中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

多壁碳纳米管固相萃取快速检测水样中铅镉铜铁

孙娜, 迟晓峰, 胡风祖, 杨月琴. 多壁碳纳米管固相萃取快速检测水样中铅镉铜铁[J]. 岩矿测试, 2014, 33(4): 545-550.
引用本文: 孙娜, 迟晓峰, 胡风祖, 杨月琴. 多壁碳纳米管固相萃取快速检测水样中铅镉铜铁[J]. 岩矿测试, 2014, 33(4): 545-550.
Na SUN, Xiao-feng CHI, Feng-zu HU, Yue-qin YANG. Determination of Lead, Cadmium, Copper and Iron Contents in Water by Multi-walled Carbon Nanotubes-solid Phase Extraction[J]. Rock and Mineral Analysis, 2014, 33(4): 545-550.
Citation: Na SUN, Xiao-feng CHI, Feng-zu HU, Yue-qin YANG. Determination of Lead, Cadmium, Copper and Iron Contents in Water by Multi-walled Carbon Nanotubes-solid Phase Extraction[J]. Rock and Mineral Analysis, 2014, 33(4): 545-550.

多壁碳纳米管固相萃取快速检测水样中铅镉铜铁

  • 基金项目:
    国家自然科学基金项目(41203018);青海省科技基础平台建设项目(2012-T-Y19)
详细信息
    作者简介: 孙娜,工程师,主要从事环境分析测试工作。E-mail:xfyc@163.com
    通讯作者: 杨月琴,副研究员,主要从事环境科学研究。E-mail: xfchi@nwipb.ac.cn
  • 中图分类号: P641;O614.433;O614.242;O614.121;O614.811

Determination of Lead, Cadmium, Copper and Iron Contents in Water by Multi-walled Carbon Nanotubes-solid Phase Extraction

More Information
  • 传统的固相萃取填料应用于环境样品的重金属处理过程中,存在pH不稳定和不同极性萃取物共同萃取较为困难等方面的不足,因此寻找新型固相萃取填料显得尤为重要。本文采用多壁碳纳米管填充固相萃取柱,萃取水中金属元素铅、镉、铜和铁,采用石墨炉原子吸收光谱法测定铅和镉,电感耦合等离子体发射光谱法测定铜和铁。实验考察了多壁碳纳米管的性质、溶液pH值、洗脱溶液、样品流速以及基体效应对测定结果的影响。结果显示:溶液pH=9,1 mol/L硝酸为洗脱溶液,样品流速为2 mL/min时,外径<8 nm未修饰的多壁碳纳米管有较好的萃取效率,对溶液中铅、镉、铜和铁的最大吸附容量分别为44.91、42.31、54.68和49.07 mg/g,四种元素的吸附容量均衡;钾、钠、钙、镁离子以及苯和甲苯等基质对四种金属元素的萃取影响不大。方法回收率为95.3%~99.5%,精密度(RSD,n=7)为1.2%~3.2%。本方法采用外径<8 nm的多壁碳纳米管固相萃取,与传统萃取方法相比,富集效果好、回收率较高,而且操作简便、准确度高;与前人采用外径20~30 nm的多壁碳纳米管的性能相比,镉和铜的吸附容量更高,还可实现对铁的吸附,且铅、镉、铜和铁四种元素的吸附容量均衡,更适合用于检测水样中的金属元素。
  • 加载中
  • 图 1  pH对金属离子萃取回收率的影响

    Figure 1. 

    图 2  硝酸浓度对金属离子萃取回收率的影响

    Figure 2. 

    图 3  样品流速对金属离子萃取回收率的影响

    Figure 3. 

    图 4  吸附容量

    Figure 4. 

    表 1  多壁碳纳米管性质对金属离子吸附效率的影响

    Table 1.  Effect of MWCNTs property on extraction recovery

    材料名称外径(nm) 金属元素回收率(%)
    PbCdCuFe
    多壁碳纳米管 < 894.995.3 96.2 97.0
    多壁碳纳米管8~1591.294.2 94.3 95.7
    多壁碳纳米管10~2090.991.1 93.7 94.3
    多壁碳纳米管20~3088.190.3 93.3 94.7
    多壁碳纳米管30~5087.985.3 90.0 91.4
    多壁碳纳米管>5085.783.0 84.7 87.9
    羟基化多壁碳纳米管 < 887.193.7 94.0 97.2
    羧基化多壁碳纳米管 < 894.694.4 93.6 98.0
    下载: 导出CSV

    表 2  基体效应对金属离子萃取的影响

    Table 2.  Effect of matrix effects on extraction recovery

    组分加入量(mg/L) 回收率(%)
    PbCdCuFe
    K+500097.198.395.499.2
    Na+1000099.598.597.697.4
    Ca+500096.998.799.199.8
    Mg+200097.398.599.499.7
    1.095.196.798.997.7
    甲苯2.096.495.997.096.9
    下载: 导出CSV

    表 3  方法准确度和精密度

    Table 3.  Precision and recovery tests of the method

    元素 m(μg) 回收率(%)RSD(%) 元素 m(μg) 回收率(%)RSD(%)
    加入量测定值加入量测定值
    Pb 0<LOD-- Cu 0<LOD--
    54.8396.62.4 54.7995.82.1
    109.7197.11.2 109.5395.32.5
    2019.396.51.42019.2196.12.1
    Cd 0<LOD-- Fe 01.20-3.2
    54.9198.22.8 56.0296.42.1
    109.8298.22.3 1010.9597.52.0
    2019.597.51.92021.199.52.3
    注:“<LOD”为小于方法检出限,下表同。
    下载: 导出CSV

    表 4  不同吸附剂的吸附容量比较

    Table 4.  Comparison of adsorption capacity of different adsorption agents

    吸附剂规格 吸附容量(mg/g) 文献
    PbCdCuFe
    活性炭-30.11-19.50-[24, 25]
    粉煤灰--8.08.10-[26]
    绿巨藻-28.724.705.57-[27]
    多壁碳纳米管外径20~30 nm97.0810.8628.49[18, 19]
    多壁碳纳米管外径 < 8 nm64.9142.3154.6849.07本文方法
    下载: 导出CSV

    表 5  实际水样分析结果

    Table 5.  Analytical results of the actual water samples

    实际水样 金属元素含量(mg/L)
    CdCuFePb
    甘河滩0.083.114.30.2
    湟水河<LOD1.29.8<LOD
    大通河<LOD0.910.6<LOD
    下载: 导出CSV
  • [1]

    Sprynskyy M, Buszewski B, Terzyk A P. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite [J].Journal of Colloid and Interface Science, 2006, 304(1):21-28. doi: 10.1016/j.jcis.2006.07.068

    [2]

    Liang P, Sang H B. Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration [J].Analytical Bio-chemistry, 2008, 380:21-25.

    [3]

    Naseii M T, Hosseini M R, Assadi Y, Kiani A. Rapid determination of lead in water samples by dispersive liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry[J].Talanta,2008,75:56-62. doi: 10.1016/j.talanta.2007.10.029

    [4]

    Liang P, Zhao E H, Li F. Dispersive liquid-liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry[J].Talanta, 2009, 77:1854-1857. doi: 10.1016/j.talanta.2008.10.033

    [5]

    台希, 李海涛, 李德良, 胡秋芬, 杨光宇, 尹家元. 固相萃取富集高效液相色谱法测定环境水样中的重金属元素[J].干旱环境监测, 2004, 32(2):67-70. http://www.cnki.com.cn/Article/CJFDTOTAL-GHJC200402001.htm

    [6]

    Wu Y W, Jiang Y Y, Wang F, Han D Y. Extraction of chromium, copper, and cadmium in environmental samples using cross-linked chitosanbound FeC nano-particles as solid-phase extractant and determination by flame atomic absorption spectrometry [J].Atomic Spectroscopy, 2007, 28(5):183-188.

    [7]

    黄海涛, 李忠, 陈章玉, 王保兴, 施红林, 杨光宇. 固相萃取富集-高效液相色谱法测定烟草和烟草添加剂中的重金属元素[J].理化检验(化学分册),2004,40(5):251-254. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200405002.htm

    [8]

    杨亚玲, 杨国荣, 胡秋芬, 杨光宇, 尹家元. 固相萃取富集-高效液相色谱法测定4种中草药中的重金属元素[J].药物分析杂志, 2004, 24(4):441-443. http://www.cnki.com.cn/Article/CJFDTOTAL-YWFX200404035.htm

    [9]

    周骁腾, 侯静怡, 卢恒, 刘金欣, 魏英勤, 孟繁蕴. 萃取技术在中药材重金属检测样品前处理中应用[J].中医药导报, 2013, 19(5):5-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HNZB201305001.htm

    [10]

    Anastassiades M, Lehotay S J, Stajnbaher D, Schenck F J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce[J].Journal of AOAC International, 2003, 86(2):412-431.

    [11]

    Nigel J K S. Solid-Phase Extraction: Principles, Tech-niques, and Applications [M].New York: Marcel Dekker Inc, 2000.

    [12]

    成会明. 纳米碳管——制备、结构、物性及应用[M]. 北京:化学工业出版社, 2002.

    [13]

    Endo M, Takeuchi K, Kobori K, Katsushi T, Harold W K, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers [J].Carbon, 1995, 33:873-881. doi: 10.1016/0008-6223(95)00016-7

    [14]

    辜萍, 王宇, 李广海. 碳纳米管的力学性能及碳纳米管复合材料研究[J].力学进展, 2002, 32(4):563-568. doi: 10.6052/1000-0992-2002-4-J2001-114

    [15]

    朱宏伟, 吴德海, 徐才录. 碳纳米管(第一版)[M]. 北京:机械工业出版社, 2003.

    [16]

    Chen W, Duan L, Zhu D. Adsorption of polar and non-polar organic Chemicals to carbon nanotubes[J].Environmental Science & Technology, 2007, 41(24):8295-8300.

    [17]

    Yang K, Wang X L, Zhu L Z, Xing B S. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes[J].Environmental Science & Technology, 2006, 40(18):5804-5810.

    [18]

    Li Y H, Ding J, Luan Z K, Di Z C, Zhu Y F, Xu C L, Wu D H, Wei B Q. Competitive adsorption of Pb2+, Cu2+and Cd2+ions from aqueous solutions by multiwalled carbon nanotubes[J].Carbon, 2003, 41(14):2787-2792. doi: 10.1016/S0008-6223(03)00392-0

    [19]

    Peng X J, Luan Z K, Di Z C, Zhang Z Z, Zhu C L. Carbon nanotubes-iron oxides magnetic composites asadsorbent for removal of Pb(Ⅱ) and Cu(Ⅱ) from water[J].Carbon, 2005, 43(4):880-883. doi: 10.1016/j.carbon.2004.11.009

    [20]

    Lu C, Chiu H, Liu C. Removal of zinc(Ⅱ) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies [J].Industrial & Engineering Chemistry Research, 2006, 45(8):2850-2855.

    [21]

    Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review[J].Separation and Purification Technology, 2007, 58(1):224-231. doi: 10.1016/j.seppur.2006.12.006

    [22]

    Fu F L, Wang Q. Removal of heavy metal ions from wastewaters: A review[J].Journal of Environmental Management, 2011, 92:407-418.

    [23]

    Maquieira A, Elmahadi H A M, Puchades R. Imm-obilized cyanobacteria for online trace metal enrichment by flow injection atomic absorption spectrometry [J].Analytical Chemistry, 1994, 66(21):3632-3638. doi: 10.1021/ac00093a016

    [24]

    Mohan D, Pittman C U, Bricka M, Smith F, Yancey B, Mohammad J, Steele P H, Alexandre-Franco M F, Gomez-Serrano V, Gong H.Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J].Journal of Colloid Interface Science, 2007, 310:57-73. doi: 10.1016/j.jcis.2007.01.020

    [25]

    Rao M M, Ramana D K, Seshaiah K, Wang M C, Chien S W C. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls[J].Journal of Hazard Materials, 2009, 166:1006-1013. doi: 10.1016/j.jhazmat.2008.12.002

    [26]

    Ayala J, Blanco F, Garcia P, Rodriguez P, Sancho J. Asturian fly ash as a heavy metals removal material[J].Fuel, 1998, 77:1147-1154. doi: 10.1016/S0016-2361(98)00027-1

    [27]

    Pavasant P, Apiratikul R, Sungkhum V, Suthiparinya-nont P, Wattanachira S, Marhaba T F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga caulerpa lentillifera[J].Bioresource Technology, 2006, 97:2321-2329. doi: 10.1016/j.biortech.2005.10.032

  • 加载中

(4)

(5)

计量
  • 文章访问数:  536
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2013-10-31
修回日期:  2013-11-29
录用日期:  2014-04-26

目录