西秦岭大桥金矿区晚三叠世岩浆活动——锆石U-Pb定年及Lu-Hf同位素证据
Late Triassic magmatic activity in the Daqiao gold deposit of West Qinling belt: Zircon U-Pb chronology and Lu-Hf isotope evidence
-
摘要: 西秦岭是中国金矿的重要集中区之一。该区大桥金矿近年已达到超大型规模。最新矿床成因研究认为,成矿可能与矿区岩浆活动有关。矿区采集的4 个花岗闪长岩样品LA-ICP-MS 锆石U-Pb 年龄测试结果主要集中于228Ma、206Ma 两组,对应于晚三叠世。相应的Hf 同位素组成基本相似,也可分为2 个单元。εHf(t)主体分布在-8~0 之间,TDM2主体为1300~1900Ma,推测壳源源区为古—中元古代古老地壳岩石,岩浆主要来源于下地壳古老物质重熔,成岩过程可能有少量地幔组分的参与。结合稀土和微量元素研究结果,认为矿区存在2 期印支晚期岩浆活动。大桥金矿可能为西秦岭地区印支晚期晚三叠世区域岩浆活动引发成矿作用的产物。Abstract: The West Qinling area is one of the important gold ore concentration areas in China. The Daqiao gold deposit, located in the middle of the West Qinling area, has become a superlarge deposit with the growing Au reserves. Recent research reveals that the metallogenic process may be associated with magmatic activity in the area. The zircons LA-ICP-MS U-Pb dating results of 4 granodiorite samples collected in the mining area are concentrated mainly at 228Ma and 206Ma, forming two groups obviously and corresponding to the Late Triassic. The corresponding Hf-isotopic compositions of zircons show similar phenomena and can also be divided into two units. The εHf(t)values are from -8 to 0, and the TDM2 values are from 1300Ma to 1900Ma. It is inferred that the source came from the old crustal rocks of the Paleoproterozoic-Proterozoic period, and most of the ancient lava was derived from remelting process of the old materials, which came from the lower crust, mixed probably with a small amount of mantle components which were involved in diagenetic process. In combination with REE and trace elements researches, the authors hold that there probably existed two phases of magmatic activity in late Indosinian period in the mining area. The Daqiao gold deposit is the product of metallogenic activity caused by regional magmatism in the late Indosinian epoch in West Qinling belt.
-
Key words:
- West Qinling /
- Daqiao gold deposit /
- magmatic rock /
- zircon U-Pb dating /
- Lu-Hf isotope
-
-
[1] 刘家军, 郑明华, 刘建明, 等. 西秦岭大地构造演化与金成矿带的分布[J]. 大地构造与成矿学, 1997, 21(4), 307-314.
[2] 陈衍景, 张静, 张复新, 等. 西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式[J]. 地质论评, 2004, 50(2): 134-152.
[3] 毛景文. 西秦岭地区造山型与卡林型金矿床[J]. 矿物岩石地球化学通报, 2001, 20(1): 11-13.
[4] 朱赖民, 张国伟, 刘家军, 等. 西秦岭-松潘构造结中的卡林型-类卡林型金矿床:成矿构造背景、存在问题和研究趋势[J]. 矿物学报, 2009, 29(增): 201-204.
[5] 张作衡, 毛景文, 王勇. 西秦岭金山金矿床流体包裹体特征及其地质意义[J]. 矿床地质, 2002, 21(增): 1106-1109.
[6] 杨涛. 西秦岭李子园造山型金矿床地质-地球化学特征与成矿动力学背景[D]. 西北大学硕士学位论文, 2012: 63-66.
[7] 朱赖民, 郭波, 李犇, 等. 西秦岭马鞍桥金矿床成矿流体地球化学及矿床成因研究[J]. 矿物学报, 2011,31(s): 446-447.
[8] 张静, 陈衍景, 张复新, 等. 陕西金龙山卡林型金矿带成矿流体地球化学研究[J]. 矿床地质, 2002, 21(3): 283-291.
[9] 张复新, 陈衍景, 李超, 等. 金龙山-丘岭金矿床地质地球化学特征及成因:秦岭式卡林型金矿成矿动力学机制[J]. 中国科学(D 辑), 2000, 30(增).73-81.
[10] 杨涛, 朱赖民, 李犇, 等. 西秦岭金龙山卡林型金矿床地质-地球化学及矿床成因研究[J]. 矿物学报, 2012, 32(1): 115-130.
[11] 李楠. 阳山金矿带成矿作用地球化学[D]. 中国地质大学博士学位论文, 2013: 122-128.
[12] 付于真, 方维萱, 刘家军, 等. 陕川丁家林-太阳坪-董家院金矿带的矿田构造-岩相学研究[J]. 大地构造与成矿学, 2014, 38(4): 787-801.
[13] 张新虎, 任丰寿, 余超, 等. 甘肃成矿系列研究及矿产勘查新突破[J]. 矿床地质, 2015, 34(6): 1130-1142.
[14] 徐克红. 大桥金矿床地质特征及找矿标志[J]. 资源环境, 2008, 37(6): 79-80.
[15] 尤关进, 张忠平. 甘肃大桥金矿地质特征及其发现意义[J]. 甘肃地质, 2009, 18(4): 1-8.
[16] 刘月高, 吕新彪, 张振杰, 等. 甘肃西和县大桥金矿床的成因研究[J]. 矿床地质, 2011, 30(6): 1085-1099.
[17] 孙则朋, 王自翔, 徐亮, 等. 甘肃大桥金矿硅质岩地球化学特征及其地质意义探讨[J]. 地球化学, 2016. 45(5): 499-509.
[18] 徐亮, 吴保祥, 王永莉, 等. 甘肃大桥金矿的流体包裹体特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(s1): 1-2.
[19] Ludwig K R. User's manual for Isoplot 3.00: Ageochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003.
[20] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位定年技术[J]. 矿床地质, 2009, 28(4): 481-492.
[21] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595-2604.
[22] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.
[23] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
[24] Sun S S, Mc Donough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special publications, London, 1989, 42: 313-346.
[25] Zeng Q T, Mccuaig T C, Tohver E, et al. Episodic Triassic magmatism in the western South Qinling Orogen, central China, and its implications[J]. Geological Journal, 2014, 49(4/5): 402-423.
[26] 杨阳, 王晓霞, 柯昌辉, 等. 西秦岭碌础坝岩体的锆石U-Pb年龄、成因及其地质意义[J]. 岩石学报, 2015, 89(10): 1735-1761.
[27] 孔娟娟, 牛耀龄, 段梦, 等. 西秦岭碌础坝、吴茶坝花岗岩的成因: 年代学和地球化学证据[C]//中国地球科学联合学术年会, 2014, 46(1): 2041-2043.
[28] Qin J F, Lai S C, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen(central China)[J]. Lithos, 2009, 112(3/4): 259-276.
[29] 李佐臣, 裴先治, 李瑞保, 等. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J]. 岩石学报, 2013, 29(8): 2617-2634.
[30] Cao X F, Lv X B, Yao S Z, et al. LA-ICP-MS U-Pb Zircon geochrongy, Geochemistry and kinetics of the Wenquan ore bearing granites from west Qinling, China[J]. Ore Geology Reviews, 2011, 43(1): 120-131.
[31] 徐学义, 陈隽璐, 高婷, 等. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 2014, 30(2): 371-389.
[32] 王天刚, 倪培, 孙卫东, 等. 西秦岭勉略带北部黄渚关和厂坝花岗岩锆石U-Pb年龄及源区性质[J]. 科学通报, 2010, 36(55): 3493-3505.
[33] 刘明强. 甘肃西秦岭舟曲憨班花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J]. 地质科学, 2012, 47(3): 899-907.
[34] 吴峰辉, 刘树文, 李秋根, 等. 西秦岭光头山花岗岩锆石U-Pb年代学及其地质意义[J]. 北京大学学报(自然科学版), 2009, 45(5): 811-818.
[35] 骆必继. 西秦岭造山带印支期岩浆作用及深部过程[D]. 中国地质大学博士学位论文, 2013: 62-96.
[36] 陈衍景. 秦岭印支期构造背景、岩浆活动及成矿作用[J]. 中国地质, 2011, 37(4):854-865.
[37] 朱赖民, 丁振举, 姚书振, 等. 西秦岭甘肃温泉钼矿床成矿地质事件及其成矿构造背景[J]. 科学通报, 2009, 16: 2337-2347.
[38] 邱昆峰, 李楠, Taylor R D, 等. 西秦岭温泉钼矿床成矿作用时限及其对斑岩型钼矿床系统分类制约[J]. 岩石学报, 2014, 30(9): 2631-2643.
[39] 刘志鹏, 李建威. 西秦岭金厂石英闪长岩的岩浆混合成因:岩相学和锆石U-Pb年代学证据及其构造意义[J]. 地质学报, 2012, 86(7): 1077-1090.
[40] 闫海卿, 贺宝林, 刘巧峰, 等. 西秦岭大水金矿岩浆岩年代学、地球化学特征[J]. 地球科学与环境学报, 2014, 30(2): 371-389.
[41] Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399: 252-255.
[42] Vervoort J D, Patchett P J, Albarède F, et al. Hf-Nd isotopic evolution of the low crust[J]. Earth Planet. Sci. Lett., 2000, 181: 115-129.
[43] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evi-dence from detrital zircons[J]. Precambrian Res., 2004, 131: 231-282
[44] Amelin, Y, Lee D C, Halliday A N. Early middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochim. Cosmochim. Acta, 2000, 64: 4205-4225.
[45] Vervoort J D, Patchett P J, Gehrels G E, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627.
-
计量
- 文章访问数: 1099
- PDF下载数: 105
- 施引文献: 0