Statistical Identification of Outliers in Ore Gold Reference Material to Determine the Optimal Value
-
摘要: 离群值的剔除常用数理统计的方法,如格拉布斯检验法和迪克逊检验法等,但是这些统计方法用于常量金标准物质分析结果的统计检验,都存在着对离群值剔除明显不够的问题。本文建立了以常量金重复分析相对偏差允许限为依据的离群值统计识别方法,包括统计计算待定值样品中金的算术平均值x和相对偏差允许限YG,确定合格的测定结果的数据区间,从而识别出离群值并予以剔除;一次剔除后,按照新的统计量确定下一轮的离群值剔除范围,直到无离群值后,给出金的平均值及其波动范围。以15个人工组合的常量金标准物质为例,模拟金标准物质定值分析,以密码形式分派给不同单位和分析者,共收集10套独立分析结果,采用本法剔除离群值后,所得金算术平均值与金标准参考值更加接近,其相对偏差的质量分数为0.35,达到优秀;而格拉布斯法(或迪克逊法)和中位值法的质量分数分别为0.42和0.40,只能达到良好。应用本文建立的离群值统计识别方法,质量分数等级有了明显提高,增强了数据统计分析的有效性。Abstract: The methods of mathematical statistics were used to distinguish outliers, such as the Grubbs test and the Dixon test. These methods have not completely identified outliers for statistical tests of the analytical results for constant gold standard samples. An outlier statistical recognition method based on the multiple analysis of relative deviation for constant gold, including the arithmetic mean of gold in the samples, its relative deviation allowable limits in accordance with DZ/T 130.3—2006 and determination of qualified interval of the measurement results in order to identify and remove outliers has been established. After removing the furthest outliers, the whole process was conducted for the next round to remove less obvious outliers until no more outliers were found. The arithmetic mean and its fluctuation range of the gold measurement results were produced. 15 artificial ore gold standard samples were assigned to different laboratories and analyzed with passwords by using the standard sample analysis method. A total of 10 sets of independent analysis results were collected. According to the established method to remove outliers, the obtained arithmetic mean value was closer to the certified value than that by the Grubbs test and the Dixon test. The relative deviation of the quality fraction was 0.35, which was excellent. However, the relative deviations of the quality fraction by either Grubbs test or Dixon test and the median value method respectively were 0.42 and 0.40, which were also good. The quality fraction level has been significantly improved by the outlier statistical recognition method described in this paper, which enhanced the effectiveness of statistical analysis of data.
-
Key words:
- ore gold /
- reference material /
- outliers /
- statistical identification /
- quality fraction
-
-
表 1 密码标样分析结果统计
Table 1. Statistics of analytical results for password standard samples
表 2 剔除离群值后样品分析数据统计
Table 2. Statistics of analytical data after excluding outliers
表 3 不同方法的质量参数统计
Table 3. Statistics of quality parameters of the different methods
样品
编号统计量 相对偏差与允许限 质量分数 x1 x2 x中 x0 RD1 RD2 RD中 YG FQ1 FQ2 FQ中 G1 0.46 0.50 0.50 0.53 13.98 5.66 5.66 20.97 0.67 0.27 0.27 G4 3.28 3.45 3.45 3.62 9.28 4.70 4.70 11.75 0.79 0.40 0.40 G8 12.4 12.5 12.6 12.3 0.84 1.33 2.44 8.13 0.10 0.16 0.30 G11 23.0 23.0 23.0 23.3 1.40 1.40 1.29 6.71 0.21 0.21 0.19 G15 49.7 49.1 49.3 48.5 2.43 1.24 1.65 5.38 0.45 0.23 0.31 G2 1.14 1.20 1.19 1.25 8.47 3.84 4.80 16.19 0.52 0.24 0.30 G6 7.62 7.72 7.56 8.03 5.13 3.89 5.85 9.25 0.56 0.42 0.63 G9 14.8 14.7 14.8 15.1 1.75 2.75 1.99 7.64 0.23 0.36 0.26 G12 27.9 27.6 27.6 27.3 2.05 1.21 1.10 6.40 0.32 0.19 0.17 G14 40.2 40.8 40.9 40.2 0.02 1.49 1.74 5.69 0.00 0.26 0.31 G3 2.28 2.32 2.26 2.52 9.72 8.10 10.32 13.11 0.74 0.62 0.79 G5 5.37 5.37 5.37 5.51 2.59 2.49 2.54 10.36 0.25 0.24 0.25 G7 9.16 9.16 9.04 9.52 3.74 3.74 5.04 8.78 0.43 0.43 0.57 G10 19.9 20.1 20.1 19.4 2.52 3.46 3.61 7.09 0.36 0.49 0.51 G13 31.7 32.0 31.9 30.5 4.07 4.81 4.59 6.19 0.66 0.78 0.74 平均值 - - - - - - - - 0.42 0.35 0.40 -
[1] JJG 1006—94,一级标准物质技术规范[S].
[2] 唐肖玫,姚敬劬.化学物相分析方法研究矿石中金的赋存状态[J].岩矿测试,1992,11(1-2): 162. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS1992Z1024.htm
[3] 王峰,郭茂生,王凯,周红,叶青,余侃萍.金矿石化学物相分析标准物质的研制[J].岩矿测试,2006,25(3): 263-269. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200603014.htm
[4] 张连起,于阗.含明金岩石样品加工方法的探讨[J].化学工程与装备,2010(5): 95-96. http://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201005038.htm
[5] 金浩.标准物质及其应用技术[M].北京:中国标准出版社,1990: 277.
[6] 王晓红,王毅民,高玉淑,樊兴涛.地质标准物质检验方法评介与探讨[J].岩矿测试,2010,29(6): 739-745. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201006025.htm
[7] 岩石矿物分析编写组.岩石矿物分析(第四版 第三分册)[M].北京:地质出版社,2011: 617-639.
[8] 弗兰柯W·波狄史.金银的火试金分析(之一)[J].黄金,1987,8(6): 63-64. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ198706019.htm
[9] 弗兰柯W·波狄史.金银的火试金分析(之二)[J].黄金,1988,9(1): 63-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ198801015.htm
[10] 弗兰柯W·波狄史.金银的火试金分析(之三)[J].黄金,1988,9(2): 60-63. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ198802012.htm
[11] 中国有色金属工业总公司矿产地质研究院.MGI-Au-01~MGI-Au-04金银地质标准参考样的研制[J].黄金,1983,4(6): 54-65.
[12] 储亮侪.化学分析中的质量保证[M].西安:陕西科学技术出版社,1983: 38-39.
[13] 王根荣.标准物质的制备定值及数据处理[J].上海计量测试,2002,29(4): 43-45. http://www.cnki.com.cn/Article/CJFDTOTAL-SJLC200204016.htm
[14] 陈月源,曹成东,袁秀茹,魏轶,谈建安.灰色误差理论在岩矿测试数据处理中的应用[J].岩矿测试,2009,28(6): 576-582. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201513204.htm
[15] 杨理勤,冯亮,李玄辉,陈占生.高含量金标样的均匀性分析检验[J].岩矿测试,2009,28(4): 388-390. http://cdmd.cnki.com.cn/Article/CDMD-10146-2008049895.htm
[16] 杨理勤,宋艳合,李文良,卿敏.金标样定值中全金量的湿法分析[J].岩矿测试,2004,23(1): 75-76. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200401018.htm
[17] 鄢明才.地球化学标准物质标准值不确定度估算探讨[J].岩矿测试,2001,20(4): 287-293. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200104010.htm
[18] 郑存江.地质标准物质不确定度评估方法初探[J].岩矿测试,2005,24(4): 284-286. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200504009.htm
[19] DZ/T 0130—2006,地质矿产实验室测试质量管理规范[S].
-