Determination of Trace Metal Elements in Solid Bitumen with Microwave Digestion by Inductively Coupled Plasma-Atomic Emission Spectrometry
-
摘要: 原油、沥青中的微量元素信息已被应用于油气勘探和油气地球化学研究,然而沥青的分析方法较少,而且前处理过程繁琐。本文将微波消解法应用于沥青样品的消解,电感耦合等离子体发射光谱法测定固体沥青中Al、Ca、Fe、K、Mg、Mn、Na、Ti、Ba、Mo、Ni、Sr、V等13种微量金属元素。在高压密闭条件下,微波消解系统消解固体沥青样品的速度快,并确定了样品量和消解条件等影响因素。不同组合消解试剂优化实验研究表明,浓硝酸-氢氟酸作为消解试剂效果最好;通过实验验证在样品处理过程中没有发生损失和污染情况,精密度(RSD,n=8)小于5%,回收率在92.2%~101.0%之间,元素的方法检出限可达0.05μg/g。本方法为沥青类样品中微量元素分析测定提供了新的参考方法。
-
关键词:
- 固体沥青 /
- 微量金属元素 /
- 微波消解 /
- 电感耦合等离子体发射光谱法
Abstract: Trace element information in crude oil and bitumen has been applied to oil and gas exploration and geochemical study, but the analysis methods of bitumen are limited and the pretreatment process is tedious. To overcome this, microwave digestion was used to digest the solid bitumen sample and a method was developed for the determination of the 13 trace elements Al, Ca, Fe, K, Mg, Mn, Na, Ti, Ba, Mo, Ni, Sr and V by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The bitumen sample can be digested quickly in closed vessels by microwave at high temperature and pressure. The optimization experiment of the different digestion reagents systems showed that HNO3-HF digestion system was the best to decompose the solid bitumen. Experimental conditions and sampling weight are discussed. The results show that the method can be used to digest the bitumen sample without loss of volatile elements and contamination in the process of digestion. The recoveries of the method were in the range of 92.2%-101.0% with the precision of less than 5.0%RSD (n=8), and the detection limit was up to 0.05 μg/g. This method can provide a new reference method for the determination of trace metal elements in solid bitumen. -
-
表 1 ICP-AES仪器工作条件
Table 1. Operating parameters of ICP-AES
工作参数 条件 功率 1200 W 等离子气流量 15.0 L/min 辅助气流量 1.5 L/min 雾化气压力 200 kPa 工作参数 条件 蠕动泵转速 15 L/min 样品冲洗时间 16 s 积分时间 5 s 观测高度 11 mm 表 2 微波消解样品的温度控制程序
Table 2. Optimized program for microwave digestion
步骤 时间
t/min温度
θ/℃升温1 10 150 升温2 10 200 升温3 5 210 恒温4 30 210 表 3 各元素分析谱线和方法检出限
Table 3. Analytical spectral lines and detection limits of the method
元素 谱线
λ/nm检出限/
(μg·g-1)Al 396.152 2.13 Ba 455.403 0.05 Ca 396.847 0.51 Fe 259.940 5.50 K 766.491 5.00 Mg 285.213 0.18 Mn 257.610 0.15 Mo 202.032 2.25 Na 589.592 9.38 Ni 231.604 5.13 Sr 407.771 0.09 Ti 336.122 0.66 V 311.837 0.75 表 4 固体沥青分析测试结果、方法精密度及回收率
Table 4. Analytical results of elements in bitumen and precision and recovery tests of the method
元素 wB/(μg·g-1) RSD/% 回收率/% 1 2 3 4 5 6 7 8 平均值 加标量 实测值 Al 2367.99 2368.45 2395.38 2387.75 2384.75 2331.43 2411.12 2403.05 2381.24 3000.00 5367.46 1.06 99.5 Ba 26.01 26.51 26.54 26.15 26.47 26.14 25.94 26.34 26.26 10.00 35.49 0.90 92.2 Ca 501.48 507.93 519.06 503.36 511.08 501.80 517.38 504.58 508.33 500.00 978.87 1.36 94.1 Fe 1375.37 1431.44 1418.45 1415.23 1412.22 1386.23 1407.55 1433.06 1409.94 2500.00 3792.95 1.43 95.3 K 716.63 737.32 743.07 725.37 733.24 713.39 735.58 722.82 728.43 500.00 1214.39 1.44 97.2 Mg 615.09 608.37 616.66 618.24 618.50 601.79 621.31 611.41 613.92 500.00 1100.02 1.04 97.2 Mn 13.19 13.50 13.80 13.47 13.23 12.65 13.06 13.39 13.28 100.00 110.66 2.59 97.4 Mo 42.32 42.52 47.46 44.11 41.49 41.69 42.49 41.63 42.96 100.00 143.94 4.65 101.0 Na 421.30 447.43 451.12 441.54 429.67 432.84 447.47 423.27 436.83 500.00 905.45 2.66 93.7 Ni 242.75 278.33 281.80 267.42 270.40 263.96 260.23 268.73 266.70 500.00 751.82 4.49 97.0 Sr 6.38 6.72 6.15 6.40 6.73 6.40 6.63 6.47 6.49 10.00 15.80 3.08 93.2 Ti 141.14 140.30 140.60 141.81 142.32 138.83 143.39 146.53 141.87 100.00 239.44 1.64 97.6 V 192.82 204.21 210.17 205.18 206.02 194.66 200.92 200.30 201.79 500.00 686.30 2.90 96.9 -
[1] 金强,田海芹,戴俊生.微量元素组成在固体沥青-源岩对比中的应用[J].石油实验地质,2001,23(3): 287-292. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200103006.htm
[2] 邓平.微量元素在油气勘探中的应用[J].石油勘探与开发,1993,20(1): 27-32. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201105020.htm
[3] 李洪英,赫英,杨磊,潘爱芳.鄂尔多斯盆地石油中沥青的地球化学特征[J].新疆石油地质,2009,30(3): 313-315. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200903015.htm
[4] 潘爱芳,赫英.鄂尔多斯盆地石油的稀土元素地球化学特征[J].中国稀土学报,2008,26(3): 374-378. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB200803022.htm
[5] 赵孟军,黄第藩,廖志勤,熊传武.原油中微量元素地球化学特征[J].石油勘探与开发,1996,23(3): 19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK603.004.htm
[6] 李洪英,赫英,杨磊,刘养杰.鄂尔多斯盆地东南缘煤中沥青微量元素和稀土元素特征[J].新疆石油地质,2008,29(2): 159-162. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200802009.htm
[7] ASTM D5708-05, Test Methods for Determination of Nickel, Vanadium, and Iron in Crude Oils and Residual Fuels by Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry [S].
[8] GB/T 18608—2001,原油中铁、镍、钠、钒含量的测定;原子吸收光谱法[S].
[9] SH/T 0715—2002,原油和残渣燃料油中镍、钒、铁含量测定;电感耦合等离子体发射光谱法[S].
[10] 张金生,李丽华,金钦汉.微波消解-微波等离子体炬原子发射光谱法测定原油和渣油中的铁、镍、铜和钠[J].分析化学,2005,33(5): 690-694. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200505034.htm
[11] 徐玉宏.微波技术在样品处理中的应用[J].化学分析计量,2006,15(1): 68-71. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200601026.htm
[12] 张丽华,肖国平,宋游,刘峻岭,赵立飞.微波技术在生物样品预处理中的应用[J].现代科学仪器,2004(5): 37-40. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ200405009.htm
[13] Kingston H M, Jassie L B.Introduction to Microwave Sample Preparation: Theory and Practice [M].Washington D C: American Chemical Society, 1988: 7-28.
[14] EPA Method 3052, Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices [S].
[15] Jin Q H, Feng L, Zhang H Q, Zhao L W, Huan Y F, Song D Q. Application of microwave techniques in analytical chemistry [J]. Trac-Trends in Analytical Chemistry,1999,18(7): 479-484. doi: 10.1016/S0165-9936(99)00110-7
[16] Aydin I. Comparison of dry, wet and microwave digestion procedures for the determination of chemical elements in wool samples in Turkey using ICP-OES technique [J].Microchemical Journal,2008,90(1): 82-87. doi: 10.1016/j.microc.2008.03.011
[17] 徐玉宏.微波技术在样品处理中的应用[J].化学分析计量,2006,15(1): 68-70. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200601026.htm
[18] 刘伟,阎军,武刚.密闭微波样品消解原理及常识[J].现代科学仪器,2000(3): 51-54. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ200002044.htm
[19] 钟志光,黄勇,张海峰,朱彬,李政军,陈佩玲,刘崇华.微波消解-DUO-ICP-AES测定电子电气产品塑料中的铅、镉、铬和汞的方法研究[J].塑料,2007(1): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SULA200701020.htm
[20] 谢华林,李立波,胡汉祥,李爱阳.原油中微量金属元素的质谱分析[J].石油学报(石油加工),2005,21(4): 86-90. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200504013.htm
[21] 杨春茹,陈发荣,李景喜,郑立,杨东方,王小如.电感耦合等离子体质谱法测定原油中微量元素[J].理化检验:化学分册,2011,47(8): 946-948. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201108025.htm
[22] 卞涛,吕建华.微波消解-ICP-AES测定石油焦中的铁含量[J].石油炼制与化工,2006,37(6): 63-65. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH200606014.htm
[23] 朱玉霞,何京,陆婉珍.微波密闭消解-等离子体原子发射光谱测定石油化工催化剂中负载元素含量[J].岩矿测试,1998,17(2): 138-142. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS802.011.htm
[24] 王乐,胡健华,战锡林.微波消解-电感耦合等离子体质谱(ICP-MS)同时测定地沟油中微量元素[J].中国卫生检验杂志,2007,17(11): 1993-1995. doi: 10.3969/j.issn.1004-8685.2007.11.028
[25] 李景喜,陈发荣,杨春茹,崔维刚,郑立,王小如.有机溶剂辅助微波消解-电感耦合等离子体质谱法测定多种原油中微量金属元素[J].岩矿测试,2011,30(1): 12-16. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201101006.htm
[26] 聂西度,李立波,刘宏伟.电感耦合等离子体质谱法测定汽油中微量元素的研究[J].广东微量元素科学,2010,17(8): 46-50. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYS201008006.htm
[27] Xie H L,Huang K L,Liu J C,Nie X D,Fu L. Deter-mination of trace elements in residual oil by high resolution inductively coupled plasma mass spectrometry[J].Analytical and Bioanalytical Chemistry,2009,393: 2075-2080. doi: 10.1007/s00216-009-2658-3
[28] 张萍,符靓,李玉杰.电感耦合等离子体质谱法测定渣油中微量金属元素[J].冶金分析,2009,29(7): 14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200907002.htm
-