Conversion relationship between surface water and groundwater based on stable isotopes of D and 18O of new town in the northern Wuhan, Hubei
-
摘要:
研究目的 揭示武汉北部新城地表水、地下水的氢氧稳定同位素特征及其相互作用。
研究方法 2019年,采集、测定了降水样7件、河水样6件、水库样14件、民井样98件、泉水样3件和钻孔样11件,并收集到武汉站1986—1998年的监测数据50件,以空间分析和流域分析为基础,氢氧稳定同位素分析为手段。
研究结果 (1)武汉降水氢氧同位素随季节变化,并表现出“降雨效应”明显、“温度效应”不明显的特点;(2)地表水在枯水期受到强烈的蒸散发,表现出一定的“地貌效应”与“干支流效应”的特征;(3)民井、泉和钻孔等地下水均源于大气降水,表现出“含水层埋深效应”与“山区平原效应”的特点;(4)枯水期,界河流域中界河获得了上游水库和地下水的补给,夏家寺水库流域中夏家寺水库得到了地下水补给。
结论 氢氧同位素能显著提高武汉北部新城地表水-地下水相互转换规律的认识。
Abstract:This paper is the result of hydrogeological survey engineering.
Object Reveal the characteristics and interaction of D and 18O between surface water and groundwater in the northern new town of Wuhan,
Methods 7 precipitation samples, 6 river samples, 14 reservoir samples, 98 minjing samples, 3 spring samples and 11 borehole samples were collected and measured in 2019, what' s more, 50 monitoring data of Wuhan station from 1986 to 1998 were collected. The research methods of D and 18O spatial analysis and watershed analysis are carried out in this paper.
Results (1) The D and 18O isotopes of precipitation in Wuhan vary with seasons, and the negative correlation between isotopic value and precipitation indicates "rainfall effect", but the no correlation between isotopic value and temperature indicates "no temperature effect". (2) Due to strong evapotransporation, the surface water shows the certain correlation between isotopic value and geomorphic types, and the main stream is enriched in stable isotopic, while the tributaries is depleted; (3) Groundwater such as wells, springs and boreholes are all derived from atmospheric precipitation, and the stable isotopes value of groundwater is related to the buried depth and geomorphic type; (4) During the dry season, the Jiehe River is recharged by upstream reservoir and underground water in the Jiehe basin, and the XiaJiasi reservoir is recharged by underground water in the XiaJiasi reservoir basin.
Conclusion D and 18O can significantly improve the understanding of the conversion relationship between surface water and groundwater in the northern new town of Wuhan.
-
Key words:
- groundwater /
- river /
- reservoir /
- stable isotopes D and 18O /
- hydrogeological survey engineering /
- New Town /
- Wuhan /
- Hubei Province
-
Chen Zhongxiao, Cheng Jun, Guo Pinwen, Lin Zhenyi, Zhang Fuying. 2010. Distribution characters and its control factors of stable isotope in precipitation over China[J]. Transactions of Atmospheric Sciences, 33(6): 667-679(in Chinese with English abstract).
Chen Jiansheng, Peng Jing, Zhan Lucheng, Zhang Shiyin. 2015. Analysis of isotopes characteristics of river water, lake water and groundwater in Poyang lake basin[J]. Water Resources Protection, 31(4): 1-7(in Chinese with English abstract).
Clark I D, Fritz P. 1997. Environmental Isotopes in Hydrogeology[M]. Boca Raton: Lewis Publishers of United State.
Dansgaard W. 1964. Stable isotope in precipitation[J]. Tellus, 14(4): 436-468.
Deng Zhimin, Zhang Xiang, Pan Guoyan. 2016. Variations of hydrogen and oxygen isotopes in Meteoric precipitation in Wuhan, China[J]. Journal of Yangtze River Scientific Research Institute, 33(7): 12-17, 22(in Chinese with English abstract).
Dong Xiaofang, DengHuangyue, Zhang Luan, Zhu Zhipeng, Wang Lin, Zheng Xiangmin, Zhou Limin. 2017. Characteristics of stable isotope in precipitation and its relationship with ENSO in Shanghai[J]. Environmental Science, 38(5): 1817-1827(in Chinese with English abstract).
Gu Jinyu, Zhang Wenjie, Xu Wensheng, Zhang Pingcang. 2017. Characteristics of D and 18O in precipitation and water-vapor sources in Wuhan, middle reach of Changjiang river[J]. Yangtze River, 48(13): 31-35, 63(in Chinese with English abstract).
Huang Xiaoqin, Liu Qing, Xue Zhongqi, Liu Jun. 2014. The characteristics of groundwater isotopes in upper reach plain of Qingshui river, Ningxia[J]. Journal of Arid Land Resources and Environment, 28(2): 143-148(in Chinese with English abstract).
International Atomic Energy Agency. 2011. Global network of isotopes in precipitation[EB/OL]. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.
Liang Yongping, Yan Fugui, Hou Junlin, Wang Weitai. 2006. Discussion on condensed water supply to karst groundwater in Zhuozi mountain region, inner Mongolia[J]. Carsologica Sinica, (4): 320-323(in Chinese with English abstract).
Miao Jinxiang. 2013. Formation of the shallow groundwater in the northern Henan Plain based on isotope analysis[J]. Hydrogeology & Engineering Geology, 37(4): 5-11(in Chinese with English abstract).
Moore, Willard S. 2010. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2(1): 59. doi: 10.1146/annurev-marine-120308-081019
Sun Tingting. 2017. Variation Characteristics of Stable Isotopes of Water in the Yangtze River Basin[D]. Nanjing: Hohai University(in Chinese with English abstract).
Winter, T. 1999. Relation of streams, lakes, and wetlands to groundwater flow systems[J]. Hydrogeology Journal 7, 28-45.
Wang Dongsheng. 1989. Modern water resources science and isotope technology[J]. Geology in China, 16(8): 27-28.
Zhang Bin, Guo Zhanrong, Gao Aiguo, Yuan Xiaojie, Li Kaipei. 2013. An Analysis fo the Interaction between river water, groundwater and seawater in Minjiang River Extuary Region, Fujian Province, Based on stable isotopes D and 18O[J]. Acta Geoscientica Sinica, 34(2): 213-222(in Chinese with English abstract).
Zhao Jiacheng, Wei Baohua, Xiao Shangbin. 2009. Stable isotopic characteristics of atmospheric precipitation from Yichang, Hubei[J]. Tropical Geography, 29(6): 526-531(in Chinese with English abstract).
Zheng Shuhui, Hou Fagao, Ni Baoling. 1983. Study on stable isotopes of D and 18O in atmospheric precipitation in China[J]. Chinese Science Bulletin, 13: 801-806(in Chinese).
陈建生, 彭靖, 詹泸成, 张时音. 2015. 鄱阳湖流域河水、湖水及地下水同位素特征分析[J]. 水资源保护, 31(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201504001.htm
陈中笑, 程军, 郭品文, 林振毅, 张福颖. 2010. 中国降水稳定同位素的分布特点及其影响因素[J]. 大气科学学报, 33(6): 667-679. doi: 10.3969/j.issn.1674-7097.2010.06.004
董小芳, 邓黄月, 张峦, 朱志鹏, 王琳, 郑祥民, 周立旻. 2017. 上海降水中氢氧同位素特征及与ENSO的关系[J]. 环境科学, 38(5): 1817-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201705013.htm
邓志民, 张翔, 潘国艳. 2016. 武汉市大气降水的氢氧同位素变化特征[J]. 长江科学院院报, 33(7): 12-17, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201607003.htm
谷金钰, 张文杰, 许文盛, 张平仓. 2017. 武汉市大气降水δD和δ18O变化特征及水汽来源[J]. 人民长江, 48(13): 31-35, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201713008.htm
黄小琴, 柳青, 薛忠岐, 刘君. 2014. 宁夏固原地区地下水同位素特征研究[J]. 干旱区资源与环境, 28(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201402025.htm
梁永平, 阎福贵, 侯俊林, 王维泰. 2006. 内蒙桌子山地区凝结水对岩溶地下水补给的探讨[J]. 中国岩溶, (4): 320-323. doi: 10.3969/j.issn.1001-4810.2006.04.011
苗晋祥. 2010. 基于同位素的豫北平原浅层地下水形成的认识[J]. 水文地质工程地质, 37(4): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201004004.htm
孙婷婷. 2007. 长江流域水稳定同位素变化特征研究[D]. 南京: 河海大学.
王东升. 1989. 现代水资源学与同位素技术[J]. 中国地质, 16(8): 27-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI198908014.htm
章斌, 郭占荣, 高爱国, 袁晓婕, 李开培. 2013. 用氢氧稳定同位素揭示闽江河口区河水、地下水和海水的相互作用[J]. 地球学报, 34(2): 213-222. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302009.htm
赵家成, 魏宝华, 肖尚斌. 2009. 湖北宜昌地区大气降水中的稳定同位素特征[J]. 热带地理, 29(6): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD200906006.htm
郑淑蕙, 侯发高, 倪葆龄. 1983. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, (13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm