中国地质调查局 中国地质科学院主办
科学出版社出版

草莓状黄铁矿的形成机制探讨及其对古氧化-还原环境的反演

王东升, 张金川, 李振, 仝忠正, 牛嘉亮, 丁望, 张聪. 2022. 草莓状黄铁矿的形成机制探讨及其对古氧化-还原环境的反演[J]. 中国地质, 49(1): 36-50. doi: 10.12029/gc20220103
引用本文: 王东升, 张金川, 李振, 仝忠正, 牛嘉亮, 丁望, 张聪. 2022. 草莓状黄铁矿的形成机制探讨及其对古氧化-还原环境的反演[J]. 中国地质, 49(1): 36-50. doi: 10.12029/gc20220103
WANG Dongsheng, ZHANG Jinchuan, LI Zhen, TONG Zhongzheng, NIU Jialiang, DING Wang, ZHANG Cong. 2022. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 49(1): 36-50. doi: 10.12029/gc20220103
Citation: WANG Dongsheng, ZHANG Jinchuan, LI Zhen, TONG Zhongzheng, NIU Jialiang, DING Wang, ZHANG Cong. 2022. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 49(1): 36-50. doi: 10.12029/gc20220103

草莓状黄铁矿的形成机制探讨及其对古氧化-还原环境的反演

  • 基金项目:
    国家重大科技专项“页岩气分类分级资源评价方法研究”(2016ZX05034-002-001)、国家自然科学基金“页岩含气性关键参数测试及智能评价系统”(41927801)联合资助
详细信息
    作者简介: 王东升, 男, 1989年生, 博士生, 从事矿产普查与勘探研究; E-mail: 3006190042@cugb.edu.cn
    通讯作者: 张金川, 男, 1964年生, 教授, 博士生导师, 主要从事非常规天然气地质、油气成藏机理及油气资源评价等方面的教学与研究工作; E-mail: zhangjc@cugb.edu.cn
  • 中图分类号: P62

Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions

  • Fund Project: Supported by the National Science and Technology Major Project (No.2016ZX05034-002-001), the National Natural Science Foundation of China (No.41927801)
More Information
    Author Bio: WANG Dongsheng, male, born in 1989, doctor candidate, engaged in mineral survey and exploration research; E-mail: 3006190042@cugb.edu.cn .
    Corresponding author: ZHANG Jinchuan, male, born in 1964, professor, doctoral supervisor, engaged in teaching and research in unconventional natural gas geology, oil and gas accumulation mechanism and resource evaluation; E-mail: zhangjc@cugb.edu.cn
  • 研究目的

    草莓状黄铁矿广泛存在于现代沉积物和沉积岩中,其成因机制总体上分为有机成因和无机成因两种,尽管两种机制均有理论与实验的支撑,但尚未建立一种具有普遍意义的形成机制。

    研究方法

    本文对目前草莓状黄铁矿的形成机理、氧化还原环境的应用及后期环境变化的影响进行了系统的综合研究。

    研究结果

    不同氧化-还原环境下形成的草莓状黄铁矿在粒径、形态以及硫同位素之间均存在较大的差异,可做为反演古氧化-还原环境的指标。草莓状黄铁矿的微晶尽管与粒径具有一定的正相关性,但是两者在形态演化序列、生长模式、聚集因素等方面与古氧化-还原环境的关系尚不清楚。仅凭草莓状黄铁矿粒径与铬还原法测定的硫同位素反演古氧化-还原环境存在一定的局限性,需要其他指标综合判定,尚需进一步开展草莓状黄铁矿原位硫同位素值与粒径对古氧化-还原环境反演的研究。后期氧化可使草莓状黄铁矿表面化学成分发生变化,但粒径分布依然具有古氧化-还原环境的指示意义。

    结论

    草莓状黄铁矿的实验模拟、理论体系和多学科交叉的研究中仍存在一些问题,尚需进一步研究。

  • 加载中
  • 图 1  扫描电镜下草莓状黄铁矿外形及微晶结构(据Ohfuji et al., 2005

    Figure 1. 

    图 2  “草莓状黄铁矿有机成因-中空间隔模式”(据MacLean et al., 2008修改)

    Figure 2. 

    图 3  Wilkin和Barnes关于草莓状黄铁矿形成的模式图(据Wilkin et al., 1996杨雪英等,2011

    Figure 3. 

    图 4  在25℃、0.1MPa的有限水体及沉积物环境下时间的对数与草莓状黄铁矿粒径关系图(据Rickard,2019

    Figure 4. 

    图 5  草莓状黄铁矿在不同沉积环境、阶段及体系下形成的粒径分布特点和两种环境下形成的模式图

    Figure 5. 

    图 6  草莓状黄铁矿粒径在硫化环境和氧化-贫氧环境下的分布及明显的重叠分布(数据来源于Wilkin et al., 1996Rickard, 2019

    Figure 6. 

    图 7  草莓状黄铁矿的平均粒径与标准偏差(a)、偏态系数(b)图解(据Wilkin et al., 1996常华进等,2009

    Figure 7. 

    图 8  草莓状黄铁矿形态演化(据Merinero et al., 2008

    Figure 8. 

    图 9  黑海沉积物(a)和大盐沼沉积物(b)中草莓状黄铁矿粒径(D)与微晶直径(d)的关系(据Wilkin et al., 1996

    Figure 9. 

    图 10  四个地点微晶与草莓状粒径分布图(据Wilkin et al., 1996

    Figure 10. 

    图 11  室温下一种黄铁矿微晶形态的演化和生长示意图(据Wang and Morse, 1996

    Figure 11. 

    图 12  歧化反应过程中硫化物重复氧化为S0的模式图(据Canfield and Thamdrup, 1994

    Figure 12. 

    图 13  草莓状黄铁矿粒径与硫同位素关系图

    Figure 13. 

    图 14  草莓状黄铁矿向自形黄铁矿演化的3种模式(据Sawlowicz,1993

    Figure 14. 

    图 15  草莓状黄铁矿的二次生长对结构的改变(据Wacey et al., 2015

    Figure 15. 

    表 1  根据溶解氧划分的古氧化-还原环境(据Tyson and Pearson, 1991

    Table 1.  Classification of paleo-redox conditions based on dissolved oxygen (after Tyson and Pearson, 1991)

    下载: 导出CSV

    表 2  草莓状黄铁矿粒径特征与古氧化-还原环境及沉积特征总结(据Bond and Wignall, 2010

    Table 2.  Summary of characteristics used to define paleo-redox conditions during deposition(after Bond and Wignall, 2010)

    下载: 导出CSV

    表 3  草莓状黄铁矿与草莓状黄铁矿氧化物粒径数据对比表(据黄元耕,2018

    Table 3.  Comparison table of oxide particle size data of framboidal pyrite and framboidal pyrite (after Huang Yuangeng, 2018)

    下载: 导出CSV
  • Berner R A. 1967. Thermodynamic stability of sedimentary iron sulfides[J]. American Journal of Science, 265: 773-785. doi: 10.2475/ajs.265.9.773

    Berner R A. 1969. Migration of iron and sulfur within anaerobic sediments during early diagenesis[J]. American Journal of Science, 267(1): 19-42. doi: 10.2475/ajs.267.1.19

    Berner R A, Raiswell R. 1983. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time A new theory[J]. Geochimica et Cosmochimica Acta, 47(5): 855-862. doi: 10.1016/0016-7037(83)90151-5

    Berner R A. 1984. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta, 48(4): 605-615. doi: 10.1016/0016-7037(84)90089-9

    Bond D P G, Wignall P B W. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 122(7-8): 1265-1279. doi: 10.1130/B30042.1

    Bryant R N, Jones C, Raven M R, Owens J D, Fike D A. 2020. Shifting modes of iron sulfidization at the onset of OAE-2 drive regional shifts in pyrite δ34S records[J]. Chemical Geology, 553: 119808. doi: 10.1016/j.chemgeo.2020.119808

    Butler I B, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide[J]. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. doi: 10.1016/S0016-7037(00)00387-2

    Canfield D E, Raiswell R, Westrich J T, Reaves C M, Berner R A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 54(1/2): 149-155. https://www.sciencedirect.com/science/article/pii/0009254186900781

    Canfield D E, Thamdrup B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 266: 1973-1975. doi: 10.1126/science.11540246

    Canfield D E, Habicht K S, Thamdrup B. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 288: 658-661. doi: 10.1126/science.288.5466.658

    Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing. 2009. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 25(4): 1001-1007(in Chinese with English abstract).

    Chang Xiaolin, Huang Yuangen, Chen Zhongqiang, Hou Mingcai. 2020. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 38(1): 150-165(in Chinese with English abstract).

    Chen X, Rong J Y, Li A, Boucot J. 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 353-372. https://www.sciencedirect.com/science/article/pii/S0031018203007363

    Cutter G A, Velinsky D J. 1988. Temporal variations of sedimentary sulfur in a Delaware salt marsh[J]. Marine Chemistry, 23: 311-327. doi: 10.1016/0304-4203(88)90101-6

    Degens E T, Okada H, Honjo S, Hathaway J C. 1972. Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa[J]. Mineralium Deposita, 7(1): 1-12.

    Donald R, Southam G. 1999. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite[J]. Geochimica et Cosmochimica Acta, 63: 2019-2023. doi: 10.1016/S0016-7037(99)00140-4

    England B M, Ostwald J. 1993. Framboid-derived structures in some Tasman fold belt base-metal sulphide deposits, New South Wales, Australia[J]. Ore Geology Reviews, 7(5): 381-412. doi: 10.1016/0169-1368(93)90002-G

    Fan Hongrui, Li Xinghui, Zuo Yabin, Chen Lei, Liu Wei, Hu Fangfang, Feng Kai. 2018. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 34(12): 3479-3496. (in Chinese with English abstract).

    Farina M, Esquivel D, Henrique G P, Barros L D. 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism[J]. Nature, 343: 256-258. doi: 10.1038/343256a0

    Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science, 289(5480): 756-759. doi: 10.1126/science.289.5480.756

    Farquhar J, Savarino J, Airieau S, Mark H, Thiemens M H. 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere[J]. Journal of Geophysical Research: Planets, 106(E12): 32829-32839. doi: 10.1029/2000JE001437

    Farrand M. 1970. Framboidal sulphides precipitated synthetically[J]. Mineralium Deposita, 5(3): 237-247. https://link.springer.com/article/10.1007%2FBF00201990

    Gao Yongwei, Wang Zhihua, Li Weiliang, Zhang Zhenliang. 2019. A review of pyrite mineralogy research in hydrothermal gold deposits[J]. Northwestern Geology, 52(3): 58-69(in Chinese with English abstract).

    Goldhaber M B, Kaplan I R. 1975. Controls and consequences of sulfate reduction rates in recent marine sediments[J]. Soil Sci., 119: 42-55. doi: 10.1097/00010694-197501000-00008

    Gomes M L, Fike D A, Bergmann K D, Jones C, Knoll A H. 2018. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures[J]. Geobiology, 16(1): 17-34. doi: 10.1111/gbi.12265

    Habicht K S, Canfield D E. 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 61(24): 5351-5361. doi: 10.1016/S0016-7037(97)00311-6

    Habicht K S, Gade M, Thamdrup B, Berg P, Canfield D E. 2002. Calibration of sulfate levels in the archean ocean[J]. Science, 298(5602): 2372-2374. doi: 10.1126/science.1078265

    Huang Fei, Gao Shang, Chen Lei, Su Limin, Li Yongli, Meng Lin, Liu Kaijun, Chai Chenwei, Qi Xinyi. 2020. Micro-texture and in situ sulfur isotope of pyrite from the Baiyunpu Pb-Zn deposit in central Hunan, South China: Implications for the growth mechanism of colloform pyrite aggregates[J]. Journal of Asian Earth Science, 193(15).

    Hartman P, Perdok W G. 1955. On the relations between structure and morphology of crystal1[J]. Acta Crystallographica(Section A), 8(1): 49-52. doi: 10.1107/S0365110X55000121

    Horiuchi S, Wade H, Moori T. 1974. Morphology and imperfection of hydrothermally synthesized greigite (Fe3S4)[J]. Journal of Crystal Growth, 24: 624-626.

    Hu Yongliang, Wang wei, Zhou Chuanming. 2020. Morphologic and Isotopic Characteristics of Sedimentary Pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China[J]. Acta Sedimentologica Sinica, 38(1): 138-149(in Chinese with English abstract).

    Huang Y, Chen Z, Algeo T J, Zhao L, Baud A, Bhat G M. 2019. Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmir, northern India: Pyrite framboid evidence[J]. Global and Planetary Change, 172: 124-139. doi: 10.1016/j.gloplacha.2018.10.002

    Kalliokoski J, Cathles L. 1969. Morphology, mode of formation, and diagenetic changes in framboids[J]. Bulletin of the Geological Society of Finland, 41: 125-133. doi: 10.17741/bgsf/41.014

    Konhauser K O. 1997. Bacterialiron biomineralisation in nature[J]. FEMS Micrology Review, 20: 315-326. doi: 10.1111/j.1574-6976.1997.tb00317.x

    Lin M, Huang F, Wang X Q, Gao W Y, Zhang B M, Song D, Li G L, Zhang B Y. 2020. An experimental study of the morphological evolution of pyrite under hydrothermal conditions and its implications[J]. Journal of Geochemical Exploration, 219. https://www.sciencedirect.com/science/article/pii/S0375674219306533

    Lin Z, Sun X, Peckmann J, Lu Y, Xu L, Strauss H, Zhou H, Gong J, Lu H, Teichert B M A. 2016. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea[J]. Chemical Geology, 440: 26-41. doi: 10.1016/j.chemgeo.2016.07.007

    Liu Bin, Chen Weifeng, Fang Qichun, Tang Xiangsheng, Mao Yufeng, Sun Liqiang, Gao Shuang, Yan Yongjie, Wei Xin, Ling Hongfei. 2020. Study on in-situ sulfur isotope compositions of sulfides: Implication for the source of Pb-Zn mineralized body of Niutoushan in the Xiangshan Area[J]. Earth Science, 45(2): 389-399(in Chinese with English abstract). https://www.researchgate.net/publication/250130914_Sulfur_Isotope_Geochemistry_of_Sulfide_Minerals

    Liu Dameng, Yang Qi, Zhou Chunguang, Tang Dazhen, Kang Xidong. 1999. Occurrence and geological gensis of pyrite in Late Paleozoic coals in north china[J]. Geochimica, 28(4): 340-350(in Chinese with English abstract).

    Love L G. 1957. Mircro-organisms and the presence of syngenetic pyrite[J]. Quarterly Journal of the Geological Society, 113: 429-440. doi: 10.1144/GSL.JGS.1957.113.01-04.18

    Love L G, Amstutz G C. 1966. Review of microscopic pyrite from the Devonian chattanooga shale and rammelserg banderz[J]. Fortschr Mineral, 43: 273-309.

    Love L G, Brockley H. 1973. Peripheral radial texture in framboids of polyframboidal pyrite[J]. Fortschr. Miner, 50: 264-269.

    Lowenstam H. 1981. Minerals formed by organisms[J]. Science, 211(4487): 1126-1131. doi: 10.1126/science.7008198

    MacLean L C, Tyliszczak T, Gilbert P U, Zhou D, Pray T J, Onstott T C, Southam G. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 6(5): 471-480. doi: 10.1111/j.1472-4669.2008.00174.x

    Magnall J M, Gleeson S A, Stern R A, Newton R J, Poulton S W, Paradis S. 2016. Open system sulphate reduction in a diagenetic environment-Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada[J]. Geochimica et Cosmochimica Acta, 180: 146-163. doi: 10.1016/j.gca.2016.02.015

    Merinero R, Lunar R, Frias J M, Somoza L, Diaz-del-Rio V d. 2008. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula)[J]. Marine and Petroleum Geology, 25(8): 706-713. doi: 10.1016/j.marpetgeo.2008.03.005

    Meyer K M, Alonso R M, Morrissey S, Jones C. 2019. Sulfur Isotope Measurements of Framboidal Pyrites from the Sediments and Water Column of a Stratified Euxinic Lake[C]//American Geophysical Union.

    Moore R A, Lieberman B S. 2009. Preservation of early and Middle Cambrian soft-bodied arthropods from the Pioche shale, Nevada, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(1/2): 57-62. https://www.sciencedirect.com/science/article/pii/S0031018209000856

    Morse J, Wang W Q. 1997. Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter[J]. Marine Chemistry, 57: 187-193. doi: 10.1016/S0304-4203(97)00050-9

    Muramoto J Honjo A S B F, Hay B J, Howarth R W, Cisne J L. 1991. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 38: S1151-S1187. doi: 10.1016/S0198-0149(10)80029-9

    Nozaki T, Nagase T, Ushikubo T, Shimizu K, Ishibashi J i, the D/V Chikyu Expedition 909 Scientists. 2020. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 49(2): DOI:10.1130/G47943.1.

    Ohfuji H D Rickard. 2005. Experimental syntheses of framboids-a review[J]. Earth-Science Reviews, 71(3/4): 147-170. https://www.sciencedirect.com/science/article/pii/S001282520500019X

    Popa R, Kinkle B K, Badescu A. 2004. Pyrite framboids as biomarkers for Iron-Sulfur Systems[J]. Geomicrobiology, 21(3): (193-206). doi: 10.1080/01490450490275497

    Raiswell R. 1982. Pyrite, texture isotopic composition and the availability of iron[J]. American Journal of Science, 282: 1244-1263. doi: 10.2475/ajs.282.8.1244

    Raiswell R, Berner R A. 1985. Pyrite formation in euxinic and semi-euxinic sediments[J]. American Journal of Science, 285(8): 710-724. doi: 10.2475/ajs.285.8.710

    Randolf A D, Larson W A. 1971. Theory of Particulate Processes. Analysis and Techniques of Continuous Crystallization[M]. Academic Press, New York and London.

    Rickard D. 2019. How long does it take a pyrite framboid to form[J]. Earth & Planetary Science Letters, 513: 64-68. https://www.sciencedirect.com/science/article/pii/S0012821X19301165

    Rickard D. 2019. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 62-75. doi: 10.1016/j.palaeo.2019.03.010

    Rickard D T. 1970. The origin of framboids[J]. Lithos, 3(3): 269-293. doi: 10.1016/0024-4937(70)90079-4

    Rust G W. 1935. Colloidal primary copper ores at Cornwall mines, Southeastern Missouri[J]. The Journal of Geology, 43(4): 398-426. doi: 10.1086/624318

    Sawlowicz Z. 1993. Pyrite framboids and their development: A new conceptual mechanism[J]. Geologische Rundschau, 82(1): 148-156. doi: 10.1007/BF00563277

    Sawlowicz Z. 1987. Framboidal pyrite from the metamorphic Radzimowice Schists of Stara Gora(Lower Silesia, Poland)[J]. Mineral Polon, 18: 57-67.

    Steinike K. 1963. A further remark on biogenic sulfides: Inorganic pyrite spheres[J]. Econimic Geology, 58(6): 998-1000. doi: 10.2113/gsecongeo.58.6.998

    Sun G T, Zeng Q D, Zhou L L, Wang Y B, Chen P W. 2020. Trace element contents and in situ sulfur isotope analyses of pyrite in the Baiyun gold deposit, NE China: Implication for the genesis of intrusion-related gold deposits[J]. Ore Geology Reviews, 11810.10161j. oregeorev. 2020.103330. https://www.sciencedirect.com/science/article/pii/S0169136819306948

    Sweeney R E, Kaplan I R. 1973. Pyrite framboid formation laboratory synthesis and marine sediments[J]. Economic Geology, 68(5): 618-634. doi: 10.2113/gsecongeo.68.5.618

    Tauson V L, Abramovich M G, Akimov V V, Scherbakov V A. 1993. Thermodynamics of real mineral crystals: Equilibriumcrystal shape and phase size effect[J]. Geochimica et Cosmochimica Acta, 57: 815-821. doi: 10.1016/0016-7037(93)90170-2

    Taylor G R. 1982. A mechanism for framboid formation as illustrated by a volcanic exhalative sediment[J]. Mineralium Deposita, 17(1): 23-36. https://link.springer.com/article/10.1007/BF00206374

    Tyson R V, Pearson T H. 1991. Modern and ancient continental shelf anoxia: An overview[J]. Geol. Soc. Spec. Pub., 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01

    Wacey D, Kilburn M R, Saunders M, Cliff J B, Kong C, Liu A G, Matthews J J, Brasier M D. 2015. Uncovering framboidal pyrite biogenicity using nano-scale C/Norg mapping[J]. Geology, 43(1): 27-30. doi: 10.1130/G36048.1

    Wang Q, Morse J W. 1996. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 52(2): 99-121. doi: 10.1016/0304-4203(95)00082-8

    Wei H Y, Wei X M, Qiu Z, Song H Y, Guo S. 2016. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 440: 1-14. doi: 10.1016/j.chemgeo.2016.07.009

    Wignall P B, Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 298(7): 537-552. doi: 10.2475/ajs.298.7.537

    Wilkin R T. 1995. Size Distribution in Sediments, Synthesis, and Formation Mechanism of Framboidal[D]. PhD. Dissertation. The Pennsylvania State Universty,

    Wilkin R T, Barnes H L, Brantly S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8

    Wilkin R T, Barnes H L. 1997a. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 61(2): 323-339. doi: 10.1016/S0016-7037(96)00320-1

    Xiao Fan, Ban Yizhong, Fan Feipeng, Xu Naicen, Mao Guangwu, Li Fengchun. 2020. Research on zircon U-Pb, S-Pb isotopes and trace elements of pyrite from the Dongji Au(Ag) deposit in Zhenghe County, Fujian Province[J]. Geology in China, 47(2): 375-393(in Chinese with English abstract).

    Xu Nan, Wu Cailai, Li Shengrong, Xue Boqiang, He Xiang, Yu Yanlong, Liu Junzhuang. 2020. LA-ICP-MS in situ analyses of the pyrites in Dongyang gold deposit, Southeast China: Implications to the gold mineralization[J]. China Geology, 3: 230-246. https://www.sciencedirect.com/science/article/pii/S2096519220300744

    Yan D, Chen D, Wang Q, Wang J. 2012. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 291: 69-78. doi: 10.1016/j.chemgeo.2011.09.015

    Yang R, He S, Wang X, Hu Q, Hu D, Yi J, Widory D. 2016. Paleo-ocean redox environments of the Upper Ordovician Wufeng and the first member in lower Silurian Longmaxi formations in the Jiaoshiba area, Sichuan Basin[J]. Canadian Journal of Earth Sciences, 53(4): 426-440. doi: 10.1139/cjes-2015-0210

    Yang Xueying, Gong Yiming. 2011. Pyrite framboid: Indicator of environments and life[J]. Earth Science, 36(4): 643-658(in Chinese with English abstract).

    Zhang Wei, Liu Congqiang, Liang Xiaobing. 2007. Biological function in sulfur isotope fractionation and environmental effect[J]. Acta Geochimica, 35(3): 223-227 (in Chinese with English abstract).

    Zheng J H, Shen P, Li C H. 2020. Ore genesis of Axi post-collisional epithermal gold deposit, western Tianshan, NW China: Constraints from U-Pb dating, Hf isotopes, and pyrite in situ sulfur isotopes[J]. Ore Geology Review, 117 DOI:10. 1016/j. orgrorev. 2019. 103290.

    Zhou Lingli, Zeng Qingdong, Sun Guotao, Duan Xiaoxia. 2019. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) elemental mapping and its applications in ore geology[J]. Acta Petrologica Sinica, 35(7): 1964-1978 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.02

    Zhu Xiangkun, Wang Yue, Yan Bin, Li Jin, Dong Aiguo, Li Zhihong, Sun Jian. 2013. Developments of non-traditional stable isotope geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688 (in Chinese with English abstract). https://www.researchgate.net/publication/273766379_Developments_of_Non-Traditional_Stable_Isotope_Geochemistry

    Zou C N, Zhen Q, W H Y, Dong D Z, Lu B. 2018. Euxinia caused the Late Ordovician extinction Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 1-11. doi: 10.1016/j.palaeo.2017.11.033

    常华进, 储雪蕾, 冯连君, 黄晶. 2009. 华南老堡组硅质岩中草莓状黄铁矿-埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 25(4): 1001-1007. https://d.wanfangdata.com.cn/periodical/ysxb98200904024

    常晓琳, 黄元耕, 陈中强, 侯明才. 2020. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报, 1: 150-165. http://www.cnki.com.cn/Article/CJFDTotal-CJXB202001013.htm

    范宏瑞, 李兴辉, 左亚彬, 陈蕾, 刘尚, 胡芳芳, 冯凯. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 34(12): 3479-3496. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201812002.htm

    胡永亮, 王伟, 周传明. 2020. 沉积地层中的黄铁矿形态及同位素特征初探——以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报, 38(1): 138-149. http://www.cnki.com.cn/Article/CJFDTotal-CJXB202001012.htm

    黄元耕. 2018. 华南及新疆地区二叠纪至三叠纪海洋、陆地古群落模拟及海洋氧化还原环境变化研究[D]. 中国地质大学(武汉).

    刘斌, 陈卫锋, 方启春, 唐湘生, 毛玉锋, 孙立强, 高爽, 严永杰, 魏欣, 凌洪飞. 2020. 相山西部牛头山铅锌矿化体成矿物质来源: 原位硫同位素的制约[J]. 地球科学, 45(2): 389-399. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002004.htm

    刘大猛, 杨起, 周春光, 康西栋. 1999. 华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J]. 地球化学, 28(4): 340-351. doi: 10.3321/j.issn:0379-1726.1999.04.004

    韦雪梅. 2017. 广西蓬莱滩GSSP剖面G-L界线黄铁矿形态特征及其氧化还原意义[D]. 东华理工大学.

    肖凡, 班宜忠, 范飞鹏, 许乃岑, 毛光武, 李凤春. 2020. 福建政和县东际金(银)矿床黄铁矿微量元素和硫-铅同位素及锆石年龄研究[J]. 中国地质, 47(2): 375-393. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20200208&flag=1

    杨雪英, 龚一鸣. 2011. 莓状黄铁矿: 环境与生命的示踪计[J]. 地球科学, 36(4): 643-658. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201104004.htm

    张伟, 刘丛强, 梁小兵. 2007. 硫同位素分馏中的生物作用及其环境效应[J]. 地球与环境, 35(3): 223-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200703004.htm

    周伶俐, 曾庆栋, 孙国涛, 段晓侠. 2019. LA-ICPMS原位微区面扫描分析技术及其矿床学应用实例[J]. 岩石学报, 35(7): 1964-1978. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201907002.htm

    朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 2013. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 32: 651-688. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201306002.htm

  • 加载中

(15)

(3)

计量
  • 文章访问数:  4823
  • PDF下载数:  213
  • 施引文献:  0
出版历程
收稿日期:  2020-08-18
修回日期:  2020-11-04
刊出日期:  2022-02-25

目录