New Progress in Exploration and Development of Global Li-Be-Nb-Ta Resources
-
摘要:
这是一篇矿业工程领域的论文。锂铍铌钽,既是重要紧缺性稀有金属,也是新兴战略性产业的关键矿产,在成矿规律和勘探开发领域既有共性也有个性并有新的发展。本文力求尽量全面和准确地衡量和评价锂铍铌钽全球资源量和储量数据,及时反映勘探开发新形势和技术新进展。花岗伟晶岩多旋回成矿理论获得重要勘探突破,南美盐湖锂矿技术产量双释放临近,粘土岩和地热卤水提锂增储潜力巨大,碱性-过碱性火山成因-伟晶岩侵入型铌钽成矿在美洲和青藏地区研究深入,中国锂铍矿勘探获重大系列突破,鄂西北铌钽稀土等资源基地建设或可借鉴北美Nechalacho铌钽稀土矿床的勘探和开发经验。本文基于锂铍铌钽矿床和典型案例剖析,提出多期热事件多旋回岩浆分异出熔可能是大型-特大型矿床的关键条件。
Abstract:This is an article in the field of mining engineering. Li-Be-Nb-Ta are not only the important highly-demanded rare metals, but also key minerals in emerging strategic industries. They have both commonality and individuality in mineralization mechanism and R&D with new progress. This article aims to comprehensively and accurately measure and evaluate the global resource and reserve data of Li-Be-Nb-Ta, and timely reflect new developments in exploration and development and technological progress. The multi-cycle metallogenic theory of granite pegmatite has made important breakthrough in exploration, the technical output of lithium deposits in South American salt lakes is approaching, the potential for lithium extraction and storage increase in clay rocks and geothermal brines is increasing, the alkaline-peralkaline volcanic intrusive pegmatite type Nb-Ta mineralization has been highlighted in the Americas and the Qinghai-Xizang region, and the exploration of Li-Be deposits in mainland China has made important breakthroughs. The construction of the resource base for Nb-Ta-REE in northwest Hubei can learn from the progress and experience of enterprise level exploration and testing such as Avalon Rare Metals Company in North America. Based on the analysis of 1396 lithium beryllium niobium tantalum deposits and typical cases in the world, this article proposes that multi stage thermal events and multi cycle magmatic differentiation and melting may be the key conditions for large to super large deposits.
-
-
图 1 全球铌钽矿床品位和吨位(按矿床类型)[18]
Figure 1.
图 3 稀有金属伟晶岩与花岗岩深时关系[26]
Figure 3.
图 4 全球克拉通与伟晶岩矿床时空关系[25]
Figure 4.
图 5 岩浆演化与稀有金属分异机制[25]
Figure 5.
表 1 大型超大型锂铍铌钽矿床类型
Table 1. Types of large super-large lithium-beryllium-niobium-tantalum deposits
类型 矿体位置 赋存矿种 大型和特大型矿床实例 伟晶岩型 大部分成群成雁列型式沿走向和
倾向分布,有时独立存在锂、锡、铯、铍、铷、钽、铌 Greenbushes,Wodgina,
Vishnyakovskoe,Kenticha花岗岩型 位于锂-氟花岗岩顶部,岩株状,
有时板状块体锡、锂、萤石、铯、铷、铌、钨 Nuweibi,Etyka,Echassieres,
Abu Dabbab碱性花岗岩型 矿化在整个碱性花岗岩、正长岩、粗面
斑岩岩株和熔岩凝灰岩层中几乎均匀分布铌、锆、稀土、锡、萤石、
冰晶石、铀、锂Ulug-Tanzek,Ghurayyah,Pitinga,
Toongi,Halzan Buregtei霞石正长岩型 矿化层在层状钠质杂岩剖面中重复出现;
岩墙,霞石正长岩的伟晶岩中也发育矿化锆、稀土、铌、钽、钛、铀 Tanbreez,Lovozero,Nechalacho,
Motzfeldt碳酸岩型 碳酸岩杂岩或相邻硅酸盐矿化体及风化壳 铌、钽、磷、稀土、铁、铀 Mabouni,Upper Fir,MtWeld -
[1] 王登红, 刘丽君, 代鸿章, 等. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向[J]. 地球科学, 2017, 42(12):2243-2257.WANG D H, LIU L J, DAI H Z, et al. Discussion on particularity and prospecting direction of large and super-large spodumene deposits[J]. Earth Sciences, 2017, 42(12):2243-2257.
WANG D H, LIU L J, DAI H Z, et al. Discussion on particularity and prospecting direction of large and super-large spodumene deposits[J]. Earth Sciences, 2017, 42(12):2243-2257.
[2] 徐璐, 杨耀辉, 颜世强, 等. 我国黏土型锂矿提锂研究现状及前景展望[J]. 矿产综合利用, 2023(4):12-18.XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002
XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002
[3] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209.WANG D H. Study on critical mineral resources: significance, of research, determination of types, attributes of resources, progress of prospecting, problems of utilization and direction of exploitation[J]. Journal of Geology, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
WANG D H. Study on critical mineral resources: significance, of research, determination of types, attributes of resources, progress of prospecting, problems of utilization and direction of exploitation[J]. Journal of Geology, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
[4] 许志琴, 朱文斌, 郑碧海, 等. 新能源锂矿战略与大陆动力学研究[J]. 地质学报, 2021, 10:5-22.XU Z Q, ZHU W B, ZHENG B H, et al. New energy strategy for lithium resources and the continental dynamics research[J]. Acta Geologica Sinica, 2021, 10:5-22.
XU Z Q, ZHU W B, ZHENG B H, et al. New energy strategy for lithium resources and the continental dynamics research[J]. Acta Geologica Sinica, 2021, 10:5-22.
[5] 邢凯, 朱清, 任军平, 等. 全球锂资源特征及市场发展态势分析[J]. 地质通报, 2023, 42(8):1402-1421.XING K, ZHU Q, REN J P, et al. Research on the characteristics and market development trend of global lithium resources[J]. Geological Bulletin of China, 2023, 42(8):1402-1421. doi: 10.12097/j.issn.1671-2552.2023.08.012
XING K, ZHU Q, REN J P, et al. Research on the characteristics and market development trend of global lithium resources[J]. Geological Bulletin of China, 2023, 42(8):1402-1421. doi: 10.12097/j.issn.1671-2552.2023.08.012
[6] 左更. 我国稀缺性战略金属资源保供稳供问题的思考——以钽、铌、铬、钴为例[J]. 中国国土资源经济, 2023, 36(9):4-13+23.ZUO G. Thinking on the problem of stable supply of scarce strategic metal resources in China-take tantalum, niobium, chromium and cobalt for example[J]. Natural Resource Economics of China, 2023, 36(9):4-13+23.
ZUO G. Thinking on the problem of stable supply of scarce strategic metal resources in China-take tantalum, niobium, chromium and cobalt for example[J]. Natural Resource Economics of China, 2023, 36(9):4-13+23.
[7] 茹阳阳, 吴可仲. “锂佩克”呼声再起 全球锂供应体系深刻变局已开启[N]. 中国经营报, 2022-12-05(B08).RU Y Y, WU K Z. The global lithium supply system has begun [N]. China Business News, 2022-12-05 (B08).
RU Y Y, WU K Z. The global lithium supply system has begun [N]. China Business News, 2022-12-05 (B08).
[8] 邓伟, 颜世强, 谭洪旗, 等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 2023(1):148-154.DENG W, YAN S Q, TAN H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1):148-154. doi: 10.3969/j.issn.1000-6532.2023.01.020
DENG W, YAN S Q, TAN H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1):148-154. doi: 10.3969/j.issn.1000-6532.2023.01.020
[9] 李娜, 高爱红, 王小宁. 全球铍资源供需形势及建议[J]. 中国矿业, 2019, 28(4):69-73.LI N, GAO A H, WANG X N. Global Beryllium supply and demand trend and its enlightenment[J]. China Mining Industry, 2019, 28(4):69-73. doi: 10.12075/j.issn.1004-4051.2019.04.028
LI N, GAO A H, WANG X N. Global Beryllium supply and demand trend and its enlightenment[J]. China Mining Industry, 2019, 28(4):69-73. doi: 10.12075/j.issn.1004-4051.2019.04.028
[10] 邓攀, 陈玉明, 叶锦华, 等. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业, 2019, 28(4):63-68.DENG P, CHEN Y M, YE J H, et al. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine, 2019, 28(4):63-68. doi: 10.12075/j.issn.1004-4051.2019.04.029
DENG P, CHEN Y M, YE J H, et al. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine, 2019, 28(4):63-68. doi: 10.12075/j.issn.1004-4051.2019.04.029
[11] 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1): 1-9.WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6.
WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6.
[12] 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120.WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019
WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019
[13] 隰弯弯, 赵宇浩, 倪培, 等. 锂矿主要类型、特征、时空分布及找矿潜力分析[J]. 沉积与特提斯地质, 2023, 43(1):19-35.XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethys Geology, 2023, 43(1):19-35. doi: 10.3969/j.issn.1009-3850.2023.01.002
XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethys Geology, 2023, 43(1):19-35. doi: 10.3969/j.issn.1009-3850.2023.01.002
[14] T R Benson, M. A Coble, John H. Dilles, Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones [J]. Science Advances. 9, eadh8183 (2023).
[15] 刘成林, 余小灿, 袁学银, 等等. 世界盐湖卤水型锂矿特征、分布规律与成矿动力模型[J]. 地质学报, 2021, 95(7):2009-2029.LIU C L, YU X C, YUAN X Y, et al. Characteristics, distribution regularity and formation model of Brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 2021, 95(7):2009-2029. doi: 10.3969/j.issn.0001-5717.2021.07.001
LIU C L, YU X C, YUAN X Y, et al. Characteristics, distribution regularity and formation model of Brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 2021, 95(7):2009-2029. doi: 10.3969/j.issn.0001-5717.2021.07.001
[16] 韩佳欢, 郑绵平, 乜贞, 等. 我国深层地下卤水钾、锂资源及其开发前景[J]. 盐湖研究, 1-11.HAN J H, ZHENG M P, NIE Z, et al. Lithium and potassium resources of oilfield brine and development prospects in China [J]. Journal of Salt Lake Research, 1-11.
HAN J H, ZHENG M P, NIE Z, et al. Lithium and potassium resources of oilfield brine and development prospects in China [J]. Journal of Salt Lake Research, 1-11.
[17] 梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11):6-10+17.LIANG F, ZHAO T, WANG D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11):6-10+17. doi: 10.12075/j.issn.1004-4051.2018.11.011
LIANG F, ZHAO T, WANG D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11):6-10+17. doi: 10.12075/j.issn.1004-4051.2018.11.011
[18] Schulz, K. J. , Piatak, N. M. , Papp, J. F. 2017, Niobium and Tantalum, chap. M of Schulz, K. J. , DeYoung, J. H. , Jr. , Seal, R. R. , II, and Bradley, D. C. , eds. , Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U. S. Geological Survey Professional Paper 1802, p. M1– M34.
[19] Trueman D. L. , Pedersen J. C. , de St. Jorre L. , et al. 1988. The Thor Lake rare-metal deposits, Northwest Territories. In: Recent Advances in theGeology of Granite-Related Mineral Deposits, Special Volume 39 (eds R. P. Taylor and D. F. Strong), pp. 280–290. The Canadian Institute of Mining and Metallurgy.
[20] Simandl, G. J. , 2014, Geology and market-dependent significance of rare earth element resources: Mineralium Deposita, v. 49, p. 889–904, https://doi.org/10.1007/s00126-014-0546-z.
[21] Mackay, D. A. R. , Simandl, G. J. , 2015, Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits: Geochemistry: Exploration, Environment, Analysis, v. 15, p. 167–178, https://doi.org/10.1144/geochem2014-289.
[22] Thomas, M. D. , Ford, K. L. , Keating, P. , Review paper: Exploration geophysics for intrusion-hosted rare metals, European Association of Geoscientists & Engineers, Geophysical Prospecting, 2016, 64, 1275–1304.
[23] Bastos, Neto A. C. , Pereira, V. P. , Ronchi, L. H. , et al. The world class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas state, Brazil, Can. Mineral. , 2009, vol. 47, pp. 1329–1357.
[24] A. V. Tkacheva, D. V. Rundqvista, N. A. Vishnevskayaa. Global Metallogeny of Tantalum Through Geological Time, 2019. GEOLOGY OF ORE DEPOSITS Vol. 61 No. 6.
[25] Dittrich Thomas, Thomas Seifert, Bernhard Schulz, et al. 2019. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia. Geology and Metallogeny of Pollucite Mineralisations. Springer, 1-94.
[26] Richards, J. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geosci 6, 911-916 (2013). https://doi.org/10.1038/ngeo1920.
[27] Frank Melcher, Torsten Graupner, Hans-Eike Gäbler, et al. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology, Ore Geology Reviews, Volume 64, 2015, Pages 667-719.
[28] Černý, P. , London, D. , Novák, M. , 2012. Granitic pegmatites as reflections of their sources. Elements 8, 289–294.
[29] Fetherston, J. M. , 2004. Tantalum in Western Australia. Mineral Res. Bull. , 22. Geological Survey of Western Australia (153 S. ).
[30] Bradley, Dwight, and McCauley, Andrew, 2013, A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites: US Geological Survey Open-File Report 2013-1008, 7p. [Also available at http://pubs.usgs.gov/of/2013/1008/.]
[31] Bradley DC, McCauley A, Stillings LM (2017) Mineral-deposit model for Lithium–Cesium–Tantalum pegmatites. USGS Scientific Investigations Report 2010-5070-O, 48 pp.
[32] 郭春丽, 张斌武, 郑义, 等. 中国花岗岩型锂矿床: 重要特征、成矿条件及形成机制[J]. 岩石学报, 2024, 40(2):347-403.GUO C L, ZHANG B W, ZHENG Y, et al. Granite-type lithium deposits in China: Important characristics, metallogenic conditions, and genetic mechanism[J]. Acta Petrologica Sinica, 2024, 40(2):347-403. doi: 10.18654/1000-0569/2024.02.02
GUO C L, ZHANG B W, ZHENG Y, et al. Granite-type lithium deposits in China: Important characristics, metallogenic conditions, and genetic mechanism[J]. Acta Petrologica Sinica, 2024, 40(2):347-403. doi: 10.18654/1000-0569/2024.02.02
[33] S B Castor, C D. Henry, Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: Geologic, mineralogical, and geochemical characteristics and possible origin[J]. Minerals 10, 68 (2020).
[34] 刘舒飞, 陈德稳, 李会谦. 中国锂资源产业现状及对策建议[J]. 资源与产业, 2016, 18(2):12-15.LIU S F, CHEN D W, LI H Q. Situation and suggestions of China’s lithium resources and industry[J]. Resources & Industry, 2016, 18(2):12-15.
LIU S F, CHEN D W, LI H Q. Situation and suggestions of China’s lithium resources and industry[J]. Resources & Industry, 2016, 18(2):12-15.
[35] 郑绵平, 刘喜方, 赵文. 西藏高原盐湖的构造地球化学和生物学研究[J]. 地质学报, 2007(12):1698-1708.ZHENG M P, LIU X F, ZHAO W. Tectonogeochemical and biological aspects of salt lakes on the Tibetan Plateau[J]. Acta Geologica Sinica, 2007(12):1698-1708. doi: 10.3321/j.issn:0001-5717.2007.12.010
ZHENG M P, LIU X F, ZHAO W. Tectonogeochemical and biological aspects of salt lakes on the Tibetan Plateau[J]. Acta Geologica Sinica, 2007(12):1698-1708. doi: 10.3321/j.issn:0001-5717.2007.12.010
[36] Woolley A R, Bailey D K. The crucial role of lithospheric structure in the generation and release of carbonatites—geological evidence[M]. Mineralogical Magazine, 2012, 259–270. [http://dx. doi.org/10.1180/minmag.2012.076.2.02.]
[37] 王登红, 吴西顺. 21世纪的能源金属-锂的奥秘[J]. 国土资源科普与文化, 2017(4):22-27.WANG D H, WU X S. The mystery of the energy metal - lithium in the 21st century[J]. Scientific and Cultural Popularization of Land and Resources, 2017(4):22-27.
WANG D H, WU X S. The mystery of the energy metal - lithium in the 21st century[J]. Scientific and Cultural Popularization of Land and Resources, 2017(4):22-27.
[38] 刘雪, 王春连, 刘学龙, 等. 中国锂矿床主要类型特征、分布情况及开发利用现状[J/OL]. 中国地质, 1-29[2024-02-01].LIU X, WANG C L, LIU X L, et al. Characteristics of main types of lithium deposits in China, their distribution and current status of development and utilisation [J/OL]. Geology in China, 1-29[2024-02-01].
LIU X, WANG C L, LIU X L, et al. Characteristics of main types of lithium deposits in China, their distribution and current status of development and utilisation [J/OL]. Geology in China, 1-29[2024-02-01].
[39] Sanjuan B, Gourcerol B, Millot R, et al. Lithium-richgeothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources[J]. Geothermics, 101: 102385.
-