内蒙古艾勒格庙强过铝质花岗岩定年、地球化学特征及其地质意义
Age and geochemistry of strongly peraluminous granite in Airgin Sum area, Inner Mongolia, and its geological significance
-
摘要: 内蒙古艾勒格庙二长花岗岩岩体分布在锡林浩特-艾勒格庙前寒武纪微陆块的西部,利用LA-MC-ICP-MS锆石UPb法测得其形成年龄为418.5±1.1Ma,侵入时代为晚志留世末期。岩石地球化学特征显示高硅(SiO2 74.22%~75.51%),富钾(K2O 5.41%~5.78%),铝饱和指数A/CNK在1.17~1.21之间,属于高钾钙碱性强过铝质花岗岩类。微量元素特征为富集Rb、Th、U、Pb、K和重稀土元素(Yb 3.74×10-6~9.65×10-6),强烈亏损Nb、Ta、P、Ti等元素。该岩体形成于后碰撞构造环境,是地壳增厚后折返减压部分熔融的产物。它的存在揭示,艾勒格庙苏左旗北部造山带在晚志留世之前已经发生弧陆碰撞,之后的顶志留世-中泥盆世为后碰撞-后造山的伸展背景。Abstract: Airgin Sum monzogranite plution is located in western Xilin Gol-Airgin Sum Precambrian block, Inner Mongolia. Its age of 418.5±1.1Ma obtained by LA-MC-ICP-MS U-Pb zircon dating means that Airgin Sum plution was formed at the end of Late Silurian. Its petrology and geochemistry show that Airgin Sum monzogranite is characterized by high silicon (SiO2 74.22%~75.51%) and rich potassium (K2O 5.41%~5.78%)in association with A/CNK ratios ranging from 1.17 to 1.21, suggesting high-K and calc-al-kaline strongly peraluminous granite. The monzogranite is strongly enriched in Rb, Th, U, Pb, K and heavy rare earth elements (Yb 3.74×10-6~9.65×10-6) and is also characterized by depletion of Nb, Ta, Ti and P. It is suggested that the strongly peraluminous mon-zogranite was formed in the post-collisional setting and resulted from partial melting of crustal material after exhumation of overthickened crust. It is thus concluded that the northern orogen in Airgin Sum-Sonidzuoqi had collided between arc and block before Late Silurian, followed by an post-collision and post-orogenic extension setting during Upper Silurian-Middle Devonian.
-
[1] 邵济安. 中朝板块北缘中段地壳演化[M]. 北京:北京大学出版社, 1991:1-136.
[2] 唐克东. 中朝板块北侧褶皱带构造演化及成矿规律[M]. 北京:北京大学出版社, 1992:1-277.
[3] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termina-tion of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):1010-1069.
[4] Jian P, Liu D, Kröner A, et al. Time scale of an early to mid-Paleo-zoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J]. Lithos, 2008, 101:233-259.
[5] Jian P, Liu D, Kröner A. Evolution of a Permian intraoceanic arctrench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118:169-190.
[6] Xu B, Charvet J, Che Y, et al. Middle Paleozoic convergent orogen-ic belts in western Inner Mongolia (China):framework, kinematics, geochronology and implications for tectonic evolution of the Cen-tral Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364.
[7] 徐备, 陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学(D辑), 1997, 27(3):227-232.
[8] 徐备, Charcet J, 张福勤. 内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J]. 地质科学, 2001, 36(4):424-434.
[9] Chen B, Jahn B M, Wilde S, et al. Two contrasting Paleozoic mag-matic belts in northern Inner Mongolia, China:Petrogenesis and tec-tonic implications[J]. Tectonophysics, 2000, 328:157-182.
[10] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochem-istry of the Hegenshan ophiolitic complex:Implications for latestage tectonic evolution of theInner Mongolia-Daxinganling Oro-genic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32:348-370.
[11] 石玉若, 刘敦一, 张旗, 等. 内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学[J]. 地质学报, 2004, 78(6):789-799.
[12] 曹生儒, 郭喜珠, 吴之理, 等. 内蒙古自治区地质图[C]//马丽芳. 中国地质图集. 北京:地质出版社, 2007:141-148.
[13] 李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接受器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物岩石地球化学通报, 2009, 28(增刊):600-601.
[14] Jackson S E, Pearson N J, Griffin W L, et al. The application of la-ser ablation-inductinvely coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211:47-69.
[15] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recy-cling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zir-cons from mantle xenoliths[J]. J. Petrol., 2009, 51:537-571.
[16] Ludwig K R. User's manual for Isoplot/Ex, version3.00//A Geo-chronological Toolkit for Microsoft Excel[M]. Berkeley Geochro-nology Center Special Publication, 2003, 4:1-70.
[17] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.
[18] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989,22(4):247-263.
[19] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. GSA Bull., 1989, 101(5):635-643.
[20] Sun S S, McDonough W F. Chemical and isotopic systematics of oce-anic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geol. Soc. London. Spec. Pub., 1989, 42:313-345.
[21] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4):29-44.
[22] White A J R, Chappell B W. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 1977, 43:7-22.
[23] Patiňo Douee A E, Harris N. Experimental constraints on Himala-yan anatexis[J]. J. Petrol., 1998, 39:689-710.
[24] Green T H, Pearson N J. An experimental study of Nb and Ta par-titioning between Ti-rich minerals and silicate liquids at high pres-sure and temperature[J]. Geochimica et Cosmochimica Acta, 1987, 51(1):55-62.
[25] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4):347-359.
[26] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 16(3/4):197-213.
[27] Taylor S R, Mcleannan S M. The Continental Crust:its composi-tion and evolution[M]. Oxord:Blackwell Scientific Publication, 1985:1-132.
[28] Patiňo Douee A E, Johnston A D. Phase equilibria and melt Produ-etivity in the Pelitic system:Implications for the origin of peralu-mious granitoids and aluminous granulites[J]. Contrib. Mineral. Pet-rol., 1991, 107:202-218.
[29] Patiňo Douce A E, Beard J S. Dehydration-melting of biotite gneiss and quartz amphibolite from3to15kbar[J]. J. Petrol., 1995, 36:707-738.
[30] Skjerlie K P, Johnston A D. Vapour-absent melting from 10to20kbar of crustal rocks that contain multiple hydrous phases:Imlications for anatexis in the deep to very deep continental crust and aetive continental margins[J]. J. Petrol., 1996, 37:661-691.
[31] 李瑞彪, 徐备, 赵盼, 等. 二连浩特艾力格庙地区蓝片岩相岩石的发现及其构造意义[J]. 科学通报, 2014, 59(1):66-71.
[32] Gebauer D, Schrtl H P, Brix M, et al. 35Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Do-ra Maira Massif, West Alps[J]. Lithos, 1997, 41:5-24.
[33] 李承东, 冉皞, 赵利刚, 等. 温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义[J]. 岩石学报, 2012, 28(11):3705-3714.
[34] 张允平, 苏养正, 李景春. 内蒙古中部地区晚志留世西别河组的区域构造学意义[J]. 地质通报, 2010, 29(11):1599-1605.
[35] Shi Y R, Liu D Y, Miao L C, et al. Devonian A-type granitic mag-matism on the northern margin of the North China Craton:SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 17(4):632-641.
[36] Jiang N. Petrology and geochemistry of the Shuiquangou syenitic complex, northern margin of the North China Craton[J]. Journal of the Geological Society, 2005, 162(1):203-215.
[37] Zhang X H, Zhang H F, Jiang N, et al. Early Devonian alkaline in-trusive complex from the northern North China craton:a petrologi-cal monitor of post-collisional tectonics[J]. Journal of the Geologi-cal Society, 2010, 167:717-730.
计量
- 文章访问数: 833
- PDF下载数: 35
- 施引文献: 0