Determination of Trace Amounts of Pb, Cd, Cu and Ag in High Salinity Water by ICP-AES with Sulfhydryl Cotton Separation and Preconcentration
-
摘要: 矿山企业的冶金废水含有多种污染环境的金属元素,必须经过化学沉淀法处理达标后排放。冶金废水经化学沉淀后引入了大量盐分,使得金属元素含量变得极低给分析测试造成困难。针对此类高盐冶金废水,本文采用巯基棉分离富集其中的金属元素,建立了运用电感耦合等离子体光谱(ICP-AES)测定铅、镉、铜、银的分析方法。通过优化实验表明,巯基棉可有效地分离实际样品中大量存在的硫酸根离子和钠离子基体,富集待测元素的效果显著,硫酸根离子和钠离子回收率均小于0.05%,待测元素的回收率在88.7%~113.0%之间。实验条件方面,待测溶液的pH值对巯基棉吸附有较大的影响,使用巯基棉富集前应将溶液调节至适宜的pH值;待测溶液在富集柱中的流速和洗脱剂盐酸的浓度对分离富集效果也有一定的影响。在最佳实验条件下,本法回收率为95.0%~102.0%,精密度(RSD)为3.1%~9.4%,方法快速简便、准确度高,能够满足冶金废水中痕量金属元素的检测需求。Abstract: Wastewater from mining enterprises contains a variety of heavy metals, and therefore requires treatment before discharge to render it non-toxic. After treatment by chemical precipitation, the content of metal is extremely low but has a large amount of salt introduced, which increases the difficulty of metal analysis in wastewater. A method for enrichment of trace elements from high salinity wastewater is described in this paper. Pb, Cd, Cu and Ag were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) after separating and enriching with sulfhydryl cotton. Optimization experiment results showed that sulthydryl cotton could effectively separate a large number of sulfate ions and sodium ions, and could obviously enrich trace elements in the actual samples. The recovery rates of sulfate ion and sodium ion were all less than 0.05%, and the recovery rates of test target elements were at the rate of 88.7%-113.0%. Moreover, the effect of pH, flow rate of solution and the concentration of hydrochloric acid were investigated. Under optimal instrument conditions, the recoveries of these elements were 95.0%-102.0% and RSDs were 3.1%-9.4%, respectively. The method is rapid and convenient, with high accuracy and good precision, and should satisfy the analysis of metallurgical wastewater.
-
Key words:
- metallurgical wastewater /
- Pb /
- Cd /
- Cu /
- Ag /
- sulfhydryl cotton /
- Inductively Coupled Plasma-Atomic Emission Spectrometry
-
-
表 1 ICP-AES仪器工作条件
Table 1. Working parameters of the ICP-AES instrument
工作参数 设定条件 工作参数 设定条件 功率 1300 W 雾化气(Ar)流量 0.8 L/min 冷却气(Ar)流量 15 L/min 蠕动泵转速 1.5 mL/min 辅助气(Ar)流量 0.2 L/min 重复测定次数 3 表 2 巯基棉分离富集的效果
Table 2. Effect of separation and enrichment for sulfhydryl cotton
硫酸钠质量(g) 元素 测定值(μg/L) 回收率(%) 2 Pb 177 88.7 Cd 19.5 97.2 Cu 444 88.8 Ag 206 103.0 SO42- 10000 0.05 Na+ 11000 0.017 5 Pb 222 111.0 Cd 20.0 100.0 Cu 480 96.0 Ag 200 99.8 SO42- 15000 0.03 Na+ 10000 0.015 7 Pb 227 113.0 Cd 20.0 100.0 Cu 476 95.2 Ag 201 101.0 SO42- 20000 0.03 Na+ 15000 0.007 10 Pb 223 111.0 Cd 19.7 98.2 Cu 491 98.2 Ag 196 98.0 SO42- 14000 0.02 Na+ 24000 0.007 表 3 pH值对巯基棉吸附的影响
Table 3. Effect of pH value on the adsorption of sulfhydryl cotton
pH值 待测元素 元素浓度(μg/L) 回收率(%) 加标量 测定值 4 Pb 100 9.01 9.00 Cd 10 0.20 2.00 Cu 250 168 67.0 Ag 100 105 105.0 5 Pb 100 4.10 4.10 Cd 10 0.20 2.00 Cu 250 210 84.0 Ag 100 98.2 98.2 6 Pb 100 90.2 90.2 Cd 10.0 0.20 2.00 Cu 250 240 96.0 Ag 100 99.1 99.1 7 Pb 100 96.7 96.7 Cd 10 10.0 100.0 Cu 250 268 107.0 Ag 100 100 101.0 8 Pb 100 79.9 79.9 Cd 10 9.30 93.0 Cu 250 248 99.0 Ag 100 98.5 98.5 9 Pb 100 80.3 80.3 Cd 10 9.60 96.0 Cu 250 298 119.0 Ag 100 97.6 97.6 表 4 溶液流速对巯基棉吸附的影响
Table 4. Effect of flow rate of the solution on adsorption of sulfhydryl cotton
流速(mL/min) 待测元素 测定值(μg/L) 回收率(%) 4 Pb 202 101.0 Cd 20.1 101.0 Cu 531 106.0 Ag 202 101.0 10 Pb 199 99.7 Cd 19.7 98.5 Cu 503 101.0 Ag 198 99.1 15 Pb 200 100.0 Cd 19.8 99.0 Cu 496 99.2 Ag 201 101.0 30 Pb 196 98.0 Cd 20.2 101.0 Cu 492 98.3 Ag 196 98.0 表 5 盐酸浓度对洗脱效果的影响
Table 5. Influence of hydrochloric acid concentration on the adsorption effect
盐酸浓度(mol/mL) 待测元素 测定值(μg/L) 回收率(%) 0.5 Pb 208 104.0 Cd 20.6 103.0 Cu 555 111.0 Ag 190 94.8 1.0 Pb 219 110.0 Cd 21.4 107.0 Cu 535 107.0 Ag 213 106.0 1.5 Pb 205 102.0 Cd 20.6 103.0 Cu 525 105.0 Ag 205 102.0 2.0 Pb 192 96.0 Cd 20.4 102.0 Cu 505 101.0 Ag 208 104.0 3.0 Pb 197 98.4 Cd 19.8 99.0 Cu 505 101.0 Ag 197 98.4 表 6 加标回收率
Table 6. Spiked recovery tests of the method
样品编号 待测元素 浓度(μg/L) 回收率(%) 平均值 加标量 测定值 1 Pb 25.0 20.0 44.5 97.5 Cd 1.50 2.00 3.40 95.0 Cu 152 100 252 99.5 Ag 20.1 10.0 29.9 98.0 2 Pb 20.1 20.0 40.5 102.0 Cd 2.0 2.0 3.90 95.0 Cu 150 100 250 99.8 Ag 15.1 10.0 25.3 102.0 3 Pb 30.2 20.0 49.8 98.0 Cd 1.50 2.00 3.40 95.0 Cu 50.3 100 147 96.2 Ag 5.00 10.0 14.6 95.0 表 7 方法精密度
Table 7. Precision tests of the method
待测元素 测定值 (μg/L) RSD(%) Pb 29.8 3.8 Cd 1.50 9.7 Cu 50.6 3.1 Ag 5.00 9.4 -
[1] 郭燕妮,方增坤,胡杰华,谢洪珍,李黎婷,叶志勇.化学沉淀法处理含重金属废水的研究进展[J].工业水处理,2011,31(12):9-13. doi: 10.11894/1005-829x.2011.31(12).9
[2] 刘立华,吴俊,李鑫,令玉林.重金属螯合絮凝剂对废水中铅、镉的去除性能[J].环境工程学报,2001, 5(5):1029-1034. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201105013.htm
[3] 陈洁,鲁安怀,姚志健.天然铁的硫化物处理含Pb(Ⅱ)废水的实验研究[J].岩石矿物学杂志,1999,18(4):323-328. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199904006.htm
[4] 杨富新.中和法处理酸性含铜、锌离子污水的pH控制[J].冶金丛刊,1995(4):30-31. http://www.cnki.com.cn/Article/CJFDTOTAL-YJCO199504008.htm
[5] 于景娣,何秀梅.ICP-AES测定冶炼废水中七种杂质元素[J].环境化学,2008,27(2):271-272. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX200802037.htm
[6] 杨朝勇,陈发荣,庄峙厦,谷胜,王小如.微柱固相萃取-电感耦合等离子体质谱联用技术用于测定高盐样品中痕量的铅[J].厦门大学学报,2001, 40(5):1062-1066. http://www.cnki.com.cn/Article/CJFDTOTAL-XDZK200105010.htm
[7] 张辉,朱爱美,张俊,何连花,刘季花,李华芹,高晶晶,崔菁菁.高盐分海洋沉积物样品洗盐预处理方法的研究[J].海洋科学进展,2012,30(3):423-431. http://www.cnki.com.cn/Article/CJFDTOTAL-HBHH201203017.htm
[8] 陆胜龙,倪圣亚,薛民琪,任彬.腐植酸树脂富集-原子荧光法测定高盐水样中铅含量[J].现代农业科技,2012(7):14-15. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201207003.htm
[9] 周聪.草酸共沉淀火焰AAS测定高盐食品、海水及工业废水中痕量铅、镉、铜、锰、锌、铁[J].热带作物研究,1994(1):63-66. http://www.cnki.com.cn/Article/CJFDTOTAL-RDNK401.015.htm
[10] 张莹,石敏.巯基棉分离富集-火焰原子吸收光谱法测定钠盐试剂中的痕量镉[J].光谱实验室,1997, 14(6):54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS199706015.htm
[11] 张莹,彭茵,佟淑娟,张国娟.巯基棉分离富集-火焰原子吸收光谱法测碱土金属试剂中的痕量铅[J].化学试剂,1997,19(2):92-94. http://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ702.008.htm
[12] 费书香.巯基棉富集-原子吸收光谱法测定尿中铅[J].铁道劳动安全卫生与环保,1989(4):55-57. http://www.cnki.com.cn/Article/CJFDTOTAL-TDLD198904023.htm
[13] 戴开平,李焰,施文赵.巯基棉纤维分离、衍生气相色谱法测定痕量砷(Ⅲ)和砷(Ⅴ)[J].分析化学,1992, 20(2):165-168. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX199202010.htm
[14] 陈永欣,黎香荣,杨俊,谢毓群,罗明贵.新型巯基棉分离富集-ICP-AES法测定含铜物料中的金、银[J].黄金,2009,30(2):49-52. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ200902021.htm
[15] 游建南.微量汞分析的研究——SCF分离富集-胶束增溶光度法[J].铀矿冶,2002,21(3):154-157. http://www.cnki.com.cn/Article/CJFDTOTAL-YKYI200203013.htm
-