Evaluation of in-situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development
-
摘要:
研究目的 四川盆地HC地区须二段勘探开发潜力巨大,但该地区为典型的低孔低渗致密气藏,需要进行地应力精细评价来为后期纵向上压裂选层和平面上工程甜点区优选提出建议进而提高产能。
研究方法 基于25组声发射和13组差应变等实验测试分析,结合水压致裂、常规和特殊测井资料,进行地应力的精细评价,以期分析在致密砂岩储层中不同实验测试方法的适用性,查明有利于工程改造的层位和甜点区。
研究结果 实验测试结果表明HC地区须二段最大水平主应力值为50.77~75.65 MPa,均值为59.71 MPa;最小水平主应力值为45.37~54.31 MPa,均值为49.31 MPa;垂向主应力为48.11~65.62 MPa,均值为56.53 MPa。模拟结果表明储层内部应力隔层厚度和两向应力差异系数越小,越有利于压裂改造。通过对比小层间的三向应力关系,表明须二段处于走滑应力状态。HC地区须二段致密砂岩均质性较强,声发射测试结果误差较大,差应变测试结果与其他地应力大小解释结果具有更高一致性,故该测试方法更加适用于均质性较强的砂岩地层。
结论 结合地应力大小,纵向上建议选择隔层组合更有利的须二2亚段中上部为压裂目的层;且为了达到较好的体积缝网压裂改造效果,平面上建议避开两向应力差异系数较大的断层附近区域,应选择优质储层发育且水平应力差异系数相对较小的HC地区中部HC102-HC111井区。
Abstract:This paper is the result of oil and gas exploration engineering.
Objective The second member of Xujiahe formation of the HC area in the Sichuan Basin has great potential for exploration and development, but it is a typical low-porosity and low-permeability tight gas reservoir, which requires in-situ stress refined evaluation to recommend the optimal selection of engineering sweet spots for later vertical fracturing and plane fracturing to increase production.
Methods Based on experimental test analysis such as 25 groups of acoustic emission and 13 groups of differential strain, combined with hydraulic fracturing, conventional and special logging data, we analyze the applicability of different experimental test methods in tight sandstone reservoirs by performing a fine-scale evaluation of in-situ stress and identified layers and sweet spots conducive to engineering modifications.
Results The results of the experimental tests of the second member of Xujiahe formation in the HC area showed that the maximum horizontal principal stress values ranged from 50.77 to 75.65 MPa, with a mean value of 59.71 MPa; the minimum horizontal principal stress values ranged from 45.37 to 54.31 MPa, with a mean value of 49.31 MPa; and the vertical stress values ranged from 48.11 to 65.62 MPa, with a mean value of 56.53 MPa. The simulation results show that the smaller the thickness of the stress barrier within the reservoir and the differential coefficient of in-situ stress in both directions, the more favorable the fracture modification. The comparison of the three-dimensional stress relationships between the minor layers indicates that the second member of Xujiahe Formation is in a strike-slip stress state. The dense sandstone in the second member of the Xujiahe Formation is more homogeneous, the acoustic emission test results are more inaccurate. The results of the differential strain test are in better agreement with the results of the in-situ stress magnitude interpretation, making the test method more suitable for more homogeneous sandstone formations.
Conclusions In combination with the magnitude of in-situ stress, it is recommended vertically that the more favorable combination of compartments, upper middle of the second subsection of Xu-Ⅱ, be selected as the target layer for fracturing. To achieve a better volume fracturing network, it is recommended to avoid areas near faults with a large differential coefficient of two-dimensional stress. The area of HC102-HC111 well in the central part of the HC area, where high-quality reservoirs are developed and two-dimensional stress difference factor is relatively small, should be selected.
-
-
表 1 HC地区须家河组声发射实验测试的三向应力值的测试结果数据表(部分)
Table 1. Results of three-dimensional stress values of the second member of Xujiahe Formation in HC area by acoustic emission test
表 2 HC地区须二段差应变实验测试的三向应力值的测试
Table 2. Results of three-dimensional stress values of the second member of Xujiahe Formation in HC area by differential strain test
表 3 水压致裂法计算的地应力大小的数据结果
Table 3. Results of the magnitude of in-situ stress calculated using hydraulic fracturing
-
Cai Meifeng. 1993. Review of principles and methods for rock stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 12(3): 275-283 (in Chinese with English abstract).
Cao Hui, Sun Dongsheng, Yuan Kun, Li Awei, Zhang Guanghan. 2020. In-situ stress determination of 3 km oil-gas deep hole and analysis of the tectonic stress field in the southern Guizhou[J]. Geology in China, 47(1): 88-98 (in Chinese with English abstract).
Chen Nian, Wang Chenghu, Gao Guiyun, Wang Pu. 2021. Characteristics of in-situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376-3384 (in Chinese with English abstract).
Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 30(7): 737-750 (in Chinese with English abstract).
Fraser D, Gholami R, Sarmadivaleh M. 2021. Deformation rate analysis: How to determine in-situ stresses in unconventional gas reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 146(7/8): 104892.
Guo Weijie, Gong Cheng, Li Jing. 2010. The measurements of geostress and the problems of geo-stress measurement[J]. Value Engineering, 29(25): 136-137 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4311.2010.25.095
Han Jun, Liu Hongtao. 2005. Application of differential strain analysis method on the study of in-situ stress direction[J]. Journal of Oil and Gas Technology, 27(2): 87-88, 95, 8(in Chinese with English abstract).
He Xiaodong, Ma Junxiu, Shi Shanzhi, Liu Gang, Tan Qiang. 2020. Core differential strain test of tight glutinite reservoir in Mahu oilfield[J]. China Offshore Oil and Gas, 32(3): 86-93 (in Chinese with English abstract).
Jayanthu S. 2019. Estimation of in-situ stress-experiemtnal trials on Kaiser effect and hydrofracturing tests[J]. Journal of Mines, Metals and Fuels, 67(6): 311-315.
Ji Zhijiu, Lu Guobin, Li Lan, 2009. Study on in-situ stress measurement method and engineering application[J]. Modern Mining, 25(11): 67-69 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-6082.2009.11.020
Jiang Yongdong, Xian Xuefu, Xu Jiang. 2005. Research on application of Kaiser effect of acoustic emission to measuring initial stress in rock mass[J]. Rock and Soil Mechanics, 26(6): 946-950 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.06.025
Jing Feng, Liang Hecheng, Bian Zhihua, Liu Yuankun. 2008. Review of geo-stress measurement method and study[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 29(2): 71-75 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-5634.2008.02.023
Lehtonen A, Cosgrove J W, Hudson J A, Johansson E. 2011. An examination of in situ rock stress estimation using the Kaiser effect[J]. Engineering Geology, 124: 24-37 doi: 10.3969/j.issn.1000-3665.2011.03.005
Li Guohui, Li Nan, Xie Jirong, Yang Jiajing, Tang Dahai. 2012. Basic features of large gas play fairways in the upper Triassic Xujiahe Formation of the Sichuan Foreland Basin and evaluation of favorable exploration zones[J]. Natural Gas Industry, 32(3): 15-21, 122-123 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2012.03.003
Liang Chen. 2020. Theory and Numerical Analysis of a New Method of In-Situ Stress Measurement[D]. Wuhan: Hubei University of Technology (in Chinese with English abstract).
Liu R, Hao F, Engelder T, Shu Z, Yi J, Xu S, Teng C. 2019. Stress memory extracted from shale in the vicinity of a fault zone: Implications for shale-gas retention[J]. Marine and Petroleum Geology, 102: 340-349. doi: 10.1016/j.marpetgeo.2018.12.047
Liu Yaqun, Li Haibo, Jing Feng, Luo Chaowen, Chen Bingrui, Li Junru, Zhou Qingqing. 2007. Determination of in-situ stress by hydraulic fracturing tests on preexisting fractures considering stress gradient and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1145-1149 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.06.007
Liu Zekai, Chen Yaolin, Tang Ruzhong. 1994. Application of in-situ stress technology in oilfield development[J]. Petroleum Geology and Recovery Efficiency, 1(1): 48-56, 85(in Chinese).
Ma Rui. 2014. Application of ground stress in oil and gas exploration and development[J]. Science & Technology Information, 12(31): 55-58(in Chinese).
Mao H, Luo T, Lai F, Zhang G, Zhong L. 2019. Experimental analysis and logging evaluation of in-situ stress of mud shale reservoir——Taking the deep shale gas reservoir of Longmaxi Formation in western Chongqing as an example[C]//IOP Conference Series: Earth and Environmental Science, 384: 012129.
Mayerhofer M J, Lolon E P, Warpinski N R, Cipolla C L, Walser D, Rightmire C M. 2010. What is stimulated reservoir volume?[J]. SPE Production & Operations, 25(1): 89-98.
Nie Zhou. 2018. Study on the Reservoir Characteristics of the Second Member of Xujiahe Formation in the Central Sichuan Area[D]. Chengdu: Chengdu University of Technology (in Chinese with English abstract).
Ning Wenxiang, He Bai, Li Fengxia, Xie Lingzhi, Shi Aiping, He Qiang. 2021. Experimental study on fractures morphology of hydraulic fracturing in continental shale oil reservoir[J] Science Technology and Engineering, 21(18): 7505-7512 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2021.18.015
Renshaw C E, Pollard D D. 1994. Are large differential stresses required for straight fracture propagation paths?[J]. Journal of Structural Geology, 16(6): 817-822. doi: 10.1016/0191-8141(94)90147-3
Schmitt D R, Currie C A, Zhang L. 2012. Crustal stress determination from boreholes and rock cores: Fundamental principles[J]. Tectonophysics, 580: 1-26. doi: 10.1016/j.tecto.2012.08.029
Shen Haichao, Cheng Yuanfang, Wang Jingyin, Zhao Yizhong, Zhang Jianguo. 2008. Principal direction differential strain method for in-situ stress measurement and application[J]. Xinjiang Petroleum Geology, 29(2): 250-252 (in Chinese with English abstract).
Shi Can, Lin Botao. 2021. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 6(1): 92-113 (in Chinese with English abstract).
Wang Chenghu, Gao Guiyun, Wang Hong, Wang Pu. 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26 (2): 167-174 (in Chinese with English abstract).
Wang Chenghu. 2014. Brief review and outlook of main estimate and measurement methods for in situ stresses in rock mass[J]. Geological Review, 60(5): 971-991, 996, 992-995 (in Chinese with English abstract).
Wang Hongwei. 2007. Study On Comprehensive Interpretation Method of Earth Stress In Different Tracts In Hailaer Oilfield[D]. Daqing: Daqing Petrolum Institute(in Chinese with English abstract).
Wang Pu, Wang Chenghu, Yang Ruhua, Hou Zhengyang, Wang Hong. 2019. Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution[J]. Rock and Soil Mechanics, 40(11): 4486-4496 (in Chinese with English abstract).
Wang S, Han F, Bing Q. 2021. Application of In-situ Stress Calculation in Engineering[C]//IOP Conference Series: Earth and Environmental Science, 660(1): 012040.
Zeng Zhiping, Liu Zhen, Ma Ji, Zhang Chunlei, Li Jing, Liu Zhen, Sun Luning. 2019. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 25(2): 223-232 (in Chinese with English abstract).
Zhang R, Hou B, Han H, Fan M, Chen M. 2019. Experimental investigation on fracture morphology in laminated shale formation by hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 177: 442-451. doi: 10.1016/j.petrol.2019.02.056
Zhang Zhongyuan, Wu Manlu, Chen Qunce, Liao Chunting, Feng Chengjun. 2012. Review of in-situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 31(3): 305-310 (in Chinese with English abstract).
Zhao Gang, Dong Shier. 2009. The theory of the measurement of ground stress by hydraulic fracturing method and its application[J]. Shanxi Architecture, 35(36): 77-78 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6825.2009.36.048
Zhao Jinghui, Gao Yuqiao, Chen Zhenlong, Guo Tao, Gao Xiaokang. 2021. Stress state of deep seam and its influence on development performance of CBM wells in South Yanchuan Block, Odors Basin[J]. Geology in China, 48(3): 785-793 (in Chinese with English abstract).
Zhao Jinzhou, Li Yongming, Wang Song, Jiang Youshi, Zhang Liehui. 2014. Simulation of a complex fracture network influenced by natural fractures[J]. Natural Gas Industry, 34(1): 68-73 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2014.01.010
Zhao Yajun, Meng Nannan. 2015. Review of in-situ stress measurement methods[J]. Inner Mongolia Coal Economy, (5): 209-210(in Chinese). doi: 10.3969/j.issn.1008-0155.2015.05.126
Zhao Zhengwang, Li Nan, Liu Min, Wang Xiaojuan, Wu Changjiang, Li Li. 2019. Origin of gas accumulation and high yield in tight gas reservoirs of Xujiahe Formation, Sichuan Basin[J]. Natural Gas Exploration and Development, 42(2): 39-47 (in Chinese with English abstract).
Zheng Herong, Liu Zhongqun, Xu Shilin, Liu Zhenfeng, Liu Junlong, Huang Zhiwen, Huang Yanqing, Shi Zhiliang, Wu Qingzhao, Fan Lingxiao, Gao Jinhui. 2021. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin[J]. Oil & Gas Geology, 42(4): 765-783 (in Chinese with English abstract).
Zhu Hongquan, Zhang Zhuang, Nan Hongli, Ye Sujuan, Zhang Shihua, Wang Linghui. 2019. Reservoir formation and enrichment rules and exploration practices in overlying dense sandstone gas zones[J]. Natural Gas Industry, 39(S1): 9-16 (in Chinese).
蔡美峰. 1993. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 12(3): 275-283. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199303009.htm
曹慧, 孙东生, 苑坤, 李阿伟, 张光晗. 2020. 黔南地区~3 km油气深孔地应力测量与构造应力场分析[J]. 中国地质, 47(1): 88-98. http://geochina.cgs.gov.cn/geochina/article/abstract/20200107?st=search
陈念, 王成虎, 高桂云, 王璞. 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112017.htm
丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 30(7): 737-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201507001.htm
郭伟杰, 龚成, 李晶. 2010. 地应力测量方法及其需要注意的问题[J]. 价值工程, 29(25): 136-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201025098.htm
韩军, 刘洪涛. 2005. 差应变分析法在地应力方向研究中的应用[J]. 石油天然气学报(江汉石油学院学报), 27(2): 87-88, 95, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX2005S2023.htm
何小东, 马俊修, 石善志, 刘刚, 谭强. 2020. 玛湖油田致密砂砾岩储层岩心差应变实验[J]. 中国海上油气, 32(3): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202003010.htm
纪志久, 卢国斌, 李岚. 2009. 地应力测量方法及工程应用研究[J]. 现代矿业, 25(11): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200911025.htm
姜永东, 鲜学福, 许江. 2005. 岩石声发射Kaiser效应应用于地应力测试的研究[J]. 岩土力学, 26(6): 946-950. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200506027.htm
景锋, 梁合成, 边智华, 刘元坤. 2008. 地应力测量方法研究综述[J]. 华北水利水电学院学报, 29(2): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL200802022.htm
李国辉, 李楠, 谢继容, 杨家静, 唐大海. 2012. 四川盆地上三叠统须家河组前陆大气区基本特征及勘探有利区[J]. 天然气工业, 32(3): 15-21, 122-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201203004.htm
梁晨. 2020. 一种新的地应力测量方法理论及数值分析[D]. 武汉: 湖北工业大学.
刘亚群, 李海波, 景锋, 罗超文, 陈炳瑞, 李俊如, 周青春. 2007. 考虑应力梯度的原生裂隙水压致裂法地应力测量的原理及工程应用[J]. 岩石力学与工程学报, 26(6): 1145-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706007.htm
刘泽凯, 陈耀林, 唐汝众. 1994. 地应力技术在油田开发中的应用[J]. 油气采收率技术, 1(1): 48-56, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS401.008.htm
马睿. 2014. 地应力在油气勘探开发中的应用[J]. 科技资讯, 12(31): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201431042.htm
聂舟. 2018. 川中地区须家河组二段储层特征研究[D]. 成都: 成都理工大学, 1-4.
宁文祥, 何柏, 李凤霞, 谢凌志, 史爱萍, 何强. 2021. 陆相页岩油储层水力压裂裂缝形态的试验[J]. 科学技术与工程, 21(18): 7505-7512. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202118015.htm
沈海超, 程远方, 王京印, 赵益忠, 张建国. 2008. 主方向差应变地应力测量方法[J]. 新疆石油地质, 29(2): 250-252. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200802042.htm
史璨, 林伯韬. 2021. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 6(1): 92-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202101008.htm
王成虎. 2014. 地应力主要测试和估算方法回顾与展望[J]. 地质论评, 60(5): 971-991, 996, 992-995. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201405003.htm
王成虎, 高桂云, 王洪, 王璞. 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202002002.htm
王宏伟. 2007. 海拉尔油田不同区块地应力综合解释方法研究[D]. 大庆: 大庆石油学院, 1-5.
王璞, 王成虎, 杨汝华, 侯正阳, 王洪. 2019. 基于应力多边形与震源机制解的深部岩体应力状态预测方法初探[J]. 岩土力学, 40(11): 4486-4496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911040.htm
曾治平, 刘震, 马骥, 张春磊, 李静, 刘振, 孙鲁宁. 2019. 深层致密砂岩储层可压裂性评价新方法[J]. 地质力学学报, 25(2): 223-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902008.htm
张重远, 吴满路, 陈群策, 廖椿庭, 丰成君. 2012. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 31(3): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201203010.htm
赵刚, 董事尔. 2009. 水压致裂法测量地应力理论与应用[J]. 山西建筑, 35(36): 77-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX200936047.htm
赵景辉, 高玉巧, 陈贞龙, 郭涛, 高小康. 2021. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响[J]. 中国地质, 48(3): 785-793. http://geochina.cgs.gov.cn/geochina/article/abstract/20210309?st=search
赵金洲, 李勇明, 王松, 江有适, 张烈辉. 2014. 天然裂缝影响下的复杂压裂裂缝网络模拟[J]. 天然气工业, 34(1): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201401013.htm
赵亚军, 孟楠楠. 2015. 地应力测量方法综述[J]. 内蒙古煤炭经济, (5): 209-210. https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT201505126.htm
赵正望, 李楠, 刘敏, 王小娟, 吴长江, 李莉. 2019. 四川盆地须家河组致密气藏天然气富集高产成因[J]. 天然气勘探与开发, 42(2): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201902009.htm
郑和荣, 刘忠群, 徐士林, 刘振峰, 刘君龙, 黄志文, 黄彦庆, 石志良, 武清钊, 范凌霄, 高金慧. 2021. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 42(4): 765-783. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104002.htm
朱宏权, 张庄, 南红丽, 叶素娟, 张世华, 王玲辉. 2019. 叠覆型致密砂岩气区成藏富集规律与勘探实践[J]. 天然气工业, 39(S1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1003.htm
-