. 

    图 4  表层土壤重金属空间分布特征

    Figure 4. 

    图 5  表层土壤pH及有机质空间分布特征

    Figure 5. 

    图 6  表层土壤重金属与各理化指标的皮尔逊相关矩阵

    Figure 6. 

    图 7  不同成土母质类型表层土壤重金属含量百分比堆积柱形图

    Figure 7. 

    图 8  不同土壤类型表层土壤重金属含量百分比堆积柱形图

    Figure 8. 

    图 9  不同土地利用类型表层土壤重金属含量百分比堆积柱形图

    Figure 9. 

    图 10  研究区主要成土母岩风化过程中重金属迁移系数分布图

    Figure 10. 

    图 11  不同高程表、深层土壤重金属和有机质含量、pH变化图

    Figure 11. 

    图 12  不同坡度等级重金属含量百分比变化趋势图

    Figure 12. 

    图 13  西南中高山丘陵区山间盆地土壤重金属表生地球化学过程驱动模式

    Figure 13. 

    表 1  元素分析方法及检出限

    Table 1.  Element analysis methods and detection limits

    元素 实验室检出限 规范检出限 分析方法
    Cu 0.46 1 电感耦合等离子体质谱法(ICP-MS)
    Co 0.6 1
    Cd 0.03 0.03
    Pb 1 2
    Mn 5 10 电感耦合等离子体发射光谱法(ICP-OES)
    Zn 2 4
    V 3 5
    Ni 1 2
    Cr 4 5 X射线荧光光谱法(XRF)
    TFe2O3* 0.01 0.05
    Sn 0.5 1 发射光谱法(ES)
    As 0.63 1 原子荧光光谱法(AFS)
    Sb 0.031 0.05
    Hg 0.003 0.005
    pH** 0.1 0.1 离子选择电极法(ISE)
    Corg* 0.04 0.1 容量法(Vap-Vol)
      注:*计量单位为%,**为无量纲,其余计量单位为mg/kg。
    下载: 导出CSV

    表 2  表层土壤重金属统计特征(n=2124)

    Table 2.  Statistical characteristics of heavy metals in surface soil (n=2124)

    元素 最小值/
    (mg/kg)
    最大值/
    (mg/kg)
    平均值/
    (mg/kg)
    标准差/
    (mg/kg)
    变异系数 深层土壤均值/
    (mg/kg)
    云南省土壤背景值/
    (mg/kg)
    全国土壤背景值/
    (mg/kg)
    K1 K2 K3 超标率/%
    As 0.54 316.00 9.09 10.98 1.21 10.10 10.60 11.20 0.90 0.86 0.81 2.68
    Cd 0.04 14.20 0.24 0.36 1.51 0.11 0.27 0.10 2.20 0.90 2.49 18.36
    Co 2.07 59.30 16.04 4.91 0.31 17.44 16.40 12.70 0.92 0.98 1.26
    Cr 31.20 572.00 109.35 32.25 0.29 113.70 91.00 61.00 0.96 1.20 1.79 4.66
    Cu 1.30 1758.00 34.49 40.61 1.18 34.50 40.00 22.60 1.00 0.86 1.53 5.56
    TFe2O3 1.14 15.08 5.60 1.21 0.22 6.06 6.76 2.94 0.92 0.83 1.90
    Hg 0.01 0.58 0.05 0.04 0.85 0.04 0.07 0.07 1.25 0.72 0.77 0.09
    Mn 72.60 5119.00 661.73 349.56 0.53 672.29 687.00 583.00 0.98 0.96 1.14
    Ni 7.94 328.00 44.68 16.94 0.38 49.13 38.00 26.90 0.91 1.18 1.66 5.74
    Pb 8.53 1819.00 32.16 48.15 1.50 31.29 39.00 26.00 1.03 0.82 1.24 2.31
    Sb 0.11 14.60 1.01 0.90 0.89 0.97 1.16 1.21 1.05 0.87 0.84
    Sn 1.42 12.70 2.98 0.66 0.22 3.06 4.60 2.60 0.97 0.65 1.15
    V 27.30 276.00 113.17 24.84 0.22 121.09 125.00 82.40 0.93 0.91 1.37
    Zn 13.40 2403.00 81.85 58.63 0.72 81.35 96.00 74.20 1.01 0.85 1.10 0.99
    pH 3.91 8.32 5.76 0.91 0.16 6.04 6.14 6.8 0.95 0.94 0.85
      注:云南、全国土壤背景值来自文献(侯青叶等,2020);K1、K2、K3分别表示土壤重金属元素平均含量与深层、云南省、全国土壤背景值的比值;“—”表示无相应风险筛选值来计算超标率。
    下载: 导出CSV

    表 3  表层土壤重金属主成分分析及特征值

    Table 3.  Principal component analysis and characteristic values of heavy metals in surface soil

    项目 成分 分组 Norm值
    1 2 3
    As −0.001 0.749 0.040 2 0.998
    Cd 0.066 −0.132 0.665 3 0.731
    Co 0.881 0.169 0.159 1 1.994
    Cr 0.815 −0.057 −0.034 1 1.830
    Cu 0.210 0.071 0.185 0.517
    TFe2O3 0.814 0.406 0.081 1 1.905
    Hg 0.130 0.496 0.072 0.725
    Mn 0.553 0.409 0.198 1 1.370
    Ni 0.901 0.054 0.083 1 2.024
    Pb −0.132 0.389 0.580 3 0.849
    Sb 0.211 0.685 0.228 2 1.054
    Sn 0.231 0.641 −0.063 2 1.000
    V 0.859 0.286 0.076 1 1.964
    Zn 0.203 0.147 0.645 3 0.836
    特征值 5.028 1.769 1.090
    方差百分比/% 35.91 12.64 7.78
    累计贡献率/% 35.91 48.55 56.33
    下载: 导出CSV

    表 4  表层土壤重金属空间自相关分析

    Table 4.  Spatial autocorrelation analysis of heavy metals in surface soil

    项目AsCoCrTFeNiPbSbSnVZn
    方差0.00020.00030.00030.00030.00020.00010.00020.00020.00030.0001
    Z25.3932.1330.8535.629.7224.8930.6127.9135.7514.95
    P0000000000
    指数0.370.510.480.560.460.30.480.440.560.16
    下载: 导出CSV
  • [1]

    Chadwick O A, Brimhall G H, Hendricks D M. 1990. From a black to a gray box— A mass balance interpretation of pedogenesisi[J]. Geomorphology, 3(3/4): 369−390. doi: 10.1016/0169-555X(90)90012-F

    [2]

    Chen Meng, Pan Yongxing, Huang Yixiang, Wang Xiaotong, Zhang Ruidong. 2022. Spatial distribution and source of heavy metals in soil of a typical lead−zinc mining area, Yangshuo[J]. Environmental Science, 43(10): 4545−4555 (in Chinese with English abstract).

    [3]

    Chen Z Y, Zhao Y Y, Chen D L, Huang H T, Zhao Y, Wu Y J. 2023. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China[J]. China Geology, 6: 15−26.

    [4]

    Cheng Hangxin, Peng Min, Zhao Chuandong, Han Wei, Wang Huiyan, Wang Qiaolin, Yang Fan, Zhang Fugui, Wang Chengwen, Liu Fei, Zhou Yalong, Tang Shiqi, Li Kuo, Yang Ke, Yang Zheng, Cheng Xiaomeng, Chen Ziwan, Zhang Hua, Mo Chunhu. 2019. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, Southwest China[J]. Earth Science Frontiers, 26(6): 159−191 (in Chinese with English abstract).

    [5]

    Feng Qianwei, Wang Bing, Ma Xianjie, Jiang Zonghong, Chen Miao. 2020. Characteristics and sources of heavy metal pollution in soils of typical lead-zinc mining areas in northwest Guizhou[J]. Bulletin of Mineralogy, Peteology and Geochemistry, 39(4): 863−870(in Chinese with English abstract).

    [6]

    Guo W J, Zhang Z Y, Wang H, Qin H J, Fu Z Y. 2021. Exposure characteristics of antimony and coexisting arsenic from multi−path exposure in typical antimony mine area[J]. Journal of Environmental Management, 289: 112493. doi: 10.1016/j.jenvman.2021.112493

    [7]

    Gong Cang, Wang Liang, Wang Shunxiang, Zhang Zhixiang, Dong Hang, Liu Jiufen, Wang Dewei, Yan Buqing, Chen Ying. 2022. Spatial differentiation and influencing factor analysis of soil heavy metal content at Town level based on geographical detector[J]. Environmental Science, 43(10): 4566−4577 (in Chinese with English abstract).

    [8]

    Gong Wei, Jiang Xiaodian. 2017. Thermal evolution history and its genesis of the Ailoa Shan−Red River fault zone in the Ailoa Shan and Day Nui Con Voi Massif during Oligocene−Early Miocene[J]. Earth Science, 42(2): 223−239 (in Chinese with English abstract).

    [9]

    Guo Zhijuan, Zhou Yalong, Yang Zheng, Zhao Chuandong, Cheng Hangxin, Kong Mu, Peng Min. 2020. Discussion on key issues of geochemical monitoring of soil heavy metal in Xiong'an New District[J]. Environmental Science, 41(9): 4169−4179 (in Chinese with English abstract).

    [10]

    Hou Lianggang, Yuan Ling, Li Xujin. 2020. The feature and REE prospecting potentialty of Laojiezi alkaline complex body in Yaoan, Yunnan[J]. Yunnan Geology, 39(1): 20−25 (in Chinese with English abstract).

    [11]

    Hou Qingye, Yang Zhongfang, Yu Tao, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Parameters in China [M]. Beijing: Geological Publishing House, 16-2573(in Chinese).

    [12]

    Hu Guipeng, Wei Gangjian, Ma Jinlong, Zeng Ti, Liu Zhifeng. 2017. Mobilization and redistribution of major and trace elements during the process of moderate weathering of carbonates in northern Guangdong, South China[J]. Geochemica, 46(1): 33−45 (in Chinese with English abstract).

    [13]

    Hu Yunzhong, Tang Shanghechun, Wang Haiping, Yang Yueqing, Deng Jian. 1995. Geology of Ailaoshan Gold Mine[M]. Beijing: Geological Publishing House, 1−278(in Chinese).

    [14]

    Ji Z H, Long Z W, Zhang Y, Wang Y K, Pei Y S. 2021. Enrichment differences and source apportionment of nutrients, stable isotopes, and trace mental elements in sediments of complex and fragmented wetland systems[J]. Environmental Pollution, 289: 1−12.

    [15]

    Lai Shuya, Dong Qiuyao, Song Chao, Yang Zhenjing. 2021. Distribution characteristics and ecological risk assessment of soil heavy metals in the Eastern mountainous area of Nanyang Basin[J]. Environmental Science, 42(11): 5500−5509 (in Chinese with English abstract).

    [16]

    Li Desheng, Yang Zhongfang, Jin Zhibin. 2004. Geochemical characters of trace elements of soil from the Taiyuan basin[J]. Geology and Prospecting, 40(3): 86−89 (in Chinese with English abstract).

    [17]

    Li Kuo, Peng Min, Zhao Chuandong, Yang Ke, Zhou Yalong, Liu Fei, Tang Shiqi, Yang Fan, Han Wei, Yang Zheng, Cheng Xiaomeng, Xia Xueqi, Guan Tao, Luo Jianlan, Cheng Hangxin. 2019. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 26(6): 128−158 (in Chinese with English abstract).

    [18]

    Li Minglong. 2021. Geochemical Characteristics and Ecological Effects of Se and Heavy Metals in Supergene Environmental Media: A Case Study of Enshi City, Hubei Province[D]. Chengdu: Chengdu University of Technology, 1−142(in Chinese with English abstract).

    [19]

    Ling Yun, Liu Hanyi, Zhang Xiaoting, Wei Shiqiang. 2023. Characteristics of typical soil acidification and effects of heavy metals speciation and availability in Southwest China[J]. Environmental Science, 44(1): 376−386 (in Chinese with English abstract).

    [20]

    Liu Qing, Xia Jiangbao, Xie Wenjun. 2011. Application of semi-variogram and Moran's I to spatial distribution of trace elements in soil: A case study in Shouguang County[J]. Geomatics and Information Science of Wuhan University, 36(9): 1129−1133 (in Chinese with English abstract).

    [21]

    Liu Shuling, Wu Mei, Liu Zhiyuan, Liu Shuangyan, Liu Yonglin, Zhao Jiayu, Liu Yi. 2023. Soil heavy metal Content, pollution and influencing factors in typical farming areas of Sichuan basin[J]. Environmental Science, 44(1): 347−355 (in Chinese with English abstract).

    [22]

    Liu Yuanyuan, Ma Tengfei, Chen Yang, Yang Xiaofan, Liu Chongxuan. 2021. Scaling behavior of surficial geochemical reactions[J]. Bulletin of Minerallogy, Petrology and Geochemistry, 40(5): 1107−1120(in Chinese with English abstract).

    [23]

    Nesbitt H W. 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 279(5710): 206−210. doi: 10.1038/279206a0

    [24]

    Qin Yuanli, Zhang Fugui, Peng Min, Zhang Shunyao, Ma Honghong, Tang Ruiling, Zhao Zhihui, Cheng Hangxin. 2020. Geochemical distribution characteristics and sources of heavy metals in soils of Wuding County, Yunnan Province[J]. Geology and Exploration, 56(3): 540−550 (in Chinese with English abstract).

    [25]

    Qiu Zhiteng, Ma Wanzhu, Zhang Mingkui. 2020. Formation characteristics of soils developed from metamorphic rocks in the hilly and mountain areas of Southwest Zhejiang Province[J]. Chingese Journal of Soil Science, 51(5): 1009−1015.

    [26]

    Ruxton B P. 1968. Measures of the degree of chemical weathering of rocks[J]. The Journal of Geology, 76(5): 518−527. doi: 10.1086/627357

    [27]

    Sun Hui, Bi Rutian, Guo Ying, Yuan Yuzhi, Chai Min, Guo Zhixing. 2018. Source apportionment analysis of trace metal contamination in soils of Guangdong Province, China[J]. Acta Science Circumstantiae, 38(2): 704−714 (in Chinese with English abstract).

    [28]

    Wang Jianfei. 2016. Lithology-fault ore-controlling characteristics and deep prospecting prediction of 2108 m and 2073 m middle section of Yao'an lead deposit[J]. Kunming: Kunming University of Science and Technology, 1−75(in Chinese with English abstract).

    [29]

    Wang Min, Dong Jiaqi, Bai Longlong, Zhang Yong, Jiang Zhonglong, Jiang Niwen, Wu Jiasen, Zhang Luyao, Fang Jia, Fu Weijun. 2021. Spatial variation and risk assessment of heavy metals in soils of main torreya grandis plantation region in Zhejiang Province[J]. Environmental Science, 42(12): 5949−-5957 (in Chinese with English abstract).

    [30]

    Wang Qiaolin, Song Yuntao, Wang Chengwen, Xu Renting, Peng Min, Zhou Yalong, Han Wei. 2021. Source identification and spatial distribution of soil heavy metals in Western Yunnan[J]. China Environmental Science, 41(8): 3693−3703 (in Chinese with English abstract).

    [31]

    Wang Ruiting, Ouyang Jianping. 2002. The situation and progress of supergenic geochemistry mineral[J]. Mineral Resources and Geology, 16(1): 61−64 (in Chinese with English abstract).

    [32]

    Wu Peng, Yang Hang, Han Runsheng, Jiang Longyan, Jiang Xiaojun, Wang Die, Guan Shenjin. 2019. Signature and geological significance of the specularite from the Laojiezi Pb−Ag deposit in the Chuxiong basin, central Yunnan, SW China[J]. Acta Petrologica Sinica, 35(5): 1489−1502 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.05.11

    [33]

    Wu Xiyong, Luo Jian, Wei Youyi. 2004. Research of rocks weathering and chemical composition of rock[J]. Geology and Prospecting, 40(4): 85−88 (in Chinese with English abstract).

    [34]

    Wu Yongfeng, Liu Congqiang, Tu Chenglong. 2008. Speciation of heavy metals in urban soil of Guiyang[J]. Acta Mineralogical Sinica, 28(2): 177−180 (in Chinese with English abstract).

    [35]

    Xia Zenglu. 1994. Factors affecting regional differentiation of critical levels and environmental capacities of some heavy metals in main soil types of China[J]. Acta Pedologica Sinica, 31(2): 161−169 (in Chinese with English abstract).

    [36]

    Xu Jianming. 2019. Soil Science (Fourth Edition) [M]. Beijing: China Agriculture Press, 50−80(in Chinese).

    [37]

    Xu Lei, Huang Jiazhong, Zhang Ya, Xiang Jingwei, Ye Lei, Yang Minglong, Duan Xingwu, Guan Jiyun. 2022. Sources and influencing factors of soil heavy metals in the high mountain and hilly area of central Yunnan: Taking Wuding County as an example[J]. Chinese Agricultural Science Bulletin, 38(1): 82−92 (in Chinese with English abstract).

    [38]

    Yang Jianzhou, Gong Jingjing, Wang Zhenliang, Gao Jianweng, Yang Jiankun, Hu Shuqi, Tang Shixin. 2022. Enrichment factors, health risks and source identification of heavy metals in agricultural soils in semi−arid region of Hainan Island[J]. Environmental Science, 43(10): 4590−4600 (in Chinese with English abstract).

    [39]

    Yang Ling, Tian Lei, Bai Guangyu, Pei Shengliang, Zhang Deqiang. 2022. Ecological risk assessments and source analysis of heavy metals in the soil of Xin Barag Youqi, Inner Mongolia[J]. Geology in China, 49(6): 1970−1983 (in Chinese with English abstract).

    [40]

    Yuan G L, Sun T H, Han P, Li J, Lang X X. 2014. Source identification and ecological risk assessment of heavy melals in topsoil using environmental geochemical mapping: Typical urban renewal arca in Beijing, China[J]. Journal of Geochemical Exploration, 136: 40−47. doi: 10.1016/j.gexplo.2013.10.002

    [41]

    Zhang C S, Luo L, Xu W L, Valerie L. 2008. Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland[J]. Science of the Total Environment, 398(1/3): 212−221. doi: 10.1016/j.scitotenv.2008.03.011

    [42]

    Zhang Pengyan, Qin Mingzhou, Chen Long, Hu Changhui, Zhao Yaping, Dong Wenjun. 2013. Study on distribution characteristics and potential ecological risk of soil heavy metals in the Yellow river beach region in Kaifeng City[J]. Environmental Science, 34(9): 3654−3662 (in Chinese with English abstract).

    [43]

    Zhang Xiangnian, Xin Cunlin, Li Chunliang. 2010. Geochemical characteristics of heavy metal’s contamination and it’s surface geochemical mechanism in Baiyin City, Gansu Province[J]. Geological Science and Technology Information, 29(4): 124−131 (in Chinese with English abstract).

    [44]

    Zhao Kai. 2014. Geochemistry of Ore-forming Processes in the Ailaoshan Orogenic Gold Belt, West Yunnan[D]. Beijing: China University of Geosciences (Beijing), 1−164(in Chinese with English abstract).

    [45]

    Zhao L, Xu Y F, Hou H, Shangguan Y X, Li F S. 2014. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China[J]. Science of the Total Environment, 468/469: 654−662.

    [46]

    Zhao Xinna, Yang Zhongfang, Yu Tao. 2023. Review on heavy metal pollution and remediation technology in the soil of mining areas[J]. Geology in China, 50(1): 84−101 (in Chinese with English abstract).

    [47]

    Zhao Yulong, Sun Zhongyuan, Li Pengxiao. 2021. Geochemical characteristics of soil and prospecting prediction of Niutougou gold deposit in western Henan[J]. Western Resources, 63(5): 180−183 (in Chinese with English abstract).

    [48]

    Zheng Fei, Guo Xin, Tang Mingyang, Zhu Dong, Dong Sijun, Kangle, Chen Bing. 2022. Distribution characteristics and ecological risk assessment of heavy metals in Baiyangdian Lake[J]. Environmental Science, 43(10): 4556−4565 (in Chinese with English abstract).

    [49]

    Zhu Y M, Yang J G, Wang L Z, Lin Z T, Dai J X, Wang R J, Yu Y S, Liu H, Christopher R, Feng R W. 2020. Factors influencing the uptake and speciation transformation of antimony in the soil−plant system, and the redistribution and toxicity of antimony in plants[J]. Science of the Total Environment, 738: 140232. doi: 10.1016/j.scitotenv.2020.140232

    [50]

    陈盟, 潘泳兴, 黄奕翔, 王櫹橦, 张睿东. 2022. 阳朔典型铅锌矿区流域土壤重金属空间分布特征及来源解析[J]. 环境科学, 43(10): 4545−4555.

    [51]

    成杭新, 彭敏, 赵传冬, 韩伟, 王惠艳, 王乔林, 杨帆, 张富贵, 王成文, 刘飞, 周亚龙, 唐世琪, 李括, 杨柯, 杨峥, 成晓梦, 陈子万, 张华, 莫春虎. 2019. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 26(6): 159−191.

    [52]

    冯乾伟, 王兵, 马先杰, 蒋宗宏, 陈淼. 2020. 黔西北典型铅锌矿区土壤重金属污染特征及其来源分析[J]. 矿物岩石地球化学通报, 39(4): 863−870.

    [53]

    龚仓, 王亮, 王顺祥, 张志翔, 董航, 刘玖芬, 王德伟, 严步青, 陈映. 2022. 基于地理探测器的镇域尺度土壤重金属含量空间分异及其影响因素分析[J]. 环境科学, 43(10): 4566−4577.

    [54]

    宫伟, 姜效典. 2017. 哀牢山—红河断裂带哀牢山—大象山段渐新世—早中新世热史演化及成因[J]. 地球科学, 42(2): 223−239.

    [55]

    郭志娟, 周亚龙, 杨峥, 赵传冬, 成杭新, 孔牧, 彭敏. 2020. 雄安新区土壤重金属地球化学监测关键问题探讨[J]. 环境科学, 41(9): 4169−4179.

    [56]

    侯良刚, 袁玲, 李徐瑾. 2020. 云南姚安县老街子碱性杂岩体特征及稀土找矿前景[J]. 云南地质, 39(1): 20−25. doi: 10.3969/j.issn.1004-1885.2020.01.005

    [57]

    侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社, 16−2573.

    [58]

    虎贵朋, 韦刚健, 马金龙, 曾提, 刘志锋. 2017. 粤北碳酸盐岩化学风化过程中的元素地球化学行为[J]. 地球化学, 46(1): 33−45. doi: 10.3969/j.issn.0379-1726.2017.01.004

    [59]

    胡云中, 唐尚鹑, 王海平, 杨岳清, 邓坚. 1995. 哀牢山金矿地质[M]. 北京: 地质出版社, 1−278.

    [60]

    赖书雅, 董秋瑶, 宋超, 杨振京. 2021. 南阳盆地东部山区土壤重金属分布特征及生态风险评价[J]. 环境科学, 42(11): 5500−5509.

    [61]

    李德胜, 杨忠芳, 靳职斌. 2004. 太原盆地土壤微量元素的地球化学特征[J]. 地质与勘探, 40(3): 86−89. doi: 10.3969/j.issn.0495-5331.2004.03.019

    [62]

    李括, 彭敏, 赵传冬, 杨柯, 周亚龙, 刘飞, 唐世琪, 杨帆, 韩伟, 杨峥, 成晓梦, 夏学齐, 关涛, 骆检兰, 成杭新. 2019. 全国土地质量地球化学调查二十年[J]. 地学前缘, 26(6): 128−158.

    [63]

    李明龙. 2021. 表生环境介质中硒与重金属的地球化学特征及生态效应研究—以湖北省恩施市为例[D]. 成都: 成都理工大学, 1−142.

    [64]

    凌云, 刘汉燚, 张小婷, 魏世强. 2023. 西南地区典型土壤酸化特征及其与重金属形态活性的耦合关系[J]. 环境科学, 44(1): 376−386.

    [65]

    刘庆, 夏江宝, 谢文军. 2011. 半方差函数与Moran’s I在土壤微量元素空间分布研究中的应用—以寿光市为例[J]. 武汉大学学报(信息科学版), 36(9): 1129−1133.

    [66]

    刘属灵, 吴梅, 刘志远, 刘双燕, 刘永林, 赵家宇, 刘怡. 2023. 四川盆地典型农耕区土壤重金属含量、污染及其影响因素[J]. 环境科学, 44(1): 347−355.

    [67]

    刘媛媛, 马腾飞, 陈旸, 杨晓帆, 刘崇炫. 2021. 表生地球化学反应的尺度效应[J]. 矿物岩石地球化学通报, 40(5): 1107−1120.

    [68]

    秦元礼, 张富贵, 彭敏, 张舜尧, 马宏宏, 唐瑞玲, 赵智慧, 成杭新. 2020. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探, 56(3): 540−550. doi: 10.12134/j.dzykt.2020.03.007

    [69]

    邱志腾, 麻万诸, 章明奎. 2020. 浙西南丘陵山地变质岩发育土壤的成土特征[J]. 土壤通报, 51(5): 1009−1015.

    [70]

    孙慧, 毕如田, 郭颖, 袁宇志, 柴敏, 郭治兴. 2018. 广东省土壤重金属溯源及污染源解析[J]. 环境科学学报, 38(2): 704−714.

    [71]

    王建飞. 2016. 云南姚安铅矿床2108m和2073m中段岩性—断裂控矿特征及深部找矿预测[D]. 昆明: 昆明理工大学, 1−75.

    [72]

    王敏, 董佳琦, 白龙龙, 张勇, 蒋仲龙, 姜霓雯, 吴家森, 张璐瑶, 方嘉, 傅伟军. 2021. 浙江省香榧主产区土壤重金属空间异质性及其生态风险[J]. 环境科学, 42(12): 5949−5957.

    [73]

    王乔林, 宋云涛, 王成文, 徐仁廷, 彭敏, 周亚龙, 韩伟. 2021. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 41(8): 3693−3703. doi: 10.3969/j.issn.1000-6923.2021.08.026

    [74]

    王瑞廷, 欧阳建平. 2002. 表生地球化学研究现状及进展[J]. 矿产与地质, 16(1): 61−64. doi: 10.3969/j.issn.1001-5663.2002.01.019

    [75]

    吴鹏, 杨航, 韩润生, 姜龙燕, 江小均, 王蝶, 管申进. 2019. 滇中楚雄盆地老街子铅−银矿床镜铁矿特征及地质意义[J]. 岩石学报, 35(5): 1489−1502.

    [76]

    巫锡勇, 罗健, 魏有仪. 2004. 岩石风化与岩石化学成分的变化研究[J]. 地质与勘探, 40(4): 85−88.

    [77]

    武永锋, 刘丛强, 涂成龙. 2008. 贵阳城市土壤重金属元素形态分析[J]. 矿物学报, 28(2): 177−180. doi: 10.3321/j.issn:1000-4734.2008.02.010

    [78]

    夏增禄. 1994. 中国主要类型土壤若干重金属临界含量和环境容量区域分异的影响[J]. 土壤学报, 31(2): 161−169.

    [79]

    徐建明. 2019. 土壤学(第四版)[M]. 北京: 中国农业出版社, 50−80.

    [80]

    徐磊, 黄加忠, 张亚, 向经纬, 叶雷, 杨明龙, 段兴武, 管继云. 2022. 滇中高山丘陵区土壤重金属来源及影响因素—以武定县为例[J]. 中国农学通报, 38(1): 82−92.

    [81]

    杨剑洲, 龚晶晶, 王振亮, 高健翁, 杨建坤, 胡树起, 唐世新. 2022. 海南岛半干旱区农用地土壤重金属富集因素、健康风险及来源识别[J]. 环境科学, 43(10): 4590−4600.

    [82]

    杨玲, 田磊, 白光宇, 裴圣良, 张德强. 2022. 内蒙古新巴尔虎右旗土壤重金属生态风险与来源分析[J]. 中国地质, 49(6): 1970−1983.

    [83]

    张鹏岩, 秦明周, 陈龙, 胡长慧, 赵亚平, 董文君. 2013. 黄河下游滩区开封段土壤重金属分布特征及其潜在风险评价[J]. 环境科学, 34(9): 3654−3662.

    [84]

    张祥年, 辛存林, 李春亮. 2010. 甘肃省白银市土壤重金属污染地球化学特征及其表生地球化学成因[J]. 地质科技情报, 29(4): 124−131.

    [85]

    赵凯. 2014. 滇西哀牢山造山带金成矿作用地球化学[D]. 北京: 中国地质大学(北京), 1−164.

    [86]

    赵鑫娜, 杨忠芳, 余涛. 2023. 矿区土壤重金属污染及修复技术研究进展[J]. 中国地质, 50(1): 84−101.

    [87]

    赵玉龙, 孙中原, 李鹏霄. 2021. 豫西牛头沟金矿土壤地球化学特征及找矿预测[J]. 西部资源, 63(5): 180−183.

    [88]

    郑飞, 郭欣, 汤名扬, 朱冬, 董四君, 康乐, 陈兵. 2022. 白洋淀及周边土壤重金属的分布特征及生态风险评估[J]. 环境科学, 43(10): 4556−4565.

  • 加载中

(13)

(4)

计量
  • 文章访问数:  1469
  • PDF下载数:  110
  • 施引文献:  0
出版历程
收稿日期:  2023-04-27
修回日期:  2023-06-16
刊出日期:  2024-01-25

目录