Determination of Aluminum Oxide in Rare Earth Ore by Inductively Coupled Plasma-Atomic Emission Spectrometry
-
摘要: 铝是稀土矿石常检的杂质元素,目前采用电感耦合等离子体发射光谱法(ICP-AES)基体匹配校正模式测定矿石中的铝量,对基体中铝的空白及基体量有一定的要求;且稀土矿石的品种很多,铝在其中的存在形式也较复杂,简单的酸溶很难彻底地将铝转入溶液中进行准确测定。本文采用碱熔法处理样品,滤液酸化后用ICP-AES测定稀土矿石中的Al2O3。通过共存元素干扰实验发现样品中的稀土元素及钍对铝的测定产生严重的光谱干扰,提出预先以碱分离除去消除干扰,有效地降低了检测下限;采用基体校正模式,消除了盐分对测定的影响。方法检出限为0.021~0.035 mg/g,测定范围为0.50%~8.00%,精密度(RSD) < 7.1%。对不同含量的样品进行分析,测定值与化学容量法测定结果基本相符。该方法具有测定含量范围宽、分析速度快、结果准确等优点。
-
关键词:
- 稀土矿石 /
- 三氧化二铝 /
- 碱熔 /
- 电感耦合等离子体发射光谱法
Abstract: The element Al is determined frequently in rare earth ore since Al is a common impurity element in this ore. At present, the Inductively Coupled Plasma-Atomic Emission Spectrometric (ICP-AES) method, which has certain requirements of the Al blank and the matrix concentration, is used to determine the content of Al in ore with a matrix matching calibration. Because Al has complicated patterns in many kinds of rare earth ores, it is difficult to dissolve Al completely into solution for determination by a routine acid-leaching method. In this paper, a new method is described, whereby the sample is digested by alkali fusion and the filtrate acidulated before the content Al in rare earth ore is determined by ICP-AES. The effect of spectrum interferences of REEs and Th on the Al was studied. The detection limit was reduced effectively by eliminating the interferences of coexisting elements. The matrix correction mode was undertaken to eliminate the salt influence. The determination limit of the method was from 0.021 mg/g to 0.035 mg/g and the determination content range was from 0.50 % to 8.00%. The RSD was less than 7.1%. The result of the samples with the presented method is consistent with the volumetric method. The method is fast with a wide measuring range and extremely high precision. -
-
表 1 熔剂的选择
Table 1. Choice of alkali dissolution flux
稀土矿石
样品种类氢氧化钠+过氧化钠 碳酸钠+硼酸
(质量比2∶1)包头矿 清亮 清亮 四川矿 清亮 有不溶物(少量) 独居石 清亮 有不溶物(大量) 表 2 熔剂配比的影响
Table 2. Effect of flux ratio
氢氧化钠+
过氧化钠配比空白测定值
ρ(Al)/(μg·mL-1)w(Al2O3)/% 5 g+1 g 0.007 2.03 5 g+2 g 0.007 2.04 4 g+1 g 0.007 2.09 4 g+2 g 0.007 2.08 表 3 过滤条件选择
Table 3. Choice of filter conditions
w(Al2O3)/% 稀土矿石
样品种类碱分离,过滤洗涤测定 直接定容,
干过滤滤液中
Al2O3的含量滤液中
Al2O3的含量残渣中
Al2O3的含量包头矿 0.40 0.02 0.45 四川矿 1. 47 0.07 1.62 独居石 4.12 0.05 4.34 包头矿标准样品 1.90 0.10 2.09 表 4 放置时间的选择
Table 4. Choice of standing time
w(Al2O3)/% 放置时间
t/h包头稀土矿标准样品
Al2O3测定值0 2.09 0.25 2.07 0.50 2.09 0.75 2.00 1.0 1.97 2.0 1.81 3.0 1.69 24.0 1.50 表 5 共存元素的干扰实验
Table 5. Interference test of co-existing ions
分析波长
λ/nm干扰元素限量/% Ca Mg Fe Mn Th P Ni La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y 308.2 - - 40 32 0.61 - 89 - - 0 36 - 50 0.4 1.5 - - 0 21 50 - - 309.2 - - 40 56 - - 89 - - - 0 16 12 25 36 36 6 32 - - 13 36 237.3 20 25 - 58 - - - - - 2 48 5 36 - - - 14 - 23 - - 45 394.4 26 80 10 64 - - 23 3 0 0.5 4 3 10 6 - - 13 - - - - - 396.1 40 - 70 50 - - - - 17 2 3 - - 21 25 25 16 - - - - - 表 6 基体效应
Table 6. Matrix effect
稀土矿石
样品种类基体校正因子 盐分稀释5倍 盐分稀释10倍 盐分稀释20倍 包头矿 0.78 0.91 0.95 四川矿 0.82 0.92 0.95 独居石 0.85 0.91 0.96 铁矿石 0.81 0.91 0.95 表 7 方法测定下限
Table 7. Detection limits of the method
分析波长
λ/nm标准偏差
s/(mg·g-1)方法检出限
3s/(mg·g-1)测定下限
30s/(mg·g-1)308.2 0.012 0.035 0.35 309.2 0.0096 0.029 0.29 237.3 0.011 0.034 0.34 396.1 0.0070 0.021 0.21 表 8 方法精密度
Table 8. Precision tests of the method
稀土矿石
样品种类w(Al2O3)/% RSD/% 11次测定值 平均值 包头矿 0.51 0.48 0.46 0.44 0.42 0.49 0.457 7.1 0.47 0.48 0.45 0.42 0.41 四川矿
(加标)1.67 1.62 1.71 1.74 1.79 1.59 1.680 4.4 1.59 1.69 1.60 1.69 1.79 独居石 4.35 4.34 4.38 4.24 4.24 4.35 4.310 1.4 4.30 4.29 4.33 4.21 4.38 表 9 方法对照实验
Table 9. Comparison of analytical results of Al2O3 by analytical methods
稀土矿石
样品种类w(Al2O3)/% 相对偏差/% ICP-AES法 化学容量法 独居石 4.310 4.280 0.70 包头矿 0.457 0.472 -3.18 四川矿(加标) 1.680 1.697 1.00 -
[1] 冯静.稀土矿石成分分析标准物质的研制[J].化学分析计量,2005,14(4): 1-3,27. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200504000.htm
[2] 孙肃,白立忠,于化琴.降低氯化钕溶液中铝离子的工艺研究[J].无机盐工业,2007,39(11): 34-35. doi: 10.3969/j.issn.1006-4990.2007.11.011
[3] 程明焱,刘和连,吴伟明,罗飞扬,孙仙源,李安运,陈金清.稀土分析检测方法标准述评[J].有色金属科学与工程,2012,3(4): 108-114. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201204021.htm
[4] 黎香荣,陈永欣,吕泽娥,罗明贵,谢毓群,刘顺琼,阮贵武.乳化剂增敏铬天青S分光光度法测定铜精矿中的铝[J].分析化学,2009,37(Z1): B142. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHY200910003240.htm
[5] 熊维巧,张霞铝.试剂示差光度法测定砂岩矿中的三氧化二铝[J].中国非金属矿工业导刊,2005(6): 40-42. http://www.cnki.com.cn/Article/CJFDTOTAL-LGFK200506012.htm
[6] 刘建华.分光光度法测定硅铝矿渣中铝的含量[J].武汉化工学院学报,2006,28(2): 20-21. http://www.cnki.com.cn/Article/CJFDTOTAL-WHHG200602005.htm
[7] 赵树宝.EDTA络合滴定法连续测定铁矿石中铝铅锌[J].冶金分析,2011,31(11): 66-69. doi: 10.3969/j.issn.1000-7571.2011.11.014
[8] 孟亚东,孙洛新,傅晓强.氟盐取代-EDTA滴定法测定铝土矿中铝量[J].岩矿测试,2008,27(6): 475-476. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200806016.htm
[9] 孙哲平.高铝岩矿中Fe、A1、Ti的EDTA滴定[J].现代科学仪器,2005(5): 71-73.
[10] 殷凤玲.铝镁尖晶石中铝、钛、钙、镁的测定[J].矿业快报,2008(12): 110-111. http://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200812041.htm
[11] 周尚元.肖伟.铝镁碳砖中三氧二铝的测定[J].湖南冶金,2003,31(1): 44-45.
[12] 于永生,王艳蕊,王景霞.珍珠岩矿中Si、Al、Ti含量的测定[J].信阳师范学院学报:自然科学版,2010,23(2): 278-280. http://www.cnki.com.cn/Article/CJFDTOTAL-XYSK201002031.htm
[13] 皮业华,光红琼.王啸群.炉渣中铝的测定[J].资源环境与工程,2007,21(5): 613-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200705026.htm
[14] 胡顺峰,王霞,郭合颜,金伟.电感耦合等离子体发射光谱法测定红土镍矿石中镍铬镁铝钴[J].岩矿测试,2011,30(4): 465-468. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201104019.htm
[15] 张超,李享.电感耦合等离子体发射光谱法测定镍矿石中镍铝磷镁钙[J].岩矿测试,2011,29(4): 473-476. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201104021.htm
[16] 吕新明,贺国庆,赵晶晶.电感耦合等离子体发射光谱法测定铅精矿中锌、铜、铝、镁含量[J].分析仪器,2010(1): 43. http://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201001015.htm
[17] 孙喜顺,王彦茹,阎雪.电感耦合等离子体原子发射光谱法测定钒钛铁精矿中的钒钛铝镁锰[J].冶金分析,2011,31(8): 79-82. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201108021.htm
[18] 刘稚,丁仕兵,闵国华.电感耦合等离子体原子发射光谱法测定镍矿中镍铝铬镁钴[J].冶金分析,2008, 28(Z1): 621-623.
[19] 金献忠,谢健梅,梁帆,朱丽辉,陈建国.碱熔融-电感耦合等离子体原子发射光谱法测定铬矿石中铬铝铁镁硅[J].冶金分析,2010,30(1): 29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201001006.htm
-