北方岩溶区断裂带水文地质性质及结构模型

刘元晴, 周乐, 王新峰, 吕琳, 路小慧, 于开宁, 张伟峰. 北方岩溶区断裂带水文地质性质及结构模型[J]. 中国岩溶, 2022, 41(6): 975-985. doi: 10.11932/karst20220609
引用本文: 刘元晴, 周乐, 王新峰, 吕琳, 路小慧, 于开宁, 张伟峰. 北方岩溶区断裂带水文地质性质及结构模型[J]. 中国岩溶, 2022, 41(6): 975-985. doi: 10.11932/karst20220609
LIU Yuanqing, ZHOU Le, WANG Xinfeng, LV Lin, LU Xiaohui, YU Kaining, ZHANG Weifeng. Hydrogeological structure model of the fault zone in the karst area of north China[J]. Carsologica Sinica, 2022, 41(6): 975-985. doi: 10.11932/karst20220609
Citation: LIU Yuanqing, ZHOU Le, WANG Xinfeng, LV Lin, LU Xiaohui, YU Kaining, ZHANG Weifeng. Hydrogeological structure model of the fault zone in the karst area of north China[J]. Carsologica Sinica, 2022, 41(6): 975-985. doi: 10.11932/karst20220609

北方岩溶区断裂带水文地质性质及结构模型

  • 基金项目: 山东省中央引导地方科技发展资金项目(YDZX20203700002937);河北省高校生态环境地质应用技术研发中心开放课题(JSYF-202101);中国地质调查局地质调查项目( DD2022175403)
详细信息
    作者简介: 刘元晴(1988-),高级工程师,主要从事基岩山区水文地质调查工作。E-mail:lyq198896@126.com
    通讯作者: 于开宁(1965-),教授,主要从事水文地质、环境地质方面的研究。E-mail:1211931193@qq.com
  • 中图分类号: P641.1

Hydrogeological structure model of the fault zone in the karst area of north China

More Information
  • 断层带结构和内部流体流动特性是水文地质研究领域的难点问题。石油地质领域,在油气运移与成藏方向已形成较成熟的断层封闭性定量评价技术手段。相比较,断裂的水文地质性质研究尚停留在断裂的力学性质对断层导水、阻水特性的定性评价阶段,尚未详细开展断裂带结构、渗透性各向异性等方面的研究工作。文章梳理总结国外断裂带水文地质性质研究中关于结构组成、断裂带演化、渗透率影响因素等方面的研究成果,引入断裂带渗透率结构模型,并以中国北方岩溶区碳酸盐岩与碎屑岩互层含水岩组为例,构建断裂带水文地质结构模型。断裂带研究尺度和精度不同、断裂带发育部位不同,导致其结构及水文地质性质亦不相同,如何建立起精确、典型的断裂带水文地质结构模型,需要各领域数据共享及多学科融合共同开展研究工作。

  • 加载中
  • 图 1  断裂带结构组成图[28]

    Figure 1. 

    图 2  不同尺度断裂带演化对比模型图[13]

    Figure 2. 

    图 3  各领域采用的断裂带水文地质研究方法对比[11]

    Figure 3. 

    图 4  断裂带渗透率模型[28]

    Figure 4. 

    图 5  碳酸盐岩断裂带水文地质结构模型及应用

    Figure 5. 

    图 6  不同研究精度与尺度条件下断裂带及其渗透率结构模型

    Figure 6. 

    图 7  距离断层尖端的不同位置处断裂带结构模型[47]

    Figure 7. 

    表 1  断裂带组成样式及渗透率结构[28]

    Table 1.  Fault zone architectural styles and permeability structures

    渗透率结构断裂带结构断层核破碎带实例应用的流动模型
    局部导水沿单一曲面或长的离散
    平面发生局部滑动
    缺失或发育较窄缺失或发育较少Shawangunk Mountains
    断层
    具有平行外壁的离散导管
    分散导水沿分布表面和裂缝
    分布发生滑移
    缺乏或发育较窄,狭窄、
    离散和不连续带
    发育的离散滑动面和
    相关的断裂网络
    Hill断裂带等效多孔介质
    局部阻水破碎带内局部滑动发育较好的断层
    核碎裂岩
    缺失或发育较少San Gabriel
    碎裂岩带
    高渗透性含水层(原岩)中的
    弱透水层(断层核)
    复合导水—
    阻水
    变形适应于局部破碎带
    和次生构造分布区
    发育较好的断层
    核碎裂岩
    发育的离散滑动面和
    相关的断裂网络
    Stillwater断裂带夹在两个含水层之间的
    弱透水层(断层核)
    下载: 导出CSV
  • [1]

    Wibberley C A J, Shimamoto T. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan[J]. Journal of Structural Geology, 2003, 25(1):59-78. doi: 10.1016/S0191-8141(02)00014-7

    [2]

    Singhal B B S, Gupta R P. Applied Hydrogeology of Fractured Rocks (second edition)[M]. Springer, 2010: 1-408.

    [3]

    Childs C, Watterson J, Walsh J J. A model for the structure and development of fault zones[J]. Journal of the Geological Society, 1996, 153:337-340. doi: 10.1144/gsjgs.153.3.0337

    [4]

    Tondi E, Cilona A, Agosta F, Aydin A, Rustichelli A, Renda P, Giunta G. Growth processes, dimensional parameters and scaling relationships of two conjugate sets of compactive shear bands in porous carbonate grainstones, Favignana Island, Italy[J]. Journal of Structural Geology, 2012, 37:53-64. doi: 10.1016/j.jsg.2012.02.003

    [5]

    Faulkner D R, Jackson C A L, Lunn R J, Schlische R W, Wibberley C A J, Withjack M O. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 2010, 32:1557-1575. doi: 10.1016/j.jsg.2010.06.009

    [6]

    Aydin A. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine & Petroleum Geology, 2000, 17(7):797-814.

    [7]

    付晓飞, 许鹏, 魏长柱, 吕延防. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘, 2012, 19(6):200-212.

    FU Xiaofei, XU Peng, WEI Changzhu, LV Yanfang. Internal structure of normal fault zone and hydrocarbon migration[J]. Earth Science Frontiers, 2012, 19(6):200-212.

    [8]

    Douglas M, Clark I D, Raven K, Bottomley D. Groundwater mixing dynamics at a Canadian Shield mine[J]. Journal of Hydrology, 2000, 235(1-2):88-103. doi: 10.1016/S0022-1694(00)00265-1

    [9]

    Dockrill B, Shipton Z K. Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U. S. A.[J]. Journal of Structural Geology, 2010, 32(11):1768-1782. doi: 10.1016/j.jsg.2010.01.007

    [10]

    Person M, Banerjee A, Hofstra A, Sweetkind D, Gao Y. Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits[J]. Geosphere, 2008, 4(5):888-917. doi: 10.1130/GES00150.1

    [11]

    Bense V F, Gleeson T, Loveless S E, Bour O, Scibek J. Fault zone hydrogeology[J]. Earth-Science Reviews, 2013, 127:171-192. doi: 10.1016/j.earscirev.2013.09.008

    [12]

    宋佳佳, 孙建孟, 王敏, 傅爱兵, 高建申. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5):1956-1966.

    SONG Jiajia, SUN Jianmeng, WANG Min, FU Aibing, GAO Jianshen. Research progress in the internal structure of the fault[J]. Progress in Geophysics, 2018, 33(5):1956-1966.

    [13]

    Wibberley C A J, Kurt W, Imber J. The internal structure of fault zones: Implications for mechanical and fluid-flow properties[M]. Geological Society, 2008: 1-367.

    [14]

    Bense V F, Shipton Z K, Kremer Y, Kampman N. Fault zone hydrogeology: Introduction to the special issue[J]. Geofluids, 2016, 16(4):655-657. doi: 10.1111/gfl.12205

    [15]

    Giwelli A, Delle Piane C, Esteban L, Clennell M B, Dautriat J, Raimon J, Kager S, Kiewiet L. Laboratory observations of fault transmissibility alteration in carbonate rock during direct shearing[J]. Geofluids, 2016, 16(4):658-672. doi: 10.1111/gfl.12183

    [16]

    Scibek J, Gleeson T, Mckenzie J M. The biases and trends in fault zone hydrogeology conceptual models: global compilation and categorical data analysis[J]. Geofluids, 2016(4):782-798.

    [17]

    付广, 李世朝, 杨德相. 断裂输导油气运移形式分布区预测方法及其应用[J]. 沉积学报, 2017, 35(3):592-599.

    FU Guang, LI Shichao, YANG Dexiang. A method forecasting distribution areas of fault transporting oil-gas migration and its application[J]. Acta Sedimentologica Sinica, 2017, 35(3):592-599.

    [18]

    付晓飞, 方德庆, 吕延防, 付广, 孙永河. 从断裂带内部结构出发评价断裂垂向封闭性的方法[J]. 地球科学, 2005, 30(3):328-336.

    FU Xiaofei, FANG Deqing, LV Yanfang, FU Guang, SUN Yonghe. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J]. Earth Science, 2005, 30(3):328-336.

    [19]

    吴智平, 陈伟, 薛雁, 宋国奇, 刘惠民. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报, 2010, 84(4):570-578.

    WU Zhiping, CHEN Wei, XUE Yan, SONG Guoqi, LIU Huimin. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica, 2010, 84(4):570-578.

    [20]

    潘晓东, 曾洁, 任坤, 焦友军, 彭聪, 兰干江. 贵州毕节岩溶斜坡地带地下水赋存规律与钻探成井模式[J]. 地球学报, 2018, 39(5):606-612.

    PANG Xiaodong, ZENG Jie, REN Kun, JIAO Youjun, PENG Cong, LAN Ganjiang. Groundwater occurrence characteristics and drilling well models in karst slope zone, Bijie, Guizhou Province[J]. Acta Geoscientica Sinica, 2018, 39(5):606-612.

    [21]

    Yamashita T, Tsutsumi A. Involvement of fluids in earthquake ruptures[M]. Springer Japan, 2018: 1-185.

    [22]

    Butler C A, Holdsworth R E, Strachan R A. Evidence for Caledonian sinistral strikeslip motion and associated fault zone weakening, Outer Hebrides Fault Zone, Scotland[J]. Journal of the Geological Society, 1995, 152(5):743-746. doi: 10.1144/gsjgs.152.5.0743

    [23]

    Schulz S E, Evans J P. Spatial variability in microscopic deformation and composition of the Punchbowl fault, Southern California: Implications for mechanisms, fluid–rock interaction, and fault morphology[J]. Tectonophysics, 1998, 295(1-2):223-244. doi: 10.1016/S0040-1951(98)00122-X

    [24]

    Chester F M, Friedman M, Logan J M. Foliated cataclasites[J]. Tectonophysics, 1985, 111(1-2):139-146. doi: 10.1016/0040-1951(85)90071-X

    [25]

    Jefferies S P, Holdsworth R E, Wibberley C A J, Shimamoto T, Spiers C J, Niemeijer A R, Lloyd G E. The nature and importance of phyllonite development in crustal-scale fault cores: An example from the Median Tectonic Line, Japan[J]. Journal of Structural Geology, 2006, 28(2):220-235. doi: 10.1016/j.jsg.2005.10.008

    [26]

    Faulkner D R, Lewis A C, Rutter E H. On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras fault in Southeastern Spain[J]. Tectonophysics, 2003, 367:235-251. doi: 10.1016/S0040-1951(03)00134-3

    [27]

    Chester F M, Logan J M. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California[J]. Pure Applied Geophysics, 1986, 124(1-2):79-106. doi: 10.1007/BF00875720

    [28]

    Caine J S, James P E, Craig B F. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11):1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

    [29]

    Gudmundsson A, Berg S S, Lyslo K B, Skurtveit E. Fracture networks and fluid transport in active fault zones[J]. Journal of Structural Geology, 2001, 23(2):343-353.

    [30]

    Caine J S, Bruhn R L, Craig B F. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada[J]. Journal of Structural Geology, 2010, 32:1576-1589. doi: 10.1016/j.jsg.2010.03.004

    [31]

    James P E, Craig B F, Jame V G. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11):1393-1404. doi: 10.1016/S0191-8141(97)00057-6

    [32]

    罗胜元, 何生, 王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 2012, 27(2):154-164.

    LUO Shengyuan, HE Sheng, WANG Hao. Review on fault internal structure and the influence on fault sealing ability[J]. Advances in Earth Science, 2012, 27(2):154-164.

    [33]

    Bruhn R L, Parry W T, Yonkee W A, Thompson T. Fracturing and hydrothermal alteration in normal fault zones[J]. Pure& Applied Geophysics, 1994, 142(3):609-644.

    [34]

    Scholz C H. Wear and gouge formation in brittle faulting[J]. Geology, 1987, 15(6):493-495. doi: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2

    [35]

    Hull J. Thickness-displacement relationships for deformation zones[J]. Journal of Structural Geology, 1988, 10(4):431-435. doi: 10.1016/0191-8141(88)90020-X

    [36]

    Wibberley C A J, Petit J P, Rives T. Micromechanics of shear rupture and the control of normal stress[J]. Journal of Structural Geology, 2000, 22(4):411-427. doi: 10.1016/S0191-8141(99)00158-3

    [37]

    Chester F M, Evans J P, Biegel R L. Internal structure and weakening mechanisms of the San-Andreas fault[J]. Journal of Geophysical Research Atmospheres, 1993, 98(B1):771-786. doi: 10.1029/92JB01866

    [38]

    Caine J S, Forster C B. Fault zone architecture and fluid flow: Insights from field data and numerical modeling[C]// Haneberg W C, Mozley P S, Moore J C. Faults and Subsurface Fluid Flow in the Shallow Crust. Washington DC, AGU, 1999: 101–127.

    [39]

    Darnault C J G. Overexploitation and contamination of shared groundwater resources [M]. Netherland: Nato Security Through Science, 2011: 203–226.

    [40]

    王焰新. 我国北方岩溶泉域生态修复策略研究: 以晋祠泉为例[J]. 中国岩溶, 2022, 41(3):331-344.

    WANG Yanxin. Study on ecological restoration strategy of karst spring region in North China: Taking Jinci spring as an example[J]. Carsologica Sinica, 2022, 41(3):331-344.

    [41]

    梁永平, 王维泰, 赵春红, 王玮, 唐春雷. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 2013, 32(1):34-42.

    LIANG Yongping, WANG Weitai, ZHAO Chunhong, WANG Wei, TANG Chunlei. Variations of karst water and environmental problems in North China[J]. Carsologica Sinica, 2013, 32(1):34-42.

    [42]

    梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.

    LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, TANG Chunlei, ZHAO Yi, XIE Hao, SHI Weizhi. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica, 2021, 40(3):363-380.

    [43]

    高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.

    GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298.

    [44]

    卢海平, 张发旺, 赵春红, 夏日元, 梁永平, 陈宏峰. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(S2):317-319. doi: 10.12075/j.issn.1004-4051.2018.S2.077

    LU Haiping, ZHANG Fawang, ZHAO Chunhong, XIA Riyuan, LIANG Yongping, CHEN Hongfeng. Differences between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Magazine, 2018, 27(S2):317-319. doi: 10.12075/j.issn.1004-4051.2018.S2.077

    [45]

    梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 中国岩溶, 2022, 41(5):199-219.

    LIANG Yongping, SHEN Haoyong, GAO Xubo. Review of research progress of karst groundwater in Northern China[J]. Carsologica Sinica, 2022, 41(5):199-219.

    [46]

    Matonti C, Lamarche J, Guglielmi Y, Marie L. Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France)[J]. Journal of Structural Geology, 2012, 39:103-121. doi: 10.1016/j.jsg.2012.03.003

    [47]

    Agosta F. Rock physical properties of carbonate fault rocks, Fucino Basin (central Italy): Implications for fault seal in platform carbonates[J]. Geofluids, 2007, 7(1):19-32. doi: 10.1111/j.1468-8123.2006.00158.x

    [48]

    Ferrill D A, Morris A P. Dilational normal faults[J]. Journal of Structural Geology, 2003, 25(2):183-196. doi: 10.1016/S0191-8141(02)00029-9

    [49]

    Childs C, Manzocchi T, Walsh J J, Bonson C G, Nicol A, Schopfer M P J. A geometric model of fault zone and fault rock thickness variations[J]. Journal of Structural Geology, 2009, 31(2):117-127. doi: 10.1016/j.jsg.2008.08.009

    [50]

    Micarelli L, Benedicto A. Normal fault terminations in limestones from the SE-Basin (France): Implications for fluid flow[C]//Wibberley C A J, Kurz W, Imber J. The internal structure of fault zones: Implications for mechanical and fluid-flow properties. Geological Society, 2016: 123-138.

    [51]

    Peacock D C P, Xing Z. Field examples and numerical modelling of oversteps and bends along normal faults in cross-section[J]. Tectonophysics, 1994, 234(1-2):147-167. doi: 10.1016/0040-1951(94)90209-7

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1761
  • PDF下载数:  80
  • 施引文献:  0
出版历程
收稿日期:  2021-09-23
刊出日期:  2022-12-25

目录