用含钛高炉渣制备高强度陶瓷材料

李书钦, 华绍广, 李香梅, 裴德健, 汪大亚. 用含钛高炉渣制备高强度陶瓷材料[J]. 矿产综合利用, 2024, 45(6): 47-53. doi: 10.3969/j.issn.1000-6532.2024.06.008
引用本文: 李书钦, 华绍广, 李香梅, 裴德健, 汪大亚. 用含钛高炉渣制备高强度陶瓷材料[J]. 矿产综合利用, 2024, 45(6): 47-53. doi: 10.3969/j.issn.1000-6532.2024.06.008
LI Shuqin, HUA Shaoguang, LI Xiangmei, PEI Dejian, WANG Daya. Preparation of High Strength Ceramic Materials from Titanium-bearing Blast Furnace Slags[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 47-53. doi: 10.3969/j.issn.1000-6532.2024.06.008
Citation: LI Shuqin, HUA Shaoguang, LI Xiangmei, PEI Dejian, WANG Daya. Preparation of High Strength Ceramic Materials from Titanium-bearing Blast Furnace Slags[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 47-53. doi: 10.3969/j.issn.1000-6532.2024.06.008

用含钛高炉渣制备高强度陶瓷材料

  • 基金项目: 安徽省重点研究与开发计划项目(202104i07020008)
详细信息
    作者简介: 李书钦(1985-),男,正高级工程师,主要从事固废资源化利用与矿山生态修复
  • 中图分类号: TD981

Preparation of High Strength Ceramic Materials from Titanium-bearing Blast Furnace Slags

  • 这是一篇矿物材料领域的论文。为了探索含钛高炉渣在陶瓷领域的大宗和高值的应用,通过基于CaO-SiO2-MgO(15%)-Al2O3相图设计,和对制备试样的物理性能、物相组成、微观结构分析,证实了用含钛高炉渣可以制备高强度的陶瓷材料。所制备的高强度陶瓷,属于低硅辉石质陶瓷,主要物相为辉石、碱玄岩钙钠长石、钙钛矿和铁板钛矿,其中辉石的含量随烧成温度的升高而逐渐增大,钙钛矿源自于原料,随烧成温度的提高而逐渐减少。钙钛矿分解后的Ti元素固溶于辉石中,但未能实现替代Si的位置,而是存在于M1的位置,Ti元素的固溶于辉石和碱玄岩中,提高试样的烧结温度。本文较佳的陶瓷试样中的含钛高炉渣掺量高达55%,其强度可达75.51 MPa,高于标准35 MPa;较佳烧结温度为1 150 ℃,利于节能生产,论证了利用含钛高炉渣制备高强陶瓷材料的可行,为含钛高炉渣在陶瓷领域的应用提供理论基础。

  • 加载中
  • 图 1  含钛高炉渣矿物组成

    Figure 1. 

    图 2  含钛高炉渣陶瓷试样的吸水率和抗折强度

    Figure 2. 

    图 3  含钛高炉渣陶瓷试样在不同温度下的物相分析

    Figure 3. 

    图 4  1#样品不同烧成温度下的陶瓷试样SEM(x500)

    Figure 4. 

    图 5  2#样品不同烧成温度下的陶瓷试样的SEM(x500)

    Figure 5. 

    图 6  3#不同温度的试样SEM(x500)

    Figure 6. 

    表 1  实验原料的化学组成/%

    Table 1.  Chemical composition of the test raw materials

    原料 CaO Al2O3 SiO2 MgO Fe2O3 TiO2 Cr2O3 Na2O K2O 合计
    含钛高炉渣 27.67 11.34 25.90 8.03 3.42 21.09 0.12 0.29 0.74 98.60
    石英 0.06 0.75 98.56 0.03 0.17 0.11 0.00 0.00 0.27 99.95
    滑石 3.57 0.25 61.77 34.00 0.23 0.00 0.00 0.00 0.02 99.84
    粘土 7.65 17.54 62.34 4.98 2.87 0.18 0.04 0.38 3.50 99.48
    下载: 导出CSV

    表 2  实验原料配比

    Table 2.  Experimental raw material proportioning system

    编号含钛高炉渣石英滑石莱阳土
    1#55%5%25%15%
    2#60%5%20%15%
    3#60%0%25%15%
    下载: 导出CSV

    表 3  含钛高炉渣陶瓷主要物相组成

    Table 3.  Main phase composition of Ti-bearing blast furnace slag ceramics

    名称化学式
    石英QuartzSiO2
    赤铁矿HematiteFe2O3
    钙钛矿PerowskiteCaTiO3
    铁板钛矿PseudobrookiteFe2Ti2O5
    钙钠长石Anorthite sodian(Na0.45Ca0.55)(Al1.55Si2.45)O8
    辉石(Pyroxene)PyroxeneMg0.89Fe0.08Al0.20Cr0.04Ti0.01Ca0.76Na0.10Si1.92O6
    AugiteCa(Mg0.7Al0.3)((Si1.7Al0.3)O6)
    AugiteMg0.927Ca0.818Al0.078Fe0.069Na0.06Cr0.04Ti0.008Si2O6
    FassaiteCa0.968Mg0.578Fe0.230Ti0.059Al0.433Si1.728O6
    DiopsideCaMgSi2O6
    Diopside ferroan(Mg0.992Fe0.008)(Ca0.999Mg0.03)Si2O6
    碱玄岩Tephrite(Mg,Fe,Al,Ti)(Ca,Na,Fe,Mg)(SiAl)2O6
    Phonotephrite(Mg,Fe,Al,Ti,Cr)(Ca,Na,Fe,Mg)(SiAl)2O6
    Alkali basalt(Mg,Fe,Al,Ti)(Ca,Na,Fe)(SiAl)2O6
    下载: 导出CSV
  • [1]

    高洋. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019(1):6-10.GAO Y. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.

    GAO Y. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.

    [2]

    罗同俊, 王杜槟, 陈启超, 等. 川威高钛矿渣性能分析研究[J]. 矿产综合利用, 2019(5):94-97.LUO T J, WANG D B, CHEN Q C, et al. Research on Chuanwei high titanium slag[J]. Multipurpose Utilization of Mineral Resources, 2019(5):94-97.

    LUO T J, WANG D B, CHEN Q C, et al. Research on Chuanwei high titanium slag[J]. Multipurpose Utilization of Mineral Resources, 2019(5):94-97.

    [3]

    许莹, 李单单, 杨姗姗, 等. 含钛高炉渣综合利用研究进展[J]. 矿产综合利用, 2021(1):23-31.XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-31.

    XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-31.

    [4]

    严芳, 李春, 梁斌. 水淬含钛高炉渣二段酸解工艺[J]. 过程工程学报, 2006(6):413-417.YAN F, LI C, LIANG B. A two-stage sulfuric acid leaching process of Ti-bearing blast furnace slag[J]. The Chinese Journal of Process Engineering, 2006(6):413-417.

    YAN F, LI C, LIANG B. A two-stage sulfuric acid leaching process of Ti-bearing blast furnace slag[J]. The Chinese Journal of Process Engineering, 2006(6):413-417.

    [5]

    周志明, 张丙怀, 朱子宗. 高钛型高炉渣的渣钛分离试验[J]. 钢铁钒钛, 1999, 20(4):35-38.ZHOU Z M, ZHANG B H, ZHU Z Z. A test of titania separation from high titania bearing blast furnace slag[J]. Iron Steel Vandium Titanium, 1999, 20(4):35-38.

    ZHOU Z M, ZHANG B H, ZHU Z Z. A test of titania separation from high titania bearing blast furnace slag[J]. Iron Steel Vandium Titanium, 1999, 20(4):35-38.

    [6]

    李慧, 仇永全, 杨则器. 等离子炉碳(氮)化处理高钛高炉渣[J]. 工程科学学报, 1996, 18(3):231-235.LI H, QIU Y Q, YANG Z Q. Carbaoization (nitrognation) for titanium-bearing blast furnace slag by plasma furnace[J]. Journal of University of Science and Technology Beijing, 1996, 18(3):231-235.

    LI H, QIU Y Q, YANG Z Q. Carbaoization (nitrognation) for titanium-bearing blast furnace slag by plasma furnace[J]. Journal of University of Science and Technology Beijing, 1996, 18(3):231-235.

    [7]

    成海芳, 文书明, 殷志勇. 高炉渣综合利用的研究进展[J]. 现代矿业, 2006(9):21-23.CHENG H F, WEN S M, YIN Z Y. Development of study on the comprehensive utilization of blast furnace slag[J]. Express Information of Mining Industry, 2006(9):21-23.

    CHENG H F, WEN S M, YIN Z Y. Development of study on the comprehensive utilization of blast furnace slag[J]. Express Information of Mining Industry, 2006(9):21-23.

    [8]

    霍红英, 李瑞萍. 高钛型高炉渣光催化材料研究进展[J]. 矿产综合利用, 2020(4):36-41.HUO H Y, LI R P. Research process on photocatalytic materials of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):36-41.

    HUO H Y, LI R P. Research process on photocatalytic materials of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):36-41.

    [9]

    陈蓓, 魏瑞航, 罗启泉, 等. 高炉钛渣和废玻璃生产矿渣微晶玻璃的研究[J]. 重庆大学学报自然科学版, 1992, 15(4):62-67.CHEN B, WEI R H, LUO Q Q, et al. Slag crystallizing glass produced by using titanium slag and cullet[J]. Journal of Chongqing University, 1992, 15(4):62-67.

    CHEN B, WEI R H, LUO Q Q, et al. Slag crystallizing glass produced by using titanium slag and cullet[J]. Journal of Chongqing University, 1992, 15(4):62-67.

    [10]

    倪建娣, 陈文燕, 叶树峰, 等. 高炉渣基矿物聚合材料的制备及其对铅离子的固定[J]. 现代地质, 2008, 22(5):852-856.NI J D, CHEN W Y, YE S F, et al. Preparation and Pb2+ immobilization behaviors of blast furnace slag based geopolymer[J]. Geoscience, 2008, 22(5):852-856.

    NI J D, CHEN W Y, YE S F, et al. Preparation and Pb2+ immobilization behaviors of blast furnace slag based geopolymer[J]. Geoscience, 2008, 22(5):852-856.

    [11]

    赵立华. 利用钢渣制备高钙高铁陶瓷的基础及应用研究[D]. 北京: 北京科技大学, 2017.ZHAO L H. Study on mechnisam and application of calcium-rich and iron-rich ceramics from steel slag[D]. Beijing: University of Science Technology Beijing, 2017.

    ZHAO L H. Study on mechnisam and application of calcium-rich and iron-rich ceramics from steel slag[D]. Beijing: University of Science Technology Beijing, 2017.

    [12]

    裴德健. 利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究[D]. 北京: 北京科技大学, 2019.PEI D J. Study on the mechanism and application of Si-Ca multicomponent ceramics prepared from metallurgical slags[D]. Beijing: University of Science Technology Beijing, 2019.

    PEI D J. Study on the mechanism and application of Si-Ca multicomponent ceramics prepared from metallurgical slags[D]. Beijing: University of Science Technology Beijing, 2019.

    [13]

    EISENHŨTTENLEUTE V D. Slag atlas[M]. Gemany: Verlag Stahleisen, 1995.

  • 加载中

(6)

(3)

计量
  • 文章访问数:  205
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2022-05-12
刊出日期:  2024-12-25

目录