祁连山地区河流阶地与第四纪构造隆升
River terrace and Quaternary tectonic uplift in the Qilian Mountain
-
摘要: 祁连山及邻区河流阶地系列是反映区域构造隆升的重要地貌标志。对祁连山地区东北部的沙沟河、西北部的洪水坝河、东南部的黄河共和段及渭河陇西段、东部的黄河兰州段河流阶地进行了阶地抬升幅度、年代对比研究,分析了祁连山及邻区第四纪构造隆升的特点及其对青藏高原隆升的响应。研究表明,1.6Ma 以来祁连山及邻区至少存在5 期构造活动,即1.6Ma 左右的第1 期构造活动;1.2~0.6Ma 的第2 期构造活动,包括1.2Ma、0.8Ma、0.6Ma 的次一期构造活动;0.45~0.25Ma 的第3 期构造活动;0.2~0.08Ma 的第4 期构造活动,包括0.15Ma、0.1Ma 次一期构造活动;0.08Ma 以来的第5 期构造活动。祁连山及邻区在第1、2、4、5 期构造活动中表现为同步抬升,第3 期不同区域抬升时间存在差异。在构造活动强度方面,1.2~0.6Ma(第2 期)祁连山东部活动较强,0.45~0.25Ma(第3 期)构造活动强度表现为北部强于南部,在北部表现为由西向东不断增强,0.2Ma 以来在南、北方向上表现为构造活动强度沿着北东方向减弱,在东、西方向上表现为祁连山西北部的构造活动明显强于东北部。祁连山及邻区东部1.80Ma 以来平均抬升速率为0.25mm/a,平均抬升了450m 左右,粗略计算2.6Ma 以来该区域抬升了600m 左右。祁连山及邻区西部河流阶地反映的构造抬升强于东部,据此推断,第四纪以来祁连山及邻区西部抬升或超过600m。Abstract: River terrace series in Qilian Mountain and its adjacent areas is a significant landform symbol reflecting the regional tectonic uplift. In this paper, the authors conducted a comparative study of the amplitude and time of the terrace uplift in the Shagou River in the northeast and the Hongshuiba River terrace in the northwest of the Qilian Mountain, the southeast of the Yellow River in Gonghe and the Weihe River in Longxi as well as the east of the Yellow River in Lanzhou, and analyzed the features of Quaternary tectonic uplifting of the Qilian Mountain and its adjacent areas and its response to Tibetan Plateau uplifting. As shown by the comparative study, there have been at least five phases of tectonic activities in the Qilian Mountain and its adjacent areas since 1.6Ma:the first tectonic activity occurred at 1.6Ma, the second at 1.2~0.6Ma with its second-rate tectonic activities at 1.2Ma, 0.8Ma and 0.6Ma, the third tectonic activity at 0.45~0.25Ma, the fourth tectonic activity at 0.2~0.08Ma with two times of tectonic activities respectively at 0.15Ma and 0.1Ma, and the last tectonic activity since 0.08Ma, respectively. Studies reveal that there existed synchronous uplifting in the first, second, fourth and fifth tectonic activities in the Qilian Mountain and its adjacent areas, whereas the third tectonic activity displayed difference in uplifting time. In combination with the tectonic activity in Qilian orogenic belt, it is held that the strongest activity that occurred in eastern Qilian Mountain was caused by the second tectonic activity. Tectonic activity intensity of the third tectonic activity in 0.45~0.25Ma exhibited the feature that the intensity of the north area was stronger than that of the south area, and the intensity became stronger from west to east on the northern margin of the Qilian Mountain. Since 0.2Ma, the tectonic activity intensity in south and north direction became gradually weak in east-north direction, and the tectonic activity in the west part of the northwest side of the Qilian Mountain is stronger than that in the northeast section. The average amplitude of uplift since 1.80Ma is 0.25mm/a and 450m in the Qilian Mountain. A rough calculation shows that the region has been uplifted by about 600m since 2.60Ma. River terraces show that the tectonic uplift in the west of the Qilian Mountain and its adjacent areas is stronger than that in the east. Therefore, it is considered that the west of the Qilian Mountain and its adjacent areas have been uplifted by 600m since Quaternary.
-
Key words:
- river terrace /
- Qilian Mountain /
- tectonic uplift
-
[1] Meindert W, van Den B, van Hoof T, et al. The mass terrace sequence at Masstricht, SE Netherlands: Evidence for 200 m of Late Neogene and Quatemary surface Quatemary uplift[C]//Maddy D, Macklin M G, Woodward J C. River basin sediment systems: Archives of environmental change rotterdam. Rotterdam: Balkema Press, 2001: 45-86.
[2] Mol J, Vandenberghe J, Kasse C. River response to variations of periglacial climate in mid-latitude Europe[J]. Geomorphology, 2000, 33: 131-148.
[3] 李吉均, 方小敏, 马海洲, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑), 1996, 26(4): 316-322.
[4] 李吉均.青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1): 1-11.
[5] 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及周边环境的影响[J]. 第四纪研究, 2001, 21(5): 381-391.
[6] 潘保田, 李吉均, 朱俊杰, 等. 兰州地区黄河阶地发育与地貌演化[C]//中国第四纪冰川与环境研究中心、中国第四纪研究委员会编.中国西部第四纪冰川与环境. 北京: 科学出版社, 1991: 271-277.
[7] 杨景春, 谭利华, 李有利, 等. 祁连山北麓河流阶地与新构造演化[J]. 第四纪研究, 1998, 3: 229-236.
[8] 李有利, 谭利华, 段烽军, 等. 甘肃酒泉盆地河流地貌与新构造运动[J]. 干旱区地理, 2000, 23(4): 305-309.
[9] 谭利华, 杨景春, 段烽军. 河西走廊新生代构造运动的阶段划分[J]. 北京大学学报(自然科学版), 1998, 34(4): 523-532.
[10] 施雅风, 李吉均, 李炳元. 青藏高原晚新生代隆升与环境变化[M]. 广州:广东科技出版社, 1998: 382-392.
[11] 陈杰, 卢演俦, 丁国瑜等. 祁连山西段酒西盆地区阶地构造变形的研究[J]. 西北地震学报, 1998, 20(1): 28-36.
[12] 郑文涛, 杨景春, 段锋军. 武威盆地晚更新世河流阶地变形与新构造活动[J]. 地震地质, 2000, 22(3): 318-328.
[13] 潘保田, 邬光剑, 王义祥, 等. 祁连山东段沙沟河阶地的年代与成因[J]. 科学通报, 2000, 45(24): 2669-2675.
[14] 邬光剑, 潘保田, 李吉均, 等. 祁连山东段0.83Ma以来的构造-气候事件[J]. 中国科学(D辑), 2001, 31(增刊): 202-209.
[15] 潘保田, 高红山, 李炳元, 等. 青藏高原层状地貌与高原隆升[J]. 第四纪研究, 2004, 23(1): 50-58.
[16] 高红山, 潘保田, 邬光剑, 等. 祁连山东段河流阶地的形成时代与机制探讨[J]. 地理科学, 2005, 25(2): 197-202.
[17] 陈杰, 卢演俦, 丁国瑜. 祁连山西段及酒西盆地区第四纪构造运动的阶段划分[J]. 第四纪研究, 1996, 16(3): 263-271.
[18] 鹿化煜, 安芷生, 王晓勇, 等. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学(D辑), 2004, 34(9): 855-864.
[19] 潘保田, 苏怀, 刘小丰, 等. 兰州东盆地最近1.2Ma的黄河阶地序列与形成原因[J]. 第四纪研究, 2007, 27(2): 172-180.
[20] Pan B T, Su H, Hu Z B, et al. Evaluating the role of climate and tectonics during steady incision of the Yellow River: Evidence from a 1.24 Ma terrace record near Lanzhou, China[J]. Quaternary Science Reviews, 2009, 28(27/28): 3281-3290.
[21] 刘小凤, 袁道阳, 刘百箎. 兰州及邻近地区河流阶地变形特征[J]. 西北地震学报, 2003, 25(2): 119-125.
[22] 苏怀. 兰州东部地区1024 ka以来的河流阶地研究[D]. 兰州大学博士学位论文, 2006.
[23] 岳乐平, 雷祥义, 屈红军. 黄河中游水系的阶地发育时代[J]. 地质论评, 1997, 43(2): 186-192.
[24] 刘兴旺, 袁道阳, 葛伟鹏. 兰州黄河阶地高精度GPS测量与构造变形研究[J]. 西北地震学报, 2007, 29(4): 341-346.
[25] 胡春生, 潘保田, 苏怀, 等. 兰州盆地黄河800 ka B.P.阶地的发现及其古地磁年代[J]. 地理科学, 2009, 29(2): 278-292.
[26] 赵振明, 刘百篪. 青海共和至甘肃兰州黄河河谷地貌的形成与青藏高原东北缘隆升的关系[J]. 西北地质, 2003, 36(2): 1-12.
[27] 刘百篪, 刘小凤, 袁道阳, 等. 黄河中上游阶地对青藏高原东北部第四纪构造活动的反映[J]. 地震地质, 2003, 25(1): 133-145.
[28] 王书兵, 蒋复初, 傅建利, 等. 关于统一黄河形成时代的一些认识[J]. 第四纪研究, 2013, 33(4): 705-714.
[29] 赵振明, 刘百篪. 对龙羊峡形成的初步认识[J]. 西北地质, 2005, 38(2): 24-32.
[30] 苗琦, 钱方, 赵志中, 等. 黄河贵德段河流阶地及演变研究[J]. 地质调查与研究, 2012, 35(1): 34-38.
[31] 张会平, 张培震, 吴庆龙, 等. 循化-贵德地区黄河水系河流纵剖面形态特征及其构造意义[J]. 第四纪研究, 2008, 28(2): 299-309.
[32] 杨达源, 吴胜光, 王云飞. 黄河上游的阶地与水系变迁[J]. 地理科学, 1996, 16(2): 137-143.
[33] 潘保田, 刘小丰, 高红山, 等. 渭河上游陇西段河流阶地的形成时代及其成因[J]. 自然科学进展, 2007, 17(8): 1063-1068.
[34] 刘小丰. 渭河上游河流阶地的成因与地貌演化[D]. 兰州大学博士学位论文, 2007.
[35] 雷祥义. 黄土高原河谷阶地黄土地层结构模式[J]. 海洋地质与第四纪地质, 2006, 26(2): 113-122.
[36] 张猛刚. 渭河中下游河流阶地的演化模式[D]. 西北大学硕士学位论文, 2001.
[37] 潘保田, 苏怀, 胡春生, 等. 兰州地区1. 0Ma黄河阶地的发现和0. 8Ma阶地形成时代的重新厘定[J]. 自然科学进展, 2006, 16(11): 1411-1418.
[38] 郭进京, 韩文峰, 梁收运. 青藏高原东北缘岷县-武都地区构造地貌演化与高原隆升[J]. 中国地质, 2006, 33(2): 383-392.
[39] 朱俊杰, 曹继秀, 钟巍, 等. 兰州黄河最高阶地与最老黄土沉积的发现及其古地磁年代学的研究[C]//青藏项目专家委员会编. 青藏高原形成演化、环境变迁与生态系统研究. 北京: 科学出版社, 1994:77-90.
[40] 沈玉昌. 河流地貌学概论[M]. 北京: 科学出版社, 1986.
[41] 北京大学环境学院王乃樑文集编辑组. 王乃樑文集[M]. 北京:学苑出版社, 2006.
[42] Schumm S A. River response to baselevel change: Implications for sequence stratigraphy[J]. The Journal of Geology, 1993, 101: 279-294.
[43] Li J J, Fang X M, Voo R V D, et al. Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary[J]. Journal of Geophysical Research Solid Earth, 1997, 102: 10121-10132.
[44] Perrineau A, Woerd J V D, Gaudemer Y, et al. Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: implications for catchment evolution and plateau building[J]. Geological Society London Special Publications, 2009, 353: 189-219.
[45] Chen Jun, An Zhisheng, Liu Lianwen, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past2.5Ma and chemicalweathering in theAsian inland[J]. Science in China(Series D), 2001, 44(5): 403-413.
[46] Peters G, van Balen T R. Pleistocene tectonics inferred from fluvial terraces of the northern Upper Rhine Graben, Germany[J]. Tectonophysics, 2007, 430: 41-65.
[47] Maddy D, Demir T, Bridgland R D, et al. The Early Pleistocene development of the Gediz River, Western Turkey: An uplift-driven, climate-controlled system[J]. Quaternary International, 2008, 189: 115-128.
[48] Tapponnier P, Xu Z Q, Roger F, et al. Geology-Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
[49] Mulch A, Chamberlain C P. The rise and growth of Tibet[J]. Nature, 2006, 439: 670-671.
[50] 王国灿, 张克信, 曹凯, 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学-中国地质大学学报, 2010, 35: 713-727.
[51] 潘保田, 高红山, 李吉均. 关于夷平面的科学问题—兼论青藏高原夷平面[J]. 地理科学, 2002, 22(5): 520-526.
[52] 杨东, 方小敏, 宋友桂, 等. 六盘山西侧山麓剥蚀面的发育与新构造隆升[J]. 沉积学报, 2002, 20(2): 282-287.
[53] 高红山, 潘保田, 邬光剑, 等. 祁连山东段剥蚀面与青藏高原隆升[J]. 冰川冻土, 2004, 6(5): 540-544.
[54] 宋春晖. 青藏高原北缘新生代沉积演化与高原构造隆升过程[D]. 兰州大学博士学位论文, 2006.
[55] 方小敏, 赵志军, 李吉均, 等. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J]. 中国科学(D辑), 2004, 34(2): 97-106.
[56] 钟巍, 李吉均, 方小敏, 等. 临夏盆地晚新生代沉积特征与青藏高原隆升[J]. 新疆大学学报(理工版), 2001, 18(4): 401-407.
[57] 宋春晖, 方小敏, 李吉均, 等. 青藏高原北缘酒西盆地13Ma以来沉积演化与构造隆升[J]. 中国科学(D辑), 2001, 31(增刊): 153-162.
[58] 张智勇, 于庆文, 张克信, 等. 黄河上游第四纪河流地貌演化—兼论青藏高原1:25万新生代地质填图地貌演化调查[J]. 地球科学-中国地质大学学报, 2003, 28(6): 621-633.
[59] 岳乐平, 李建星, 郑国璋, 等.鄂尔多斯高原演化及环境效应[J]. 中国科学(D辑), 2007, 37(增刊): 16-22.
[60] 王国灿, 侯光久, 张克信, 等. 东昆仑东段中更新世以来的成山作用及其动力转换[J]. 地球科学-中国地质大学学报, 2002, 27(1): 4-12.
-
计量
- 文章访问数: 1149
- PDF下载数: 89