中国地质调查局 中国地质科学院主办
科学出版社出版

河北省崇礼幅1∶50 000矿产地质图数据库

甄世民, 庞振山, 薛建玲, 程志中, 白海军, 左群超, 缪建普, 贾儒雅, 姚磊, 陈辉, 张志辉, 陶文. 2020. 河北省崇礼幅1∶50 000矿产地质图数据库[J]. 中国地质, 47(S2): 57-69. doi: 10.12029/gc2020Z205
引用本文: 甄世民, 庞振山, 薛建玲, 程志中, 白海军, 左群超, 缪建普, 贾儒雅, 姚磊, 陈辉, 张志辉, 陶文. 2020. 河北省崇礼幅1∶50 000矿产地质图数据库[J]. 中国地质, 47(S2): 57-69. doi: 10.12029/gc2020Z205
ZHEN Shimin, PANG Zhenshan, XUE Jianling, CHENG Zhizhong, BAI Haijun, ZUO Chaoqun, MIAO Jianpu, JIA Ruya, YAO Lei, CHEN Hui, ZHANG Zhihui, TAO Wen. 2020. 1∶50 000 Mineral Geological Map Database of the Chongli Map-sheet, Hebei Province, China[J]. Geology in China, 47(S2): 57-69. doi: 10.12029/gc2020Z205
Citation: ZHEN Shimin, PANG Zhenshan, XUE Jianling, CHENG Zhizhong, BAI Haijun, ZUO Chaoqun, MIAO Jianpu, JIA Ruya, YAO Lei, CHEN Hui, ZHANG Zhihui, TAO Wen. 2020. 1∶50 000 Mineral Geological Map Database of the Chongli Map-sheet, Hebei Province, China[J]. Geology in China, 47(S2): 57-69. doi: 10.12029/gc2020Z205

河北省崇礼幅1∶50 000矿产地质图数据库

  • 基金项目: 中国地质调查局地质调查项目(DD20160052,DD20190570,DD20190159)
详细信息
    作者简介: 甄世民,男,1984年生,博士,工程师,从事矿产地质工作;E–mail: zhenshimin0001@163.com
    通讯作者: 庞振山,男,1968年生,教授级高级工程师,从事矿床学研究;E–mail: pzs927@163.com

1∶50 000 Mineral Geological Map Database of the Chongli Map-sheet, Hebei Province, China

  • Fund Project: China Geological Survey Projects (Nos.: DD20160052, DD20190570, DD20190159)
More Information
    Author Bio: ZHEN Shimin, male, born in 1984, doctor’s degree, engineer, engages in mineral and geological survey; E-mail: zhenshimin0001@163.com .
    Corresponding author: PANG Zhenshan, male, born in 1968, professorate senior engineer, engages in researching mineral deposits; E-mail: pzs927@163.com
  • 根据《固体矿产地质调查技术要求(1∶50 000)》(DD 2019–02)和行业其他规范要求,完成河北省崇礼幅1∶50 000专项地质填图379.93 km2、矿点检查11处,采集水系沉积物样品1622件、重力测量物理点1623个,测试锆石U–Pb年龄样3组、流体包裹体样80余件,系统编制了河北省崇礼幅1∶50 000矿产地质图,并建立了数据库。突出了对燕山期岩浆岩和相关脉岩、碱性杂岩体和谷嘴子岩组、矿化蚀变等相关成矿信息的表达,厘定了崇礼幅中太古代、新太古代的变质深成侵入体,划分了海西期、印支期、燕山期的岩浆岩建造类型,划分了张家口组火山岩的7个建造类型、谷嘴子岩组变质岩的3个建造类型,系统总结了该区金矿的成矿地质体、成矿构造及成矿结构面、成矿作用特征标志。该数据库为该区金矿的找矿工作提供了基础数据支撑,对金矿目标层地质信息和构造建造信息的提取提供了便利条件,对今后矿产勘查部署具有一定的参考价值。

  • 加载中
  • 图 1  河北省崇礼幅大地构造位置(a)及区域地质简图(b)(据甄世民等,2019修编)

    Figure 1. 

    表 1  冀西北地区金矿类型及特征简表

    矿床特征 东坪式 小营盘式 张全庄式
    矿床规模 大型 大型 中型
    赋矿围岩 碱性杂岩体 斜长角闪质岩石(麻粒岩、变粒岩、混合岩) 斜长角闪质岩石,超基性岩
    矿石(脉)类型 贫硫化物石英脉型为主,部分蚀变岩型 贫硫化物石英脉型为主,部分蚀变岩型 富硫化物石英脉型
    矿体形态、产状及规模 主矿脉5条,长数百~千余米,厚0.24~5.10 m,延深10~400 m以上,主矿脉倾向NW,倾角30°~55°。矿体呈脉状、似层状、透镜状。矿脉由石英单脉及其上下盘石英复脉、羽状支脉、钾化、硅化及钾化二长岩组成 主矿脉沿走向长2500~3500 m,倾斜延深3700 m,分布面积达
    12 km2。矿体受同一缓倾斜石英脉控制。矿体最厚达21 m。单个矿体以似层状、扁豆状、透镜状为主
    含金石英脉有50余条。长度10~2200 m,矿体主要为透镜状。主矿脉平均走向325°,倾向NE,倾角60°~80°;有尖灭再现现象,矿体厚0.2~2 m,延深>200 m
    围岩蚀变
    类型
    钾长石化、硅化、绢云母化,绿帘石化、碳酸盐化,重晶石化,高岭土化,褐铁矿化,钠长石化 钾长石化、硅化、碳酸盐化,绢云母化、绿泥石化、褐铁矿化、高岭土化 硅化、绢云母化、绿泥石化、绿帘石化,碳酸盐化、高岭土化
    主要矿物
    组合
    石英、钾长石、斜长石、赤铁矿、镜铁矿、褐铁矿、黄铁矿、方铅矿、黄铜矿、自然金、碲金矿、黝铜矿、斑铜矿、铜兰、雌黄铁矿 石英、钾长石、黄铁矿、方铅矿、黄铜矿、镜铁矿、钼铅矿、赤铁矿、褐铁矿、自然金、银金矿、孔雀石、碲金矿、辉银矿、方解石 石英,钾长石、黄铁矿、方铅矿、黄铜矿、钛铁矿、自然金、银金矿、铁白云石、方解石
    矿石组构 浸染状、条带状,斑杂状构造;自形-半自形粒状交代、乳滴状、包含结构等 脉状、浸染状构造;自形-他形粒状交代残余、交代假象结构及碎裂结构等 脉状、浸染状、团块状构造;自形-他形粒状、交代残余、交代假象、溶蚀结构及碎裂结构等
    金品位(g/t) 一般为3.2~571,平均5~20 1.5~30,最高154.05,平均9.68 一般<30,最高368.59,平均14.3
    同位素地球化学特征 δ34S变化范围大;206Pb/204Pb比值相对较高,落在造山带和下地壳铅同位素演化线之间;δ18OH2OδD的分布范围广;较低的40Ar/36Ar比值 δ34S主要为负值,无正值出现;206Pb/204Pb比值相对较低,主要落在地幔和下地壳铅同位素演化线之间;δ18OH2O值较高且变化范围小;较高的40Ar/36Ar比值 δ34S为0附近的正值;206Pb/204Pb比值相对较低,主要落在地幔和下地壳铅同位素演化线之间;δ18OH2O值较高但变化范围大;中等的40Ar/36Ar比值
    同类矿床 东坪、黄土梁、中山沟、后沟、赵家沟、西坪、杨木洼等 小营盘、大白阳、水晶屯、黑土沟、席麻湾等 张全庄、大营盘、响水沟、金家庄等
     注:据Wang DZ et al., 2020aZhen SM et al., 2020a,2020b银剑钊和翟裕生,1994胡小蝶等,1997;甄世民等,2019修编。
    下载: 导出CSV

    表 2  崇礼幅1∶50 000矿产地质图数据库元数据简表

    条目 描述
    数据库名称 河北省崇礼幅1∶50 000矿产地质图数据库
    数据库作者 甄世民,中国地质调查局发展研究中心
    白海军,河北省地矿局第三地质大队
    缪建普,河北省地矿局第三地质大队
    贾儒雅,中国地质调查局发展研究中心
    姚磊,中国地质调查局发展研究中心
    数据时间范围 2016—2018年
    地理区域 经纬度:东经 115°15′~115°30′,北纬 40°50′~41°00′
    数据格式 MapGIS
    数据量 15.7 MB
    数据服务系统网址 http://dcc. cgs. gov. cn
    基金项目 中国地质调查局地质调查项目“全国重要矿集区找矿预测”(DD20160052)资助
    语种 中文
    数据库(集)组成 崇礼幅1∶50 000矿产地质图数据库包括1∶50 000地质图库和图饰。地质图库包括沉积岩、岩浆岩、火山岩、变质岩、第四系、脉岩、构造、地质界线、产状、矿床(点)、蚀变、岩性花纹、各类代号等。图饰包括:接图表、柱状图、图例、图切剖面、典型矿床矿脉群平面分布图、典型矿床剖面图、矿产地名录、所属大地构造位置图、责任表等
    下载: 导出CSV

    表 3  崇礼幅岩浆岩锆石U–Pb年龄一览表

    序号 样品描述 U–Pb年龄/Ma 数据来源
    1 水泉沟二长杂岩 390±6 罗镇宽等,2001
    2 东坪金矿含金石英脉的热液锆石 380.5±2.6 李长民等,2010
    3 红花粱二长花岗岩 235±2 Jiang N et al.,2007
    4 上水泉子黑云母花岗岩 142.2±1.3 Miao LC et al.,2002
    5 东坪金矿斑状花岗岩 142.06±0.84 Wei H. et al.,2018
    5 转枝莲辉石闪长岩 139±0.9 Jiang N et al.,2007
    6 张家组流纹岩 135±2 本次工作
    7 北栅子黑云母二长花岗岩 130±2 本次工作
    8 二长斑岩 125.9±2.2 本次工作
    下载: 导出CSV

    表 4  崇礼幅矿产地质图数据属性简表

    编号 数据项 数据属性
    1 沉积岩建造 年代地层单位、岩石地层单位、建造名称、建造代码、岩性组合、地层时代、建造厚度、建造含矿性、岩石结构、沉积构造、岩石颜色、沉积作用类型、沉积相类型、同沉积构造等
    2 火山岩建造 年代地层单位、岩石地层单位、建造名称、建造代码、地层时代、地层分区、岩性组合、建造厚度、建造含矿性、火山喷发旋回、火山喷发类型、火山岩成因类型、特殊岩性夹层、火山岩相类型、同位素年龄等
    3 侵入岩建造 建造名称、建造代码、岩性组合、建造含矿性、岩石结构、岩石构造、侵入期次、岩体产状、平面形态、剖面形态、岩体侵位构造特征、接触带特征、成因类型、同位素年龄等
    4 变质岩建造 年代地层单位、岩石地层单位、建造名称、建造代码、岩性组合、地层时代、建造厚度、建造含矿性、岩石结构、岩石构造、原岩建造、变质相、变质作用类型等
    5 断裂构造 断裂名称、断裂类型、断裂延长、断裂延深、断裂宽度、断裂走向、断裂面倾向、断裂面倾角、断距、断裂面形态、构造岩特征、运动方式、活动期次、力学性质等
    6 产状 产状类型、倾向、倾角等
    7 矿产地 矿产地编号、矿产地名称、矿产地类别、地理经度、地理纬度、矿种、矿床成因类型、规模、共(伴生)矿产、查明资源量等
    下载: 导出CSV

    表 5  侵入岩建造一览表

    时代 建造单元特征
    代号 建造类型 岩性组合 锆石U–Pb同位
    素年龄/Ma
    矿化蚀变
    特征
    中生代 白垩纪 早白垩世 ηγβK1 黑云母二长花岗岩建造 灰白色中细粒黑云母二长花岗岩 130.5
    φδK1 辉石闪长岩建造 深灰色中细粒–中粒辉石闪长岩 139.5±0.9
    γβK1 黑云母花岗岩
    建造
    浅肉红色中粒–中粗粒黑云母花岗岩 142
    三叠纪 晚三叠世 ηγT3 二长花岗岩建造 灰白色、浅粉红色、粉红色、浅肉红色、肉红色细粒–中粒–中粗粒二长花岗岩 235±2
    早古生代 泥盆纪 中泥盆世 ηD2 二长岩–正长岩–石英二长岩
    建造
    浅红色中粒二长岩 372~390 热液型金矿:钾化、黄铁矿化、硅化、绢云母化等
    ξD2 肉红色中粗粒正长岩
    ηοD2 灰白色、粉红色、浅肉红色细粒–中细粒–中粒石英二长岩
    νηD2 辉石角闪二长岩–辉石二长岩–角闪二长岩建造 灰白色、粉红色、浅肉红色细粒–中细粒–中粒–中粗粒辉石角闪二长岩
    φηD2 灰白色细粒–中细粒–中粒辉石二长岩
    ψηD2 肉红色细粒–中细粒–中粒角闪二长岩
    新太古代 晚期 ggAr3 花岗片麻岩建造 花岗片麻岩
    中太古代 中期 ηγAr2 变质二长花岗岩类建造 变质二长花岗岩 热液型金矿:菱铁矿化、钾化等
    下载: 导出CSV

    表 6  火山岩建造一览表

    岩石地层单位 建造单元特征
    代号 建造类型 厚度/m 岩性组合 矿化蚀变特征 锆石U–Pb同位素年龄/Ma
    白垩系 下统 热河群 张家口组 K1z3a 石英安山玢岩建造 132.25 石英安山玢岩 陆相次火山岩型铅锌矿:绿帘石化、硅化、高岭土化
    K1z2e 角砾熔岩
    建造
    731.1 粗面质角砾熔岩、流纹质角砾熔岩
    K1z2d 熔结凝灰岩–熔结凝灰角砾岩建造 熔结凝灰岩、流纹质熔结凝灰岩
    K1z2c 安山岩–粗面岩建造 安山岩、粗面岩、粗安岩、粗面斑岩 127.8
    K1z2b 晶屑凝灰岩建造 晶屑凝灰岩、晶屑岩屑凝灰岩
    K1z2a 集块岩建造 安山质集块岩
    K1z1a 凝灰质沉积岩建造 549.5 凝灰质砂砾岩
    下载: 导出CSV

    表 7  变质岩建造一览表

    地质时代 岩石填图单位 建造单元特征
    岩群 岩组 代号 建造类型 岩性组合 矿化蚀变特征
    新太古代 晚期 红旗营子岩群 太平庄
    岩组
    Ar3tc 黑云斜长变粒岩建造 黑云斜长变粒岩
    Ar3tb 含石墨石榴子石黑云角闪糜棱岩–黑云角闪糜棱岩–长英质糜棱岩建造 含石墨石榴子石黑云角闪糜棱岩、含石墨黑云角闪糜棱岩、黑云角闪糜棱岩、长英质糜棱岩 区域变质石墨矿:绢云母化、白云母化;变质型磷灰石矿:磷灰石化、角闪石化
    Ar3ta 糜棱岩化二云石英片岩建造 糜棱岩化二云石英片岩、糜棱岩化二云片岩
    中太古代 中期 崇礼
    岩群
    谷嘴子
    岩组
    Ar2gc 角闪斜长变粒岩–混合岩化角闪斜长变粒岩建造 含石榴子石角闪斜长变粒岩、混合岩化角闪斜长变粒岩、斜长角闪变
    粒岩
    Ar2gb 条纹、条带状黑云角闪斜长片麻岩建造 黑云角闪斜长片麻岩、黑云斜长片
    麻岩
    Ar2ga 角闪透辉斜长变粒岩–混合岩化透辉斜长变粒岩建造 含石榴子石透辉角闪斜长变粒岩、混合岩化透辉斜长变粒岩、角闪透辉斜长变粒岩、辉石斜长变粒岩、透辉角闪变粒岩 沉积变质型铁矿:碳酸岩化、透闪石化;热液型金矿:钾化、黄铁矿化、硅化、绢云母化等
    下载: 导出CSV

    Table 1.  Types and characteristics of the gold deposits in northwestern Hebei

    Characteristics of deposits Dongping-type Xiaoyingpan-type Zhang Quanzhuang-type
    Scale Large-scale Large-scale Medium-scale
    Ore-hosted rock Alkaline complex Plagioclase amphibolite (granulite, leptite, migmatite) Plagioclase amphibolite, ultramafic rock
    Type of ores (veins) Mainly sulfide-poor quartz vein type, some altered rock type Mainly sulfide-poor quartz vein type, some altered rock type Sulfide-rich quartz vein type
    Ore body shape, occurrence and scale There are five main ore veins, hundreds to more than a thousand meters long, 0.24–5.10 meters thick, and 10–400 meters deep. The main veins dip to NW, with an dip angle of 30°–55°. The orebodies are vein-like, layered and lenticular. The ore-bearing veins single quartz vein and its upper and lower quartz complex veins, pinnate branch veins, as well as potassic alteration, silicification and potash monzanite The main ore vein is 2500–
    3500 meters long along the strike, and 3700 meters inclined deep, with 12 km2 of distribution area. The ore body is controlled by a gently inclined quartz vein. The ore bodies mainly show layered, lentil-shaped and lenticular, with up to 21 meters thick
    There are more than 50 gold-bearing quartz veins, with a length of 10–2200 meters. The ore bodies are mainly lenticular. The main ore vein exhibits an average strike of 325°, an inclination to NE and an dip angle of 60°–80°. The ore body reoccurs after pinning, with a thick of 0.2–2 meters and a deep of more than 200 meters
    Alteration of wall rock Potash feldsparization, silicification, sericitization, epidotization, carbonation, baritization, kaolinization, ferritization, albitization Potash feldsparization, silicification, carbonation, sericitization, chloritization, ferritization, albitization Silicification, sericitization, chloritization, epidotization, carbonation, kaolinization
    Main mineral association Quartz, potash feldspar, plagioclase, hematite, specularite, limonite, pyrite, galena, chalcopyrite, native gold, calaverite, tetrahedrite, bornite, covellite, pyrrhotite Quartz, potash feldspar, pyrite, galena, chalcopyrite, specularite, wulfenite, hematite, limonite, native gold, electrum, malachite, calaverite, aegentite, calcite Quartz, potash feldspar, pyrite, galena, chalcopyrite,, ilmenite, native gold, electrum, ankerite, calcite
    Ore textures Disseminated, banded and marmorate structures; automorphic–subhedral granular metasomatic, emulsion and poikilitic textures Vein and disseminated structures; automorphic–anhedral granular metasomatic relict, metasomatic pseudomorph and cataclastic textures Vein, disseminated and lump structures; automorphic–anhedral granular, metasomatic relict, metasomatic pseudomorph, ablation and cataclastic textures
    Gold grade(g/t) Ranging from 3.2 to 571, with an average of 5–20 Ranging from 1.5 to 30 with an maximum of 154.05, and an average of 9.68 Mainly less than 30, with an maximum of 368.59, and an average of 14.3
    Isotopic geochemistry characteristics δ34S has a range of variation; the ratio of 206Pb/204Pb is relatively high, falling on the Pb isotopic evolution line between the orogenic belt and the lower crust; δ18OH2O value has a wider distribution range than δD; the 40Ar/36Ar ratio is low δ34S is mainly negative with no positive values; the ration of 206Pb/204Pb is relatively low, mainly falling on the Pb isotopic evolution line between the mantle and lower crust; δ18OH2O value is high with a narrow variation range; the 40Ar/36Ar ratio is high δ34S value is positive near 0; the ratio of 206Pb/204Pbis relatively low, mainly falling on the Pb isotopic evolution line between the mantle and lower crust; δ18OH2Ovalue is high with a wide variation range; the 40Ar/36Ar ratio is medium
    Typical deposits Dongping, Huangtuliang, Zhongshangou, Hougou, Zhaojiagou, Xiping, Yangmuwa Xiaoyingpan, Dabaiyang, Shuijingtun, Heitugou, Ximawan Zhangquanzhuang, Dayingpan, Xiangshuigou, Jinjiazhuang
      Notes: modified from Wang DZ et al., 2020a; Zhen SM et al., 2020a, 2020b; Yin JZ and Zhai YS, 1994; Hu XD et al., 1997; Zhen Shimin.
    下载: 导出CSV

    Table 2.  Metadata Table of the Database (Dataset)

    Item Description
    Database(dataset) name 1∶50 000 Mineral Geological Map Database of the Chongli Map-sheet, Hebei Province, China
    Database(dataset) authors Zheng Shimin, Development and Research Center of China Geological Survey
    Bai Haijun, No. 3 Geological Brigade of Hebei Geology and Mineral Exploration Bureau
    Miao Jianpu, No. 3 Geological Brigade of Hebei Geology and Mineral Exploration Bureau
    Jia Ruya, Development and Research Center of China Geological Survey
    Yao Lei, Development and Research Center of China Geological Survey
    Data acquisition time From 2016 to 2018
    Geographic area 115°15′–115°30′E, 40°50′–41°00′N
    Data format MapGIS
    Data size 15. 7 MB
    Data service system URL http://dcc.cgs.gov.cn
    Fund project Funded by China Geological Survey project entitiled “Prospecting in the significant ore cluster across China” (DD20160052)
    Language Chinese
    Database(dataset) composition The 1∶50 000-scale mineral geological map database of the Chongli Map-sheet includes 1∶50 000 geological map library and graphic decoration. The map library includes sedimentary rocks, magmatic rocks, volcanic rocks, metamorphic rocks, Quaternary, dykes, structures, geologic boundaries, attitude, mineral deposits (occurrences), alternation, lithologic textures and codes, etc. The graphic decoration includes index map, columns, legends, cutting profiles, distribution plans of ore vein clusters of typical mineral deposits, sections of typical mineral deposits, lists of mineral deposits, geotectonic position, duty table, etc.
    下载: 导出CSV

    Table 3.  List of zircon U–Pb ages of magmatic rocks within the Chongli Map-sheet area

    Number Sample description U–Pb age/Ma References
    1 Shuiquantou monzonite complex 390±6 Luo ZK et al., 2001
    2 Hydrothermal zircons from Au-bearing quartz veins, Dongping gold deposit 380.5±2.6 Li CM et al., 2010
    3 Honghualiang monzonite 235±2 Jiang N et al., 2007
    4 Shangshuiquanzi biotite granite 142.2±1.3 Miao LC et al., 2002
    5 Porphyritic granite from Dongping gold deposit 142.06±0.84 Wei H et al., 2018
    5 Zhuanzhilian pyroxene diorite 139±0.9 Jiang N et al., 2007
    6 Rhyolite in the Zhangjia Formation 135±2 This work
    7 Beizhazi biotite monzonite 130±2 This work
    8 Ivernite 125.9±2.2 This work
    下载: 导出CSV

    Table 4.  List of data attributes of the mineral geological map of the Chongli Map-sheet

    No. Data item Data attributes
    1 Sedimentary suite Chronostratigraphic unit, lithostratigraphic unit, suite name, suite code, lithologic assemblage, stratigraphic age, suite thickness, ore-bearing potential of suite, rock texture, sedimentary structure, rock color, sedimentation type, sedimentary facies type, synsedimentary structure, etc.
    2 Volcanic suite Chronostratigraphic unit, lithostratigraphic unit, suite name, suite code, lithologic assemblage, stratigraphic age, stratigraphic regionalization, lithologic assemblage, suite thickness, ore-bearing potential of suite, volcano eruption cycle, volcano eruption type, volcanic genesis type, special lithologic interlayer, volcanic facies type, isotope age, etc.
    3 Intrusive suite Suite name, suite code, lithologic assemblage, ore-bearing potential of suite, rock texture, rock structure, intrusion phase, intrusion attitude, planar shape, section configuration, intrusion emplacement structure characteristics, contact characteristics, genesis type, isotope age, etc.
    4 Metamorphic suite Chronostratigraphic unit, lithostratigraphic unit, suite name, suite code, lithologic assemblage, stratigraphic age, suite thickness, ore-bearing potential of suite, rock texture, rock structure, protolith suite, metamorphic facies, metamorphism, etc.
    5 Fault structure Fault name, fault type, fault length, fault depth, fault width, fault striking, fault surface dip and dip angle, fault displacement, fault surface morphology, tectonite characteristics, movement mode, activation phase, mechanical property, etc.
    6 Attitude Attitude type, dip, dip angle, etc.
    7 Mineral
    deposit
    Mineral deposit no., mineral deposit name, mineral deposit type, geographic longitude, geohraphic latitude, mineral species, deposit origin type, scale, symbiotic (associated) mineral, identified resource, etc.
    下载: 导出CSV

    Table 5.  List of intrusive rock suites

    Time Suite characteristics
    Era Period Epoch Age Code Suite type Lithologic assemblage Zircon U–Pb isotope age/Ma Mineralization alteration
    Mesozoic Cretaceous Early Cretaceous ηγβK1 Biotite monzonitic granite suite Grayish-white medium-fine grained biotite monzonitic granite 130.5
    φδK1 Pyroxene diorite suite Dark gray medium-fine–medium grained pyroxene diorite 139.5±0.9
    γβK1 Biotite granite suite Shallow flesh pink medium–medium to coarse grained biotite granite 142
    Triassic Late Triassic ηγT3 Monzonitic granite suite Grayish white, shallow pink red, pink red, shallow flesh pink, flesh pink fine–medium–medium to coarse grained monzonitic granite 235±2
    Early Paleozoic Devonian Middle Devonian ηD2 Monzonite–syenite–quartz monzonite suite Shallow red medium-grained monzonite 372–390 Hydrothermal gold deposit: potassic alteration, pyritization, silification and sericitization, etc.
    ξD2 Flesh pink medium to coarse grained syenite
    ηοD2 Grayish white, pink red, shallow flesh pink fine–medium to fine–medium grained quartz monzonite
    νηD2 Pyroxene-hornblende monzonite–pyroxene monzonite–hornblende monzonite suite Grayish white, pink red, shallow flesh pink fine–medium to fine–medium –medium to coarse grained pyroxene-hornblende monzonite
    φηD2 Grayish white fine–medium to fine–medium grained pyroxene monzonite
    ψηD2 Flesh pink fine–medium to fine–medium grained hornblende monzonite
    Neoarchean Late Neoarchean ggAr3 Granitic gneiss suite Granitic gneiss
    Mesoarchean Middle Mesoarchean ηγAr2 Metamorphic monzonitic granite suite Metamorphic monzonitic granite Hydrothermal gold deposit: sideritization potassic alteration, etc.
    下载: 导出CSV

    Table 6.  List of volcanic rock suites

    Lithostratigraphic unit Suite characteristics
    System Series Group Formation Code Suite type Thickness/m Lithologic assemblage Mineralization alteration Zircon U–Pb isotope age /Ma
    Cretaceous Lower Rhee Group Zhangjiakou Fm. K1z3a Quartz andesitic porphyrite suite 132.25 Quartz andesitic porphyrite Terrestrial subvolcanic galena–zinc mineralization: epidotization, silification, kaolinitization
    K1z2e Breccia lava suite 731.1 Trachytic breccia lava, rhyolitic breccia lava
    K1z2d Welded tuff–welded tuffaceous breccia suite Welded tuff, rhyolitic welded tuff
    K1z2c Andesite–trachyte suite Andesite, trachyte, trachyandesite, trachyte porphyry 127.8
    K1z2b Crystal tuff suite Crystal tuff, crystallithic tuff
    K1z2a Agglomerate suite Andesitic agglomerate
    K1z1a Tuffaceous sedimentary suite 549.5 Tuffaceous sandy conglomerate
    下载: 导出CSV

    Table 7.  List of metamorphic rock suites

    Geologic time Rock mapping unit Suite characteristics
    Era Period Group Formation Code Suite type Lithologic assemblage Mineralization alteration
    Neoarchean Late Neoarchean Hongqiyingzi Group Taipingzhuang Formation Ar3tc Biotite-plagioclase leptite suite Biotite-plagioclase leptite
    Ar3tb Graphite-bearing garnet-biotite-honrblende mylonite–biotite-honrblende mylonite–felsic mylonite suite Graphite-bearing garnet-biotite-hornblende mylonite, graphite-bearing biotite-hornblende mylonite, biotite-hornblende mylonite, felsic mylonite Regional metamorphic graphite deposit: sericitization; metamorphic apatite deposit: apatite alteration and amphibolization
    Ar3ta Mylonitized two-mica quartz schist suite Mylonitized two-mica quartz schist, mylonitized two-mica schist
    Mesoarchean Middle Mesoarchean Chongli Group Guzuizi Formation Ar2gc Hornblende-plagioclase leptite–migmatized hornblende-plagioclase leptite suite Garnet-bearing hornblende–plagioclase leptite, migmatized hornblende-plagioclase leptite, plagioclase–hornblende leptite
    Ar2gb Striped and banded biotite-hornblende-plagioclase gneiss suite Biotite-hornblende-plagioclase gneiss, biotite-plagioclase gneiss
    Ar2ga Hornblende-diopside-plagioclase leptite–migmatized diopside-plagioclase leptite formation Garnet-bearing diopside-hornblende-plagioclase leptite, migmatized diopside-plagioclase leptite, hornblende-diopside-plagioclase leptite, pyroxene-plagioclase leptite, diopside-hornblende leptite Metamorphic sedimentary iron deposit: carbonatization and tremolitization; hydrothermal gold deposit: potassic alteration, pyritization, silification and sericitization, etc.
    下载: 导出CSV
  • [1]

    Bao Z W, Sun W D, Li C J, Zhao Z H. 2014. U–Pb dating of hydrothermal zircon from the Dongping gold deposit in North China: Constraints on the mineralization processes[J]. Ore Geology Reviews, 61: 107−119. doi: 10.1016/j.oregeorev.2014.02.006

    [2]

    Bao Z W, Li C J, Zhao Z H. 2016. Metallogeny of the syenite–related Dongping gold deposit in the northern part of the North China Craton: A review and synthesis[J]. Ore Geology Reviews, 73: 198−210. doi: 10.1016/j.oregeorev.2015.04.002

    [3]

    Cisse M, Lü X B, Algeo T J, Cao X F, Li H, Wei M, Yuan Q, Chen M. 2017. Geochronology and geochemical characteristics of the Dongping ore–bearing granite, North China: Sources and implications for its tectonic setting[J]. Ore Geology Reviews, 89: 1091−1106. doi: 10.1016/j.oregeorev.2016.07.006

    [4]

    Jiang N, Liu Y S, Zhou W G, Yang J H, Zhang S Q. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton[J]. Geochimica et Cosmochimica Acta, 71(10): 2591−2608. doi: 10.1016/j.gca.2007.02.018

    [5]

    Mao J W, Li Y Q, Goldfarb R, He Y, Zaw K. 2003. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?[J]. Economic Geology, 98(3): 517−534.

    [6]

    Miao L C, Qiu Y M, McNaughton N, Luo Z K, Groves D, Zhai Y S, Fan W M, Zhai M G, Guang K. 2002. SHRIMP U–Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny[J]. Ore Geology Reviews, 19(3): 187−204.

    [7]

    Wang D Z, Zhen S M, Liu J J, Carranza E J M, Wang J, Zha Z J, Li Y S, Bai H J. 2020a. Mineral paragenesis and hydrothermal evolution of the Dabaiyang tellurium-gold deposit, Hebei Province, China: Constraints from fluid inclusions, H-O-He-Ar isotopes, and physicochemical conditions[J]. Ore Geology Reviews, https://doi.org/10.1016/j.oregeorev.2020.103904.

    [8]

    Wang D Z, Liu J J, Zhai D G, Fourestier J D, Wang Y H, Zhen S M, Wang J P, Liu Z J, Zhang F F. 2020b. Textures and formation of microporous gold in the Dongping gold deposit, Hebei Province, China[J]. Ore Geology Reviews, 120: 103437. doi: 10.1016/j.oregeorev.2020.103437

    [9]

    Wei H, Xu J H, Zhang G R, Cheng X H, Chu H X, Bian C J, Zhang Z Y. 2018. Hydrothermal metasomatism and gold mineralization of porphyritic granite in the Dongping deposit, North Hebei, China: Evidence from zircon dating[J]. Minerals, 8(9): 363. doi: 10.3390/min8090363

    [10]

    Zhen S M, Wang Q F, Wang D Z, Carranza E J M, Liu J J, Pang Z S, Cheng Z Z, Xue J L, Wang J, Zha Z J. 2020a. Genesis of the Zhangquanzhuang gold deposit in the northern margin of North China Craton: Constraints from deposit geology and ore isotope geochemistry[J]. Ore Geology Reviews, 122: 103511. doi: 10.1016/j.oregeorev.2020.103511

    [11]

    Zhen S M, Wang D Z, Yu X F, Wang Q F, Li Y S, Zha Z J, Wang J. 2020b. Trace elements and sulfur isotopes of sulfides in the Zhangquanzhuang gold deposit, Hebei Province, China: Implications for physicochemical conditions and mineral deposition mechanisms[J]. Minerals, https://doi.org/10.3390/min10121089.

    [12]

    邓晋福, 冯艳芳, 刘翠, 肖庆辉, 苏尚国, 周肃, 高延光. 2009. 太行—燕辽地区燕山期造山过程、岩浆源区与成矿作用[J]. 中国地质, 36(3): 623−633. doi: 10.3969/j.issn.1000-3657.2009.03.009

    [13]

    胡小蝶, 陈志宏, 赵彦明, 王魁元. 1997. 河北小营盘金矿成矿时代—单颗粒锆石U–Pb同位素年龄新证据[J]. 前寒武纪研究进展, 20(2): 22–28.

    [14]

    蒋心明, 樊秉鸿, 李少众. 2000. 河北省东坪金矿矿田构造特征[J]. 地质找矿论丛, 15(4): 351−356. doi: 10.3969/j.issn.1001-1412.2000.04.009

    [15]

    李少众, 靳光成. 2000. 东坪金矿床地质特征及构造控矿作用[J]. 地球学报, 21(1): 44−51. doi: 10.3321/j.issn:1006-3021.2000.01.007

    [16]

    李长民, 邓晋福, 陈立辉, 苏尚国, 李惠民, 胡森林, 刘新秒. 2010. 华北北缘张宣地区东坪金矿中的两期锆石: 对成矿年龄的约束[J]. 矿床地质, 29(2): 265−275. doi: 10.3969/j.issn.0258-7106.2010.02.007

    [17]

    罗镇宽, 苗来成, 关康. 2001. 河北张家口水泉沟岩体SHRIMP年代学研究及其意义[J]. 地球化学, 30(2): 116−122. doi: 10.3321/j.issn:0379-1726.2001.02.002

    [18]

    宋国瑞, 赵振华. 1996. 河北省东坪碱性杂岩金矿地质[M]. 北京: 地震出版社.

    [19]

    王大钊, 刘家军, 翟德高, 甄世民, 王江. 2020. 河北东坪碲金矿床辉钼矿Re–Os及锆石U–Pb年龄研究[J]. 地学前缘, 27(2): 405−419.

    [20]

    叶天竺, 吕志成, 庞振山, 张德会, 王全明, 刘家军, 刘士毅, 程志中, 李超岭, 肖克炎, 甄世民, 杜泽忠, 陈正乐. 2014. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 230–245.

    [21]

    叶天竺, 韦昌山, 王玉往, 祝新友, 庞振山, 姚书振, 秦克章, 韩润生, 叶会寿, 孙景贵, 蔡煜琦, 甄世民, 薛建玲. 2017. 勘查区找矿预测理论与方法(各论)[M]. 北京: 地质出版社, 234–525.

    [22]

    叶天竺, 张智勇, 肖庆辉, 潘桂棠, 冯艳芳. 2010. 成矿地质背景研究技术要求[M]. 北京: 地质出版社.

    [23]

    银剑钊, 翟裕生. 1994. 张宣地区金矿成矿系列[J]. 桂林工学院学报, 14(4): 359–369.

    [24]

    甄世民, 白海军, 缪建普, 贾儒雅, 姚磊. 2020. 河北省崇礼幅 1∶50 000 矿产地质图数据库[DB/OL]. (2020-12-30).DOI: 10.35080/data.C.2020.P25.

    [25]

    郑亚东, 宋官祥, 李广会, 张臣. 1990. 河北崇礼县东坪含金石英脉构造分析[J]. 地质找矿论丛, 5(2): 20−28.

    [26]

    左群超, 黄旭钊, 杨东来, 张明华, 冯艳芳, 吴轩, 张德全, 于学政, 陈郑辉, 李景朝. 2012. 矿产资源潜力评价数据模型: 数据项下属词规定[M]. 北京: 地质出版社.

    [27]

    左群超, 杨东来, 汪新庆. 2011. 成矿地质背景研究数据模型[M]. 北京: 地质出版社.

    [1]

    Bao Z W, Sun W D, Li C J, Zhao Z H. 2014. U–Pb dating of hydrothermal zircon from the Dongping gold deposit in North China: Constraints on the mineralization processes[J]. Ore Geology Reviews, 61: 107−119. doi: 10.1016/j.oregeorev.2014.02.006

    [2]

    Bao Z W, Li C J, Zhao Z H. 2016. Metallogeny of the syenite–related Dongping gold deposit in the northern part of the North China Craton: A review and synthesis[J]. Ore Geology Reviews, 73: 198−210. doi: 10.1016/j.oregeorev.2015.04.002

    [3]

    Cisse M, Lü X B, Algeo T J, Cao X F, Li H, Wei M, Yuan Q, Chen M. 2017. Geochronology and geochemical characteristics of the Dongping ore–bearing granite, North China: Sources and implications for its tectonic setting[J]. Ore Geology Reviews, 89: 1091−1106. doi: 10.1016/j.oregeorev.2016.07.006

    [4]

    Deng Jinfu, Feng Yanfang, Liu Cui, Xiao Qinghui, Su Shangguo, Zhou Su, Gao Yanguang. 2009. Yanshanian (Jurassic—Cretaceous) orogenic processes, magma sources and metallogenesis as well as coal formation in the Taihangshan–Yanshan–West Liaoning region[J]. Geology in China, 36(3): 623−633 (in Chinese with English abstract).

    [5]

    Hu Xiaodie, Chen Zhihong, Zhao Yanming, Wang Kuiyuan. 1997. The metallogenetic epoch of the Xiaoyingpan gold deposit──the new amterial of U–Pb isotopic age on single zircon[J]. Progress in Precambrian Research, 20(2): 22−28 (in Chinese with English abstract).

    [6]

    Jiang N, Liu Y S, Zhou W G, Yang J H, Zhang S Q. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton[J]. Geochimica et Cosmochimica Acta, 71(10): 2591−2608. doi: 10.1016/j.gca.2007.02.018

    [7]

    Jiang Xinming, Fan Binghong, Li Shaozhong. 2000. Gold ore controlling structure in Dongping gold ore field, Chongli County, Hebei Province, China[J]. Contributions to Geology and Mineral Resources Research, 15(4): 351−356 (in Chinese with English abstract).

    [8]

    Li Changmin, Deng Jinfu, Chen Lihui, Su Shangguo, Li Huimin, Hu Linlin, Liu Xinmiao. 2010. Two periods of zircon from Dongping gold deposit in Zhangjiakou–Xuanhua area, northern margin of North China: Constraints on metallogenic chronology[J]. Mineral Deposits, 29(2): 265−275 (in Chinese with English abstract).

    [9]

    Li Shaozhong, Jin Guangcheng. 2000. Geological characteristics and structural ore–controlling role of the Dongping gold deposit, Hebei Province[J]. Acta Geoscientia Sinica (Bulletin of the Chinese Academy of Geological Sciences), 21(1): 44−51 (in Chinese with English abstract).

    [10]

    Luo Zhenkuang, Miao Laicheng, Guan Kang, Qiu Youshou, Y.M.Qiu, N.J.McNaughton, D.I.Groves 2001. SHRIMP chronological study of Shuiquangou intrusive body in Zhanjiakou Area, Hebei Province and its geochemical significance[J]. Geochimica, 30(2): 116−122 (in Chinese with English abstract).

    [11]

    Mao J W, Li Y Q, Goldfarb R, He Y, Zaw K. 2003. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?[J]. Economic Geology, 98(3): 517−534.

    [12]

    Miao L C, Qiu Y M, McNaughton N, Luo Z K, Groves D, Zhai Y S, Fan W M, Zhai M G, Guang K. 2002. SHRIMP U–Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny[J]. Ore Geology Reviews, 19(3): 187−204.

    [13]

    Song Guorui, Zhao Zhenhua. 1996. Geology of Dongping alkaline complex–hosted gold deposit in Hebei Province[M]. Beijing: Seismological Press (in Chinese).

    [14]

    Wang D Z, Zhen S M, Liu J J, Carranza E J M, Wang J, Zha Z J, Li Y S, Bai H J. 2020a. Mineral paragenesis and hydrothermal evolution of the Dabaiyang tellurium-gold deposit, Hebei Province, China: Constraints from fluid inclusions, H-O-He-Ar isotopes, and physicochemical conditions[J]. Ore Geology Reviews, https://doi.org/10.1016/j.oregeorev.2020.103904.

    [15]

    Wang D Z, Liu J J, Zhai D G, Fourestier J D, Wang Y H, Zhen S M, Wang J P, Liu Z J, Zhang F Forestier. 2020b. Textures and formation of microporous gold in the Dongping gold deposit, Hebei Province, China[J]. Ore Geology Reviews, 120: 103437. doi: 10.1016/j.oregeorev.2020.103437

    [16]

    Wang Dazhao, Liu Jiajun, Zhai Degao, Zhen Shimin, Wang Jiang. 2020c. Study on molybdenite Re–Os and zircon U–Pb ages of the Dongping tellurium–gold deposit in Hebei Province[J]. Earth Science Frontiers, 27(2): 405−419 (in Chinese with English abstract).

    [17]

    Wei H, Xu J H, Zhang G R, Cheng X H, Chu H X, Bian C J, Zhang Z Y. 2018. Hydrothermal metasomatism and gold mineralization of porphyritic granite in the Dongping deposit, North Hebei, China: Evidence from zircon dating[J]. Minerals, 8(9): 363. doi: 10.3390/min8090363

    [18]

    Ye Tianzhu, Lü Zhicheng, Pang Zhenshan, Zhang Dehui, Wang Quanming, Liu Jiajun, Liu Shiyi, Cheng Zhizhong, Li Chaoling, Xiao Keyan, Zhen Shimin, Du Zezhong, Chen Zhengle. 2014. Theories and methods of prospecting prediction in prospecting areas (general)[M]. Beijing: Geological Publishing House (in Chinese).

    [19]

    Ye Tianzhu, Wei Changshan, Wang Yuwang, Zhu Xinyou, Pang Zhenshan, Yao Shuzhen, Qin Kezhang, Han Runsheng, Ye Huishou, Sun Jinggui, Cai Yuqi, Zhen Shimin, Xue Jianling. 2017. Theories and methods of prospecting prediction in prospecting areas (monographs)[M]. Beijing: Geological Publishing House (in Chinese).

    [20]

    Ye Tianzhu, Zhang Zhiyong, Xiao Qinghui, Pan Guitang, Feng Yanfang. 2010. Technical requirements for the study of metallogenic geological background[M]. Beijing: Geological Publishing House (in Chinese).

    [21]

    Yin Jianzhao, Zhai Yusheng. 1994. On the metallogenic series of gold deposits in Zhangjiakou–Xuanhua region, Hebei[J]. 14(4): 359–369(in Chinese with English abstract).

    [22]

    Zhen S M, Wang Q F, Wang D Z, Carranza E J M, Liu J J, Pang Z S, Cheng Z Z, Xue J L, Wang J, Zha Z J. 2020a. Genesis of the Zhangquanzhuang gold deposit in the northern margin of North China Craton: Constraints from deposit geology and ore isotope geochemistry[J]. Ore Geology Reviews, 122: 103511. doi: 10.1016/j.oregeorev.2020.103511

    [23]

    Zhen S M, Wang D Z, Yu X F, Wang Q F, Li Y S, Zha Z J, Wang J. 2020b. Trace elements and sulfur isotopes of sulfides in the Zhangquanzhuang gold deposit, Hebei Province, China: Implications for physicochemical conditions and mineral deposition mechanisms[J]. Minerals, 10−1089. doi: 10.3390/min10121089

    [24]

    Zhen Shimin, Bai Haijun, Miao Jianpu, Jia Ruya, Yao Lei. 2020c. 1∶50 000 Mineral Geological Map Database of the Chongli Map-sheet, Hebei Province, China[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-12-30). DOI: 10.35080/data.C.2020.P25.

    [25]

    Zheng Yadong, Song Guanxiang, Li Guanghui, Zhang Chen. 1990. Structural analysis of Dongping gold–bearing quarz vein system in Chongli County, Hebei Province[J]. Contributions to Geology and Mineral Resources Research, 5(2): 20−28 (in Chinese with English abstract).

    [26]

    Zuo Qunchao, Huang Xuzhao, Yang Donglai, Zhang Minghua, Feng Yanfang, Wu Xuan, Zhang Dequan, Yu Xuezheng, Chen Zhenghui, Li Jingchao. 2012. Data model of mineral resource potential evaluation: data item terms[M]. Beijing: Geological Publishing House (in Chinese).

    [27]

    Zuo Qunchao, Yang Donglai, Wang Xinqing. 2011. Data model of mineral resource potential evaluation[M]. Beijing: Geological Publishing House (in Chinese).

  • 加载中

(2)

(14)

计量
  • 文章访问数:  4737
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2020-05-25
修回日期:  2020-09-15
刊出日期:  2020-12-30

目录