重庆金佛洞石笋δ13C记录的Heinrich6期间气候环境变化

组里塞斯, 杨勋林, 王勇, 胡明广, 许奕滨. 重庆金佛洞石笋δ13C记录的Heinrich6期间气候环境变化[J]. 中国岩溶, 2023, 42(3): 590-602. doi: 10.11932/karst2023y008
引用本文: 组里塞斯, 杨勋林, 王勇, 胡明广, 许奕滨. 重庆金佛洞石笋δ13C记录的Heinrich6期间气候环境变化[J]. 中国岩溶, 2023, 42(3): 590-602. doi: 10.11932/karst2023y008
Zulisaisi, YANG Xunlin, WANG Yong, HU Mingguang, XU Yibin. Climatic and environmental changes during Heinrich 6 recorded by δ13C in stalagmites from Jinfo Cave, Chongqing[J]. Carsologica Sinica, 2023, 42(3): 590-602. doi: 10.11932/karst2023y008
Citation: Zulisaisi, YANG Xunlin, WANG Yong, HU Mingguang, XU Yibin. Climatic and environmental changes during Heinrich 6 recorded by δ13C in stalagmites from Jinfo Cave, Chongqing[J]. Carsologica Sinica, 2023, 42(3): 590-602. doi: 10.11932/karst2023y008

重庆金佛洞石笋δ13C记录的Heinrich6期间气候环境变化

  • 基金项目: 国家自然科学基金项目(41971109,41572158);国家重点研发计划项目(2016YFC0502301)
详细信息
    作者简介: 组里塞斯(1996-),女,硕士研究生,研究方向:岩溶记录与全球变化。E-mail:1977166588@qq.com
    通讯作者: 杨勋林(1974-),男,教授,主要从事亚洲季风气候历史重建等研究工作。E-mail:xlyang@swu.edu.cn
  • 中图分类号: P532

Climatic and environmental changes during Heinrich 6 recorded by δ13C in stalagmites from Jinfo Cave, Chongqing

More Information
  • 在末次冰期发生的6次海因里希事件(Heinrich事件,简称H事件)中,H6事件发生年代最早,对其研究较少,利用高分辨率石笋记录研究H6事件期间的气候环境变化,有助于理解高低纬度气候变化对H事件的响应过程。本文基于重庆市金佛洞石笋JF2017铀系测年数据和碳同位素数据,重建H6事件期间中国西南地区季风气候环境的演化过程。结果显示:石笋JF2017的δ13C值在61 811±204 a B.P.~59 716±159 a B.P.时段显著偏重,持续大约2 095 a,暗示该时段季风减弱和生态植被退化,对应北大西洋H6事件。H6事件期间,石笋JF2017的δ13C记录在61 811~60 848 a B.P.期间开始先逐渐偏重至最大值,随后发生短时间尺度的波动变化;最后在60 848~59 716 a B.P.期间缓慢偏轻至H6事件结束,整体呈现先逐渐偏重后又缓慢偏轻的趋势,内部存在百年际尺度的气候震荡,表明H6事件期间当地气候不稳定。石笋JF2017记录的百年际尺度的季风气候变化可能与热带辐合带和北大西洋经向翻转环流密切相关。

  • 加载中
  • 图 1  重庆金佛洞地理位置示意图(图中黑色五角星指示金佛洞位置)

    Figure 1. 

    图 2  石笋JF2017剖面图

    Figure 2. 

    图 3  石笋JF2017年代模型图

    Figure 3. 

    图 4  石笋JF2017 δ13C记录

    Figure 4. 

    图 5  石笋JF2017的平衡分馏检验

    Figure 5. 

    图 6  JF2017石笋δ13C记录与其他石笋记录对比

    Figure 6. 

    图 7  JF2017石笋δ13C记录与全球其他气候记录对比

    Figure 7. 

    表 1  金佛洞石笋JF2017 230Th测年结果

    Table 1.  230Th dating results of stalagmite JF2017

    样品
    编号
    深度
    /mm
    238U
    /ppb
    232Th
    /ppt
    d234U*
    (measured)
    230Th/238U
    (activity)
    230Th Age (a B.P.)
    (corrected)
    JF2017-123.050 639±10042±39−118.1±1.10.361 7±0.001058 368±235
    JF2017-228.535 390±71163±41−120.6±1.10.363 7±0.001059 050±248
    JF2017-342.052 946±1062±39−118.6±1.20.365 9±0.001059 345±244
    JF2017-449.050 680±5998±15−116.1±1.00.368 8±0.000659 728±159
    JF2017-561.539 643±6761±33−113.5±1.10.371 6±0.000960 076±217
    JF2017-671.538 075±48182±19−109.8±1.10.376 1±0.000660 681±177
    JF2017-773.527 942±57610±47−110.5±0.80.377 3±0.001161 018±261
    JF2017-888.557 510±9832±31−119.4±1.10.374 6±0.000861 339±219
    JF2017-993.034 514±51383±26−116.1±1.10.378 1±0.000761 769±204
    JF2017-10107.549 708±9491±36−119.5±1.10.379 0±0.001062 332±248
    注:衰变常数取值为λ230Th=9.157 7×10−6a−1;λ234U=2.826 3×10−6a−1;λ238U=1.551 25×10−10a−1;δ234U = ([234U/238U]$_ {\rm{activity}}^{-1}$)×103,δ234U初始值是根据230Th 年龄获得,即δ234U初始值234U测量值×eλ234×T;初始230Th年龄校正采用地壳230Th/232Th平均比值: 4.4×10−6±2.2×10−6
    Note: The value of the decay constant is λ230Th=9.1577×10−6a−1; λ234U=2.8263×10−6a−1; λ238U=1.55125×10−10a−1; δ234U = ([234U/238U]$_ {\rm{activity}}^{-1}$) x 103, δ234Uinitial value is obtained based on 230Th age, i.e. δ234Uinitial value = δ234Umeasured value×eλ234×T; The initial 230Th age adjustment was based on the average ratio of 230Th/232Th in the earth's crust: 4.4×10−6±2.2×10−6.
    下载: 导出CSV
  • [1]

    W Dansgaard, S J Johnsen, H B Clausen, D Dahl-Jensen, N S Gundestrup, C U Hammer, C S Hvidberg, J P Steffensen, A E Sveinbjörnsdottir, J Jouzel, G Bond. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434):218-220. doi: 10.1038/364218a0

    [2]

    Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29(2):142-152. doi: 10.1016/0033-5894(88)90057-9

    [3]

    Gerard Bond, Hartmut Heinrich, Wallace Broecker, Laurent Labeyrie, Jerry McManus, John Andrews, Sylvain Huon, Ruediger Jantschik, Silke Clasen, Christine Simet, Kathy Tedesco, Mieczyslawa Klas, Georges Bonani, Susan Ivy. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period[J]. Nature, 1992, 360(6401):245-249. doi: 10.1038/360245a0

    [4]

    Wallace Broecker, Gerard Bond, Mieczyslawa Klas, Elizabeth Clark, Jerry McManus. Origin of the northern Atlantic's Heinrich events[J]. Climate Dynamics, 1992, 6(3-4):265-273. doi: 10.1007/BF00193540

    [5]

    Gerard Bond, Wallace Broecker, Sigfus Johnsen, Jerry McManus, Laurent Labeyrie, Jean Jouzel, Georges Bonani. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6442):143-147. doi: 10.1038/365143a0

    [6]

    Ian J Fairchild, Claire L Smith, Andy Baker, Lisa Fuller, Christoph Spötl, Dave Mattey, Frank McDermott, E I M F. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1-4):105-153. doi: 10.1016/j.earscirev.2005.08.003

    [7]

    Zhang Weihong, Wu Jiangying, Wang Yi, Wang Yongjin, Cheng Hai, Kong Xinggong, Duan Fucai. A detailed East Asian monsoon history surrounding the 'Mystery Interval' derived from three Chinese speleothem records[J]. Quaternary Research, 2014, 82(1):154-163. doi: 10.1016/j.yqres.2014.01.010

    [8]

    Cheng Hai, R Lawrence Edwards, Ashish Sinha, Christoph Spötl, Yi Liang, Chen Shitao, Megan Kelly, Gayatri Kathayat, Wang Xianfeng, Li Xianglei, Kong Xinggong, Wang Yongjin, Ning Youfeng, Zhang Haiwei. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591

    [9]

    Zhang Taotao, Li Tingyong, Cheng Hai, R Lawrence Edwards, Shen Chuanchou, Christoph Spötl, Li Hongchun, Han Liyin, Li Junyun, Huang Chunxia, Zhao Xin. Stalagmite-inferred centennial variability of the Asian summer monsoon in Southwest China between 58 and 79 ka BP[J]. Quaternary Science Reviews, 2017, 160:1-12. doi: 10.1016/j.quascirev.2017.02.003

    [10]

    Cheng Hai, Xu Yao, Dong Xiyu, Zhao Jingyao, Li Hanying, Jonathan Baker, Ashish Sinha, Christoph Spötl, Zhang Haiwei, Du Wenjing, Zong Baoyun, Jia Xue, Gayatri Kathayat, Liu Dianbing, Cai Yanjun, Wang Xianfeng, Nicolás M Strikis, Francisco W Cruz, Augusto S Auler, Anil K Gupta, Raj Kumar Singh, Sonu Jaglan, Som Dutt, Liu Zhengyu, R Lawrence Edwards. Onset and termination of Heinrich Stadial 4 and the underlying climate dynamics[J]. Communications Earth & Environment, 2021, 2(1):1-11.

    [11]

    Liang Yijia, Zhao Kan, Wang Yongjin, R Lawrence Edwards, Cheng Hai, Shao Qingfeng, Chen Shitao, Wang Jinyu, Zhu Junji. Different response of stalagmite δ18O and δ13C to millennial-scale events during the last glacial, evidenced from Huangjin cave, northern China[J]. Quaternary Science Reviews, 2022, 276:107305. doi: 10.1016/j.quascirev.2021.107305

    [12]

    李廷勇, 袁道先, 李红春, 杨琰, 王建力, 王昕亚, 李俊云, 覃嘉铭, 张美良, 林玉石. 重庆新崖洞XY2石笋δ18O记录的57~70 ka BP古气候变化及其对D-O和H事件的反映[J]. 中国科学D辑, 2007, 37(6): 798-803.

    LI Tingyong, YUAN Daoxian, LI Hongchun, YANG Yan, WANG Jianli, WANG Xinya, LI Junyun, QIN Jiaming, ZHANG Meiliang, LIN Yushi. Paleoclimatic changes recorded by δ18O from XY2 stalagmite in Xinya cave Chongqing, China at 57–70 ka BP and their reflection on D-O and H events[J]. Science in China (Series D-Earth Sciences), 2007, 37(6):798-803.

    [13]

    彭玲莉, 李廷勇. 岩溶洞穴滴水环境监测研究进展[J]. 中国岩溶, 2012, 31(3):316-326. doi: 10.3969/j.issn.1001-4810.2012.03.014

    PENG Lingli, LI Tingyong. Research progress of monitoring for dripping water environment in karst caves[J]. Carsologica Sinica, 2012, 31(3):316-326. doi: 10.3969/j.issn.1001-4810.2012.03.014

    [14]

    黄春霞, 李廷勇, 韩立银, 李俊云, 袁娜, 王海波, 张涛涛, 赵鑫, 周菁俐. 重庆芙蓉洞洞穴DIC-δ13C的变化特征及影响因素[J]. 中国岩溶, 2016, 35(3):299-306.

    HUANG Chunxia, LI Tingyong, HAN Liyin, LI Junyun, YUAN Na, WANG Haibo, ZHANG Taotao, ZHAO Xin, ZHOU Jingli. Variations of cave water DIC-δ13C and its influencing factors in Furong cave, Chongqing[J]. Carsologica Sinica, 2016, 35(3):299-306.

    [15]

    吴夏, 潘谋成, 殷建军, 汪智军, 朱晓燕, 杨会, 张美良, 曹建华. 桂林凉风洞洞穴空气及滴水水化学对区域环境的响应[J]. 中国岩溶, 2021, 40(3):513-520.

    WU Xia, PAN Moucheng, YIN Jianjun, WANG Zhijun, ZHU Xiaoyan, YANG Hui, ZHANG Meiliang, CAO Jianhua. Response of cave air and hydrogeochemistry of drip water to local climate in the Liangfeng cave, Guilin City[J]. Carsologica Sinica, 2021, 40(3):513-520.

    [16]

    顾宁, 吴江滢. 辽宁暖和洞石笋δ13C记录的古气候环境意义初探[J]. 中国岩溶, 2012, 31(2):107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001

    GU Ning, WU Jiangying. Paleoclimate significance of δ13C in stalagmite from Nuanhe cave, Liaoning[J]. Carsologica Sinica, 2012, 31(2):107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001

    [17]

    李廷勇, 李红春, 袁道先, 杨琰, 王建力, 王昕亚, 李俊云, 覃嘉铭, 张美良, 林玉石. 重庆新崖洞XY6石笋4.5ka以来高分辨率δ18O、δ13C记录的气候变化[J]. 中国岩溶, 2006, 25(2):95-100.

    LI Tingyong, LI Hongchun, YUAN Daoxian, YANG Yan, WANG Jianli, WANG Xinya, LI Junyun, QIN Jiaming, ZHANG Meiliang, LIN Yushi. A 4500-year high-resolution climatic record from a stalagmite in Xinya cave, Chongqing, China[J]. Carsologica Sinica, 2006, 25(2):95-100.

    [18]

    黄帆, 杨勋林, 吕春艳, 李辰丝, 张月明. 重庆羊子洞高分辨率石笋δ13C记录的65~90ka BP气候变化[J]. 西南大学学报(自然科学版), 2014, 36(5):166-173.

    HUANG Fan, YANG Xunlin, LV Chunyan, LI Chensi, ZHANG Yueming. A high resolution stalagmite δ13C record about 65–90 ka BP from Yangzi cave, Chongqing[J]. Journal of Southwest University (Natural Science Edition), 2014, 36(5):166-173.

    [19]

    Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter Sandra. Precise dating of Dansgaard–Oeschger climate oscillations in Western Europe from stalagmite data[J]. Nature, 2003, 421(6925):833-837. doi: 10.1038/nature01391

    [20]

    Wu J Y, Wang Y J, Cheng H, Kong X G, Liu D B. Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from Northeastern China surrounding the "8.2 ka event"[J]. Climate of the Past Discussions, 2012, 8(5):1591-1614.

    [21]

    Wu Yao, Li Tingyong, Yu Tsailuen, Shen Chuanchou, Chen Chaojun, Zhang Jian, Li Junyun, Wang Tao, Huang Ran, Xiao Siya. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from Southwest China[J]. Quaternary Science Reviews, 2020, 234:106261. doi: 10.1016/j.quascirev.2020.106261

    [22]

    吴江滢, 陈骏, 汪永进, 程海. 南京汤山石笋高分辨率氧–碳同位素记录对气候事件的快速响应[J]. 科学通报, 2001, 46(15): 1307-1311.

    WU Jiangying, CHEN Jun, WANG Yongjin, CHENG Hai. Fast response of high resolution oxygen-carbon isotope record by stalagmites in Tangshan, Nanjing to climate event[J]. Chinese Science Bulletin, 2001, 46(15): 1307−1311.

    [23]

    Wang Meng, Chen Shitao, Wang Yongjin, Zhao Kan, Wang Xianfeng, Liang Yijia, Wang Zhenjun, Zhang Zhenqiu, Chen Gongzhe. Stalagmite multi-proxy evidence of wet and dry intervals in the middle Yangtze Valley during the last glacial period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110764. doi: 10.1016/j.palaeo.2021.110764

    [24]

    Jia Wei, Zhang Pingzhong, Zhang Leilei, Li Xinhu, Gao Tao, Wang Haichuan, Zhang Haiwei, Li Hanying, Cheng Hai, R Lawrence Edwards. Highly resolved δ13C and trace element ratios of precisely dated stalagmite from northwestern China: Hydroclimate reconstruction during the last two millennia[J]. Quaternary Science Reviews, 2022, 291:107473. doi: 10.1016/j.quascirev.2022.107473

    [25]

    Huang Wei, Dong Jinguo, Shao Qingfeng, Duan Fucai, Wang Yi. Strong coupling of the East Asian summer monsoon and hydroclimate footprints during 53–47 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 597:111003. doi: 10.1016/j.palaeo.2022.111003

    [26]

    Wang Zhenjun, Chen Shitao, Wang Yongjin, Zhao Kan, Liang Yijia, Li Xianglei, Zhang Jingwei, Yang Shaohua, Zhang Zhenqiu, Chen Gongzhe, Zhai Xiumin, Cheng Hai, R Lawrence Edwards. Climatic implication of stalagmite δ13C in the middle reaches of the Yangtze River since the Last Glacial Maximum and coupling with δ18O[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 608:111290. doi: 10.1016/j.palaeo.2022.111290

    [27]

    Scholz D, Hoffmann D L. StalAge-An algorithm designed for construction of speleothem age models[J]. Quaternary Geochronology, 2011, 6(3-4):369-382. doi: 10.1016/j.quageo.2011.02.002

    [28]

    Hendy C H. The isotopic geochemistry of speleothems–I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica Et Cosmochimica Acta, 1971, 35(8):801-824. doi: 10.1016/0016-7037(71)90127-X

    [29]

    张任, 朱学稳, 韩道山, 张远海, 房峰保. 重庆市南川金佛山岩溶洞穴发育特征初析[J]. 中国岩溶, 1998, 17(3):196-211.

    ZHANG Ren, ZHU Xuewen, HAN Daoshan, ZHANG Yuanhai, FANG Fengbao. Preliminary study on karst caves of Mt. Jinfo, Nanchuan, Chongqing[J]. Carsologica Sinica, 1998, 17(3):196-211.

    [30]

    Baskaran M, Krishnamurthy R V. Speleothems as proxy for the carbon isotope composition of atmospheric CO2[J]. Geophysical Research Letters, 1993, 20(24):2905-2908. doi: 10.1029/93GL02690

    [31]

    Daniel O Breecker. Atmospheric pCO2 control on speleothem stable carbon isotope compositions[J]. Earth and Planetary Science Letters, 2017, 458:58-68. doi: 10.1016/j.jpgl.2016.10.042

    [32]

    李红春, 顾德隆, Lowell D Stott, 袁道先, 陈文寄, 李铁英. 北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J]. 中国岩溶, 1997, 16(4):285-295.

    LI Hongchun, KU Tehlung, Lowell D Stott, YUAN Daoxian, CHEN Wenji, LI Tieying. Interannual-resolution δ13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in Shihua cave, Beijing[J]. Carsologica Sinica, 1997, 16(4):285-295.

    [33]

    李彬, 袁道先, 林玉石, 覃嘉铭, 张美良. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J]. 中国科学(D辑:地球科学), 2000, 30(1):81-87.

    LI Bin, YUAN Daoxian, LIN Yushi, QIN Jiaming, ZHANG Meiliang. Study on precipitation, cave dripping and carbonate oxygen carbon isotopes in modern caves in Guilin and their environmental significance[J]. Science in China (Series D-Earth Sciences), 2000, 30(1):81-87.

    [34]

    Tan Liangcheng, Zhang Haiwei, Qin Shijiang, An Zhisheng. Climatic and anthropogenic impacts on δ13C variations in a stalagmite from Central China[J]. Terrestrial Atmospheric and Oceanic Sciences, 2013, 24(3):333-343. doi: 10.3319/TAO.2012.12.27.01(TT)

    [35]

    Andy Baker, Emi Ito, Peter L Smart, Reed F McEwan. Elevated and variable values of 13C in speleothems in a British cave system[J]. Chemical Geology, 1997, 136(3-4):263-270. doi: 10.1016/S0009-2541(96)00129-5

    [36]

    Williams P W, King D N T, Zhao J X, Collerson K D. Speleothem master chronologies: Combined Holocene 18O and 13C records from the North Island of New Zealand and their palaeoenvironmental interpretation[J]. The Holocene, 2004, 14(2): 194–208.

    [37]

    孔兴功, 汪永进, 吴江滢, L R Edwards. 南京葫芦洞石笋δ13C对冰期气候的复杂响应与诊断[J]. 中国科学(D辑:地球科学), 2005(11):1047-1052.

    KONG Xinggong, WANG Yongjin, WU Jiangying, L R Edwards. Complex response and diagnosis to glacial climate by δ13C in stalagmite from Hulu cave, Nanjing[J]. Science in China (Series D-Earth Sciences), 2005(11):1047-1052.

    [38]

    Andy Baker, Rob Wilson, Ian J Fairchild, Joerg Franke, Christoph Spötl, Dave Mattey, Valerie Trouet, Lisa Fuller. High resolution δ18O and δ13C records from an annually laminated Scottish stalagmite and relationship with last millennium climate[J]. Global and Planetary Change, 2011, 79(3-4):303-311. doi: 10.1016/j.gloplacha.2010.12.007

    [39]

    Coplen T B, Winograd I J, Landwehr J M, Riggs A C. 500,000-year stable carbon isotopic record from Devils Hole, Nevada[J]. Science, 1994, 263(5145): 361-365.

    [40]

    孔兴功. 石笋氧碳同位素古气候代用指标研究进展[J]. 高校地质学报, 2009, 15(2):165-170. doi: 10.16108/j.issn1006-7493.2009.02.005

    KONG Xinggong. Advance in study of oxygen and carbon isotope variations in cave stalagmites as palaeo-climate proxies[J]. Geological Journal of China Universities, 2009, 15(2):165-170. doi: 10.16108/j.issn1006-7493.2009.02.005

    [41]

    Denniston R, DuPree M, Dorale J, Asmerom Y, Polyak V, Carpenter S. Episodes of late Holocene aridity recorded by stalagmites from Devil's Icebox Cave, central Missouri, USA[J]. Quaternary Research, 2007, 68(1):45-52. doi: 10.1016/j.yqres.2007.04.001

    [42]

    Silvia Frisia, Ian J Fairchild, Jens Fohlmeister, Renza Miorandi, Christoph Spötl, Andrea Borsato. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves[J]. Geochimica Et Cosmochimica Acta, 2011, 75(2):380-400. doi: 10.1016/j.gca.2010.10.021

    [43]

    George A Brook, Brooks B Ellwood, L Bruce Railsback, James B Cowart. A 164 ka record of environmental change in the American Southwest from a Carlsbad Cavern speleothem[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4):483-507. doi: 10.1016/j.palaeo.2006.01.001

    [44]

    Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica Et Cosmochimica Acta, 2011, 75(17):4929-4950. doi: 10.1016/j.gca.2011.06.005

    [45]

    Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments[J]. Geochimica Et Cosmochimica Acta, 2011, 75(3):753-768. doi: 10.1016/j.gca.2010.11.006

    [46]

    吴尧. 重庆羊口洞石笋记录的Heinrich event 4期间中国西南地区气候和环境的演变[D]. 重庆: 西南大学, 2021.

    WU Yao. Climate and environmental changes in Southwest China during the Heinrich Event 4 recorded by a stalagmite in Yangkou cave, Chongqing[D]. Chongqing: Southwest University, 2021.

    [47]

    Li Yidong, Yang Yan, Jiang Xiuyang, Zhao Jingyao, Sun Zhe, Shi Xiao, Tian Ning, Yang Yunyue, Li Jiancang, Duan Junwei. The transport mechanism of carbon isotopes based on 10 years of cave monitoring: Implications for paleoclimate reconstruction[J]. Journal of Hydrology, 2021, 592:125841.

    [48]

    王宝艳, 杨勋林, 孙喜利, 史志超, 刘睿恺. 重庆金佛洞石笋δ13C记录的全新世千年尺度气候振荡[J]. 地球与环境, 2019, 47(1): 1-9.

    WANG Baoyan, YANG Xunlin, SUN Xili, SHI Zhichao, LIU Ruikai. The millennial time scale climate oscillation in the holocene revealed by δ13C of stalagmite from the Jinfo cave, Chongqing[J]. Earth and Environment, 2019, 47(1): 1-9.

    [49]

    Cosford Jason, Qing Hairuo, Mattey Dave, Eglington Bruce, Zhang Meiliang. Climatic and local effects on stalagmite δ13C values at Lianhua cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2):235-244. doi: 10.1016/j.palaeo.2009.05.020

    [50]

    Liu Dianbing, Wang Yongjin, Cheng Hai, R Lawrence Edwards, Kong Xinggong, Li TingYong. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, Southern China[J]. Quaternary Research, 2016, 85(3):333-346. doi: 10.1016/j.yqres.2016.02.008

    [51]

    Li Dong, Tan Liangcheng, Cai Yanjun, Jiang Xiuyang, Le Ma, Cheng Hai, R Lawrence Edwards, Zhang Haiwei, Gao Yongli, An Zhisheng. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon?[J]. Climate Dynamics, 2019, 53(5), 2969-2983.

    [52]

    Liang Yijia, Zhao Kan, R Lawrence Edwards, Wang Yongjin, Shao Qingfeng, Zhang Zhenqiu, Zhao Bin, Wang Quan, Cheng Hai, Kong Xinggong. East Asian monsoon changes early in the last deglaciation and insights into the interpretation of oxygen isotope changes in the Chinese stalagmite record[J]. Quaternary Science Reviews, 2020, 250:106699.

    [53]

    Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1):261-285.

    [54]

    North Greenland Ice Core Project Members.High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.

    [55]

    E Salgueiro, A H L Voelker, L de Abreu, F Abrantes, H Meggers, G Wefer. Temperature and productivity changes off the western Iberian margin during the last 150 ky[J]. Quaternary Science Reviews, 2010, 29(5-6):680-695. doi: 10.1016/j.quascirev.2009.11.013

    [56]

    Henry L G, McManus J F, Curry W B, Roberts N L, Piotrowski A M, Keigwin L D. North Atlantic ocean circulation and abrupt climate change during the last glaciation[J]. Science, 2016, 353(6298):470-474. doi: 10.1126/science.aaf5529

    [57]

    Deplazes Gaudenz, Lückge Andreas, Peterson Larry C, Timmermann Axel, Hamann Yvonne, Hughen Konrad A, Röhl Ursula, Laj Carlo, Cane Mark A, Sigman Daniel M, Haug Gerald H. Links between tropical rainfall and North Atlantic climate during the last glacial period[J]. Nature Geoscience, 2013, 6(3):213-217. doi: 10.1038/ngeo1712

    [58]

    McManus J F, Francois R, Gherardi J M, Keigwin L D, Brown-Leger S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    [59]

    Bassis J N, Petersen S V, Mac Cathles L. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment[J]. Nature, 2017, 542(7641):332-334. doi: 10.1038/nature21069

    [60]

    Zhang Xin, Qiu Wanyin, Jiang Xiuyang, Hu Hsunming, Xiao Haiyan, Cai Binggui, Shen Chuanchou. Three-phase structure of the East Asia summer monsoon during Heinrich Stadial 4 recorded in Xianyun cave, Southeastern China[J]. Quaternary Science Reviews, 2021, 274: 107267.

    [61]

    Bond G C, Lotti R. Iceberg discharges into the North Atlantic on Millennial Time Scales during the Last Glaciation[J]. Science, 1995, 267(5200):1005-1010. doi: 10.1126/science.267.5200.1005

    [62]

    Barker S, Chen J, Gong X, Jonkers L, Knorr G, Thornalley D. Icebergs not the trigger for North Atlantic cold events[J]. Nature, 2015, 520(7547):333-336. doi: 10.1038/nature14330

    [63]

    Cheng Hai, Zhang Haiwei, Spötl Christoph, Baker Jonathan, Sinha Ashish, Li Hanying, Bartolomé Miguel, Moreno Ana, Kathayat Gayatri, Zhao Jingyao, Dong Xiyu, Li Youwei, Ning Youfeng, Jia Xue, Zong Baoyun, Ait Brahim Yassine, Pérez-Mejías Carlos, Cai Yanjun, Novello Valdir F, Cruz Francisco W, Severinghaus Jeffrey P, An Zhisheng, Edwards R Lawrence. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38):23408-23417. doi: 10.1073/pnas.2007869117

  • 加载中

(7)

(1)

计量
  • 文章访问数:  557
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2022-06-20
刊出日期:  2023-06-25

目录