海底失稳调查与评价流程

司少文, 王大伟, 贺惠忠, 孙悦, 孙金, 吴时国. 海底失稳调查与评价流程[J]. 海洋地质前沿, 2021, 37(2): 21-30. doi: 10.16028/j.1009-2722.2020.008
引用本文: 司少文, 王大伟, 贺惠忠, 孙悦, 孙金, 吴时国. 海底失稳调查与评价流程[J]. 海洋地质前沿, 2021, 37(2): 21-30. doi: 10.16028/j.1009-2722.2020.008
SI Shaowen, WANG Dawei, HE Huizhong, SUN Yue, SUN Jin, WU Shiguo. SEABED INSTABILITY INVESTIGATION AND ASSESSMENT PROCEDURES[J]. Marine Geology Frontiers, 2021, 37(2): 21-30. doi: 10.16028/j.1009-2722.2020.008
Citation: SI Shaowen, WANG Dawei, HE Huizhong, SUN Yue, SUN Jin, WU Shiguo. SEABED INSTABILITY INVESTIGATION AND ASSESSMENT PROCEDURES[J]. Marine Geology Frontiers, 2021, 37(2): 21-30. doi: 10.16028/j.1009-2722.2020.008

海底失稳调查与评价流程

  • 基金项目: 国家自然科学基金“南海珠江口外海底峡谷内底形沉积结构与形成机理”(41666002);国家自然科学基金“琼东南盆地深水重力流沉积旋回演化规律与形成机理”(41576049);中国科学院前沿科学研究重点计划项目“深水海底峡谷-水道地貌特征及形成机理”(QYZDB-SSW-SYS025)
详细信息
    作者简介: 司少文(1995—),男,硕士,主要从事海洋地质灾害方面的研究工作. E-mail:sisw@idsse.ac.cn
    通讯作者: 王大伟(1976—),男,博士,研究员,主要从事深水沉积过程、深水油气和海洋地质灾害方面的研究工作. E-mail:wangdawei@idsse.ac.cn
  • 中图分类号: P736.21; P694

SEABED INSTABILITY INVESTIGATION AND ASSESSMENT PROCEDURES

More Information
  • 不同于陆地滑坡,海底滑坡由于水动力条件这一特殊因素致使其难以观测,其致灾机理、失稳评价流程等也未形成标准。对海底失稳与致灾机理的深入研究,涉及海斗深渊的形成与演化、深水工程开发的商业利益、海洋地质灾害的预测及海洋工程的安全等诸多问题。海底失稳调查与评价流程分为地质调查、灾害机理分析、失稳评价3个方面,综合地球物理、海底原位监测、数值模拟、物理实验模拟等技术方法,形成从前期调查到后期评估的完整流程,对海底稳定性评价工作具有参考意义。

  • 加载中
  • 图 1  海底滑坡失稳工作流程

    Figure 1. 

    图 2  世界各国海底观测网系统

    Figure 2. 

    图 3  海底滑坡失稳因素图

    Figure 3. 

    图 4  海底滑坡内部结构模式图解

    Figure 4. 

    图 5  Monte Castello地区的多时相滑坡地图[28]

    Figure 5. 

    表 1  海底滑坡灾害损失统计表

    Table 1.  Loss statistics of submarine landslide disasters

    损失类型编号年份地点诱发滑坡因素具体描述
    电缆 1 1929 纽芬兰岛南部250 km陆坡 7.2级地震 200 km3土体滑移,跨大西洋海底电缆12处断裂[3]
    2 1946 加拿大佐治亚海峡 7.2级地震 破坏电缆,引发小型海啸[4]
    3 2003 阿尔及利亚 Boumerdes地震 6条电缆及所有海底通信网络[5]
    4 2006 吕宋海峡 台湾西南部屏东地震 11条光缆断裂,东南亚断讯12小时[6]
    钢架平台等设施 1 1969 美国密西西比河三角洲南 卡米尔飓风诱发土体失稳 3座钢平台破坏,其中B平台滑移30 m,经济损失1亿多美元[7]
    2 1973 渤海湾 水下土体滑动 “渤海湾二号”下沉,损失3 600万元[8]
    3 2002 意大利斯特龙博利岛 火山山体滑坡,造成海啸 10 m高海啸席卷100 km外的
    Milazzo港口[9]
    生命财产 1 1923 日本相模湾 7.9~8.3级地震 引发12 m高海啸,破坏横滨90%建筑,死亡15.6万人[10]
    2 1979 印度尼西亚 滑坡引发海啸 9 m高海啸,死亡1 239人
    3 1998 巴布亚新几内 地震滑坡引发海啸 15 m高海啸,死亡2 000人[11]
    4 2011 日本东北部太平洋海域 西太平洋9.0级地震和海底滑坡引发海啸 死亡11 232人,并引发福岛第一
    核电站核泄漏[12]
    5 2018 印尼火山喷发 喀拉喀托火山喷发造成滑坡、诱发海啸 伤亡400多人 [13]
    6 2018 苏拉威西岛 Palu-Koro断层走滑引发海底滑坡 引发最大海啸波高7.0 m[14]
    下载: 导出CSV

    表 2  海底滑坡研究项目统计

    Table 2.  Statistics of submarine landslides

    年份项目名称研究地区/技术手段/设备参数
    1984—1991 GLORIA 美国专属经济区
    1989—1992 ADFEX 北极三角洲
    1993—1996 STEAM 欧洲大西洋边缘
    1995—2001 STRATAFORM 墨西哥湾西北部大陆架边缘
    1996—1999 ENAMⅡ 欧洲北大西洋边缘
    欧洲2000—2004,加拿大2000—2005 COSTA 亚得里亚海、西北地中海
    2016 爱尔兰ERC CODEMAP 利用ROV对Rockall Bank滑坡综合体获取精细3D模型
    2006年(建成) 加拿大观测网(ONC) 总长850 km,主机站5个
    2008年(启动) 欧洲海底观测网(EMSO) 主机站15个
    2012年(启动) 中国南海海底观测系统 总长150 km,主机站1个
    2015年(建成) 日本海底观测网络DONET 总长300 km,主机站7个,连接部分IODP海底钻孔观测点
    日本海底观测网络DONET2 总长450 km,主机站7个
    日本海底观测网络S-net 总长5 700 km
    2016年(启动) 美国海底观测网(OOI) 总长880 km,主机站7个
    2020年(启动) IODP 386 航次 日本海沟,18个站点,海底以下40 m钻探
    下载: 导出CSV
  • [1]

    BUGGE T,BELDERSON R,KENYON N H,et al. The storegga slide[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences,1988,325(1586):357-388.

    [2]

    CHAYTOR J D,BRINK U S T,SOLOW A R,et al. Size distribution of submarine landslides along the U. S. Atlantic Margin[J]. Marine Geology,2009,264(1/2):16-27.

    [3]

    KRASTEL S, FELDENS P, GEORGIOPOULOU A, et al. The grand banks landslide area revisited[C]//AGU Fall Meeting, 2016: 57-62.

    [4]

    CLAGUE J J,BOBROWSKY P T,HUTCHINSON I. A review of geological records of large tsunamis at Vancouver Island,british columbia,and implications for hazard[J]. Quaternary Science Reviews,2000,19(9):852-863.

    [5]

    OUYED M,IDRES M,BOURMATTE A,et al. Attempt to identify seismic sources in the eastern Mitidja Basin using gravity data and aftershock sequence of the Boumerdes (May 21,2003; Algeria) earthquake[J]. Journal of Seismology,2011,15(2):173-189.

    [6]

    HSU S K,KUO J,LO C L,et al. Turbidity currents,submarine landslides and the 2006 Pingtung earthquake off sw Taiwan[J]. Terrestrial Atmospheric & Oceanic Sciences,2009,19(6):767-772.

    [7]

    BAEHR J N, REES S I, BOATMAN T H, et al. Public acceptance of structural solutions to hurricane damage in post-katrina Mississippi[C]//American: ASCE, 2008: 72-79.

    [8]

    方振砉. “渤海2号”翻沉真相[J]. 中国石油石化,2013(23):76-79.

    [9]

    TOMMASI P, BALDI P, CHIOCCI F L, et al. The landslide sequence induced by the 2002 eruption at Stromboli volcano[M]. Berlin: Springer Berlin Heidelberg, 2005: 755-763.

    [10]

    BRYANT E. Earthquake-generated tsunami[M]. Springer International Publishing, 2014: 85-102.

    [11]

    BUNZ S,MIENERT J,BERNDT C. Geological controls on the storegga gas-hydrate system of the mid-Norwegian continental margin[J]. Earth & Planetary Science Letters,2003,209(3/4):278-307.

    [12]

    GU C. Geographical report of 311 earthquake in Japan[J]. Acta Geographica Sinica,2011,66(6):853-861.

    [13]

    HEIDARZADEH M,MUHARI A,WIJANARTO A B. Insights on the source of the 28 September 2018 Sulawesi tsunami,Indonesia based on spectral analyses and numerical simulations[J]. Pure and Applied Geophysics,2018,178(3):67-73.

    [14]

    PAKOKSUNG K,SUPPASRI A,IMAMURA F,et al. Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay,Sulawesi Island,Indonesia,using a two-layer model[J]. Pure and Applied Geophysics,2019,176(12):78-95.

    [15]

    SILVA A J,BAXTER C D P,LAROSA P T,et al. Investigation of mass wasting on the continental slope and rise[J]. Marine Geology,2004,203(3):355-366.

    [16]

    HAFLIDASON H,SEJRUP H P,NYGRD A,et al. The storegga slide:architecture,geometry and slide development[J]. Marine Geology,2004,213(1/4):201-234.

    [17]

    FISHER M A,NORMARK W R,GREENE H G,et al. Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel,southern California[J]. Marine Geology,2005,224(1):1-22.

    [18]

    VANNESTE M,BERNDT C,LABERG J S,et al. On the origin of large shelf embayments on glaciated margins:effects of lateral ice flux variations and glacio-dynamics west of Svalbard[J]. Quaternary Science Reviews,2007,26(19/21):2400-2419.

    [19]

    SULTAN N,VOISSET M,MARSSET B,et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta[J]. Marine Geology,2007,237(3/4):169-190.

    [20]

    CHAYTOR J D, DEMOPOULOS A W J, BRINK U S T, et al. Assessment of canyon wall failure process from multibeam bathymetry and remotely operated vehicle (rov) observations, Us Atlantic continental margin[M]. Berlin: Springer International, 2016: 72-86.

    [21]

    SOBIESIAK M S,ALSOP G I,KNELLER B,et al. Sub-seismic scale folding and thrusting within an exposed mass transport deposit:a case study from nw argentina[J]. Journal of Structural Geology,2017,96(5):176-191.

    [22]

    ZUMBERGE M,ALNES H V,EIKEN O,et al. Precision of seafloor gravity and pressure measurements for reservoir monitoring[J]. Geophysics,2008,73(6):133-141.

    [23]

    WALLACE L M,WEBB S C,ITO Y,et al. Slow slip near the trench at the Hikurangi subduction zone,New Zealand[J]. Science,2016,352(6286):701-704.

    [24]

    朱超祁. 海底天然气水合物开采导致的地质灾害及其监测技术[J]. 灾害学,2017(3):58-62.

    [25]

    李风华,路艳国,王海斌,等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊,2017(3):321-330.

    [26]

    KUBO Y,INAGAKI F,TONAI S,et al. New Chikyu Shallow Core Program (SCORE):exploring mass transport deposits and the subseafloor biosphere off Cape Erimo,northern Japan[J]. Scientific Drilling,2020,27:25-33.

    [27]

    BULL S,CARTWRIGHT J,HUUSE M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine & Petroleum Geology,2009,26(7):1441-1151.

    [28]

    GUZZETTI F,MONDINI A C,CARDINALI M,et al. Landslide inventory maps:new tools for an old problem[J]. Earth Science Reviews,2012,112(1/2):42-66.

    [29]

    LOCAT J,LEE H J. Submarine landslides:advances and challenges[J]. Canadian Geotechnical Journal,2002,39(1):193-212.

    [30]

    URGELES R,CAMERLENGHI A. Submarine landslides of the Mediterranean Sea:trigger mechanisms,dynamics,and frequency-magnitude distribution[J]. Journal of Geophysical Research Earth Surface,2013,118(4):2600-2618.

    [31]

    NAJAFI-JILANI A,ATAIE-ASHTIANI B. Estimation of near-field characteristics of tsunami generation by submarine landslide[J]. Ocean Engineering,2008,35(5/6):545-557.

    [32]

    BLASIO F V D,BREIEN H,ELVERHI A. Modelling a cohesive-frictional debris flow:an experimental,theoretical,and field-based study[J]. Earth Surface Processes & Landforms,2010,36(6):753-766.

    [33]

    PANIZZO A,GIROLAMO P D,PETACCIA A. Forecasting impulse waves generated by subaerial landslides[J]. Journal of Geophysical Research Oceans,2005,110(12):58-70.

    [34]

    MARR J G,HARFF P A,SHANMUGAM G,et al. Experiments on subaqueous sandy gravity flows:the role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin,2001,113(11):1377-1386.

    [35]

    李小超,常留红,李凌,等. 水槽混合石料群抛试验[J]. 水利水电科技进展,2017(6):80-98.

    [36]

    王家生,陈立,刘林,等. 黏性泥沙分层运动特征的试验研究[J]. 水科学进展,2008(01):15-20.

    [37]

    WHITTAKER C,NOKES R,DAVIDSON M. Tsunami forcing by a low froude number landslide[J]. Environmental Fluid Mechanics,2015,15(6):1215-1239.

    [38]

    WANG Q,WANG Y,HU X Y,et al. Marine rock physical flume experiment:the method of seafloor shallow sediment recognition by ultrasonic physical attributes[J]. Journal of Applied Geophysics,2015(115):197-205.

    [39]

    ZHANG M,ZHANG W,HUANG Y L,et al. Failure mechanism of submarine slopes based on the wave flume test[J]. Natural Hazards,2019(2):27-34.

    [40]

    ISHIMARU M,KAWAI T. Basic study on the evaluation of seismic stability of rock slope using centrifuge model test[J]. Journal of Japan Society of Civil Engineers,2011,67(1):36-49.

    [41]

    BRENNAN A J,MADABHUSHI S P G. Amplification of seismic accelerations at slope crests[J]. Revue Canadienne De Géotechnique,2009,46(5):585-594.

    [42]

    GAUDIN C,WHITE D J. New centrifuge modelling techniques for investigating seabed pipeline behaviour[J]. Earth Science Reviews,2009,56(4):78-87.

    [43]

    蒋金阳. 软硬互层边坡倾倒变形破坏特征及支护效果的大型离心机试验研究[D]. 成都: 成都理工大学, 2017.

    [44]

    ADAMIDIS O,MADABHUSHI G S P. Use of viscous pore fluids in dynamic centrifuge modelling[J]. International Journal of Physical Modelling in Geotechnics,2015,15(3):141-149.

    [45]

    ACOSTA E A,TIBANA S,JR F S. Centrifuge modeling of hydroplaning in submarine slopes[J]. Ocean Engineering,2017,129:451-458.

    [46]

    YAN K M,ZHANG J J,CHENG Q G,et al. Earthquake loading response of a slope with an inclined weak intercalated layer using centrifuge modeling[J]. Bulletin of Engineering Geology and the Environment,2018(13):72-85.

    [47]

    LEE M G,CHO H I,KIM J H,et al. Development of seismic cpt for evaluating in-flight soil properties in centrifuge model test[J]. Ksce Journal of Civil Engineering,2017,22(9):1-11.

    [48]

    HARBITZ C B. Model simulations of tsunamis generated by the storegga slides[J]. Ocean Engineering,1992,105(1/4):1-21.

    [49]

    GRILLI S T,VOGELMANN S,WATTS P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides[J]. Engineering Analysis with Boundary Elements,2002,26(4):301-313.

    [50]

    FUHRMAN D R,MADSEN P A. Tsunami generation,propagation,and run-up with a high-order boussinesq model[J]. Coastal Engineering,2008,56(7):747-758.

    [51]

    HORRILLO J,WOOD A,KIM G B,et al. A simplified 3-D navier-stokes numerical model for landslide-tsunami:application to the Gulf of Mexico[J]. Journal of Geophysical Research Oceans,2019,118(12):112-132.

    [52]

    PAKOKSUNG K,SUPPASRI A,IMAMURA F,et al. Simulation of the submarine landslide Tsunami on 28 September 2018 in Palu Bay,Sulawesi Island,Indonesia,using a Two-Layer Model[J]. Pure and Applied Geophysics,2019,176(1):3233-3250.

    [53]

    IMRAN J,HARFF P,PARKER G. A numerical model of submarine debris flow with graphical user interface[J]. Computers & Geosciences,2015,27(6):717-729.

    [54]

    ATAIE-ASHTIANI B,SHOBEYRI G. Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids,2008,56(2):209-232.

    [55]

    杨林青. 海底斜坡稳定性及滑移影响因素分析[D]. 大连: 大连理工大学, 2012.

    [56]

    SAUTHIER C,LABIOUSE V,PIRULLI M,et al. Numerical simulation of gravel unconstrained flow experiments:a comparison between dan-3D and rash-3D codes[J]. Marine Geology,2010,32(42):39-35.

    [57]

    GIACHETTI T,PARIS R L,KELFOUN K,et al. Numerical modelling of the tsunami triggered by the güìmar debris avalanche,tenerife (Canary Islands):comparison with field-based data[J]. Marine Geology,2011,284(1/4):189-202.

    [58]

    ABADIE S M,HARRIS J C,GRILLI S T,et al. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja volcano (la Palma,Canary islands):tsunami source and near field effects[J]. Journal of Geophysical Research Oceans,2012,117(5):85-96.

    [59]

    RASTGOFTAR E,SOLTANPOUR M. Study and numerical modeling of 1945 makran tsunami due to a probable submarine landslide[J]. Natural Hazards,2016,83(2):1-17.

    [60]

    PUZRIN A M, RUSHTON D, MACKENZIE B, et al. Submarine landslides—stability analysis and risk assessment for offshore developments[M]. Zurich: John Wiley and Sons, 2017.

    [61]

    MOUNTJOY J, MICALLEF A. Submarine landslides[M]. New Zealand: Submarine Geomorphology, 2018.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  2016
  • PDF下载数:  132
  • 施引文献:  0
出版历程
收稿日期:  2020-01-23
刊出日期:  2021-02-28

目录