The adsorption characteristics of Pb2+ and Cd2+ by straw based biochars generated at medium-high pyrolysis temperatures
-
摘要:
研究目的 热解温度和原材料对秸秆基生物炭吸附重金属性能的影响。
研究方法 本文以玉米秸秆和水稻秸秆作为原料,在限氧条件下,通过热解法于中温(450℃)和高温(600℃)下制备秸秆基生物炭S450、S600、Y450和Y600,研究不同类型生物炭的材料表面特性差异及对溶液中Pb2+、Cd2+吸附特性的影响。
研究结果 结果表明,热解温度对生物炭理化性质影响明显,随着热解温度的升高,产率下降,碳元素含量增大,氮、氢和氧元素含量有所降低,而且比表面积、总孔体积和平均孔径均有所减小。4种秸秆基生物炭对Pb2+和Cd2+的吸附以化学沉淀反应为主,随着热解温度的升高,生物炭对Pb2+、Cd2+的吸附量和吸附速率也随之增大,而且玉米秸秆生物炭对Pb2+、Cd2+的吸附量明显高于水稻秸秆生物炭的吸附量。
结论 4种生物炭对溶液中Pb2+和Cd2+的吸附分别为多层吸附和单分子层吸附,而且热解温度较高的秸秆基生物炭均表现出对重金属Pb2+和Cd2+更强的吸附能力。研究结果可为秸秆资源化利用、重金属污染及环境修复提供参考。
Abstract:This paper is the result of environmental geological survey engineering.
Objective Effect of pyrolysis temperature and raw materials on adsorption of heavy metals by straw-based biochar.
Methods Corn straw and rice straw were used as raw materials to prepare straw based biochars (i.e. S450, S600, Y450, Y600) under anoxic conditions at 450℃ and 600℃. And the differences in their surface characteristics and their adsorption capacity for Pb2+ and Cd2+ in solutions were studied.
Results The results showed that the pyrolysis temperature had a significant effect on the physicochemical properties of different biochars. With the increase of pyrolysis temperature, the C contents of biochars increased, but N, H, O contents decreased. Besides, their specific surface area, total pore volume and average pore diameter all showed a decreased tendency. As the result of the increase of pyrolysis temperature, the adsorption capacity and rate of Pb2+ and Cd2+ increased. Meanwhile, the adsorption capacity of Pb2+ and Cd2+ of corn straw biochar was significantly higher than that of rice straw biochar. The adsorption of Pb2+ and Cd2+ by the four biochars was dominated by chemical precipitation.
Conclusions The adsorption of Pb2+ and Cd2+ was mainly multilayer and monolayer adsorption, respectively. Straw based biochars with higher pyrolysis temperature had higher adsorption capacity for Pb2+ and Cd2+. This study is useful for straw resource utilization and heavy metal pollution remediation.
-
Key words:
- pyrolysis temperature /
- straw based biochar /
- Pb2+ /
- Cd2+ /
- adsorption /
- wastewater /
- soil /
- environmental geological survey engineering
-
-
表 1 4种秸秆生物炭的产率及元素分析
Table 1. The productivity and elemental analysis of four biochars
表 2 四种秸秆生物炭的比表面积、孔体积及平均孔径
Table 2. Specific surface area, pore volume and average pore size of four biochars
表 3 4种秸秆炭对Pb2+和Cd2+的吸附动力学方程拟合参数
Table 3. Fitting parameters of kinetic equations for Pb2+ and Cd2+adsorption by four biochars
表 4 4种秸秆生物炭对Pb2+和Cd2+等温吸附的拟合参数
Table 4. Fitting parameters of Langmuir and Freundlich models for adsorption isotherms of Pb2+ and Cd2+ on four biochars
-
Baig S A, Zhu J, Muhammad N, Sheng T T, Xu X H. 2014. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(Ⅲ, Ⅴ) adsorption from aqueous solutions[J]. Biomass and Bioenergy, 71: 299-310. doi: 10.1016/j.biombioe.2014.09.027
Chen B L, Johnson E J, Chefetz B, Zhu L Z, Xing B S. 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility[J]. Environmental Science & Technology, 39(16): 6138-6146.
Chen T, Zhang Y X, Wang H T, Lu W J, Zhou Z Y, Zhang Y C, Ren L L. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource Technology, 164(7): 47-54.
Cheng S, Zhao S D, Guo H, Xing B L, Liu Y Z, Zhang C X, Ma M J. 2022. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed[J]. Bioresource Technology, 343: 126081. doi: 10.1016/j.biortech.2021.126081
Dong L H, Hou L A, Wang Z S, Gu P, Chen G Y, Jiang R F. 2018. A new function of spent activated carbon in BAC process: Removing heavy metals by ion exchange mechanism[J]. Journal of Hazardous Materials, 359(5): 76-84.
Dong X L, Ma L Q, Li Y C. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 190(1/3): 909-915.
Gunasekara A S, Simpson M J, Xing B S. 2003. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids[J]. Environmental Science & Technology, 37(5): 852-858.
Guo Wenjuan, Liang Xuefeng, Lin Dasong, Xu Yingming, Wang Lin, Sun Yuebing, Qin Xu. 2013. Adsorption of Cd2+ on biochar from aqueous solution[J]. Environmental Science, 34(9): 3716-3721 (in Chinese with English abstract).
Huang Hua, Wang Yaxiong, Tang Jingchun, Zhu Wenying. 2014. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene[J]. Environmental Science, 35(5): 1884-1890 (in Chinese with English abstract).
Inyang M, Gao B, Ding W C, Pullammanappallil P, Zimmerman A R, Gao X D. 2011. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse[J]. Separation Science & Technology, 46(12): 1950-1956.
Inyang M, Gao B, Yao Y, Xue Y W, Zimmerman A R, Pullammanappallil P, Gao X D. 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass[J]. Bioresoure Technology, 110: 50-56. doi: 10.1016/j.biortech.2012.01.072
Kaur M, Tewatia P, Rattan G, Singhal S, Kaushik A. 2021. Diamidoximated cellulosic bioadsorbents from hemp stalks for elimination of uranium (Ⅵ) and textile waste in aqueous systems[J]. Journal of Hazardous Materials, 417(5): 126060.
Keiluweit M, Nico P S, Johnson M G, Kleber M. 2010. Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J]. Environmental Science & Technology, 44(4): 1247-1253.
Knudsen J N, Jensen P A, Lin W G, Frandsen F J, Johansen K D. 2004. Sulfur transformations during thermal conversion of herbaceous biomass[J]. Energy Fuels, 18(3): 810-819. doi: 10.1021/ef034085b
Kruk M, Jaroniec M, Gadkaree K P. 1999. Determination of the specific surface srea and the pore size of microporous carbons from adsorption potential distributions[J]. Langmuir, 15(4): 1442-1448. doi: 10.1021/la980789f
Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change, 11(2): 403-427. doi: 10.1007/s11027-005-9006-5
Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. 2011. Biochar effects on soil biota: A review[J]. Soil Biology and Biochemistry, 43(9): 1812-1836. doi: 10.1016/j.soilbio.2011.04.022
Li Ruiyue, Chen De, Li Lianqing, Pan Genxing, Chen Jianqing, Guo Hu. 2015. Adsorption of Pb2+ and Cd2+ in aqueous solution by biochars derived from different crop residues[J]. Journal of AgroEnvironment Science, 34(5): 1001-1008 (in Chinese with English abstract).
Liao Xikai, Man Xiaoyuan, Ning Xunan, Wu Junji, Wang Yujie, Sun Jian. 2015. Effects of carbonization temperature on characteristics of activated carbon from waste filter bag[J]. Acta Science Circumstantiae, 35(11): 3775-3780 (in Chinese with English abstract).
Lin S W, Yang X, Liu L H, Li A Y, Qiu G H. 2022. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application[J]. Journal of Environmental Management, 301: 113921. doi: 10.1016/j.jenvman.2021.113921
Liu R P, Xu Y N, Zhang J H, Wang W K, Elwardany R M. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3: 402-410.
Liu Yignying, Qin Haizhi, Li Lianqing, Pan Genxing, Zhang Xuhui, Zheng Jinwei, Han Xiaojun, Yu Xinyan. 2012. Adsorption of Cd2+ and Pb2+ in aqueous solution by biochars produced from the pyrolysis of different crop feedstock[J]. Ecology and Environmental Sciences, 21(1): 146-152 (in Chinese with English abstract).
Lü D, Liu Y, Zhou J S, Yang K L, Lou Z M, Baig S A, Xu X H. 2018. Application of EDTA-functionalized bamboo activated carbon(BAC) for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solutions[J]. Applied Surface Science, 428: 648-658. doi: 10.1016/j.apsusc.2017.09.151
Mohan D, Pittman C U, Bricka M, Smith F, Yancey B, Mohammad J, Steele P H, Alexandre-Franco M F, Gómez S V, Gong H. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during Bio-Oil production[J]. Journal of Colloid and Interface Science, 310(1): 57-73. doi: 10.1016/j.jcis.2007.01.020
Mukherjee A, Zimmerman A R, Harris W. 2011. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 163(3/4): 247-255.
Peng W J, Li H Q, Liu Y Y, Song S X. 2017. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. Journal of Molecular Liquids, 230: 496-504. doi: 10.1016/j.molliq.2017.01.064
Poucke R V, Ainsworth J, Maeseele M, Ok Y S, Meers E, Tack F M G. 2018. Chemical stabilization of Cd-contaminated soil using biochar[J]. Applied Geochemistry, 88: 122-130. doi: 10.1016/j.apgeochem.2017.09.001
Ro K S, Cantrell K B, Hunt P G. 2010. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar[J]. Industrial & Engineering Chemistry Research, 49(20): 10125-10131.
Sánchez-Polo M, Rivera-Utrilla J. 2002. Adsorbent-adsorbate interactions in the adsorption of Cd(Ⅱ) and Hg(Ⅱ) on ozonized activated carbons[J]. Environmental Science & Technology, 36(17): 3850-3854.
Sarfraz R, Li S W, Yang W H, Zhou B Q, Xing S H. 2019. Assessment of physicochemical and nutritional characteristics of waste mushroom substrate biochar under various pyrolysis temperatures and times[J]. Sustainability, 11(1): 1-14.
Tansel B, Sager J, Rector T, Garland J, Strayer R F, Levine L, Roberts M, Hummerick M, Bauer J. 2006. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation & Purification Technology, 51(1): 40-47.
Wang Changyu, Zhang Surong, Liu Jihong, Xing Yi, Li Mingze, Liu Qingxue. 2021. Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong'an New District[J]. Geology in China, 48(6): 1697-1709 (in Chinese with English abstract).
Wang H T, Keller A A, Clark K K. 2011. Natural organic matter removal by adsorption onto magnetic permanently confined micelle arrays[J]. Journal of Hazardous Materials, 194: 156-161. doi: 10.1016/j.jhazmat.2011.07.093
Wang X D, Li C X, Li Z W, Yu G W, Yang Y. 2019. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 168: 45-52. doi: 10.1016/j.ecoenv.2018.10.022
Wu Min, Ning Ping Wu Di. 2013. Heavy metal sorption characteristics of biochars derived from Dianchi Lake sediment[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2: 102-106 (in Chinese with English abstract).
Yang H, Xu R, Xue X M, Li F T, Li G T. 2008. Hybrid surfactanttemplated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous Materials, 152(2): 690-698. doi: 10.1016/j.jhazmat.2007.07.060
Yang X D, Wan Y S, Zheng Y L, He F, Yu Z B, Huang J, Wang H L, Ok Y S, Jiang Y S, Gao B. 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal, 366(15): 608-621.
Yang Yuzhen, Liu Senrong, Fei Xinqiang, Li Lifen, Xiao Mingshun, Gao Baolong. 2020. Study on the occurrence and transformation of cadmium in soil-rice around the Daye Tonglushan mining area[J]. Resources Environment & Engineering, 34(1): 46-49 (in Chinese with English abstract).
Yang Yuzhen, Liu Senrong, Yang Yong, Li Lifen, Liu Shenghua, Kang Yihua, Fei Xinqiang, Gao Yunliang, Gao Baolong. 2021. Heavy metals in peri-urban soil of Huangshi: Their distribution, risk assessment, and source identification[J]. Geophysical & Geonchemical Exploration, 45(5): 1147-1156 (in Chinese with English abstract).
Ye L Y, Zhang J M, Zhao J, Luo Z M, Tu S, Yin Y W. 2015. Properties of biochar obtained from pyrolysis of bamboo shoot shell[J]. Journal of Analytical and Applied Pyrolysis, 114: 172-178. doi: 10.1016/j.jaap.2015.05.016
Yin Dechao, Qi Xiaofan, Wang Yushan, Xu Rongzhen, An Yonghui, Wang Xuqing, Geng Hongjie. 2022. Geochemical characteristics and ecological risk assessment of heavy metals in surface sediments of Baiyangdian Lake, Xiong'an New Area[J]. Geology in China, 49(3): 979-992(in Chinese with English abstract).
Yoon K, Cho D W, Tsang D C W, Bolan N, Rinklebe J, Song H. 2017. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water[J]. Bioresource Technology, 246: 69-75. doi: 10.1016/j.biortech.2017.07.020
Zuo S. 2018. A review of the control of pore texture of phosphoric acid-activated carbons[J]. Xinxing Tan Cailiao/New Carbon Materials, 33(4): 289-302.
郭文娟, 梁学峰, 林大松, 徐应明, 王林, 孙约兵, 秦旭. 2013. 土壤重金属钝化修复剂生物炭对镉的吸附特性研究[J]. 环境科学, 34(9): 3716-3721. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201309062.htm
黄华, 王雅雄, 唐景春, 朱文英. 2014. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J]. 环境科学, 35(5): 1884-1890. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201405040.htm
李瑞月, 陈德, 李恋卿, 潘根兴, 陈建清, 郭虎. 2015. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J]. 农业环境科学学报, 34(5): 1001-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201505026.htm
廖希凯, 满小媛, 宁寻安, 巫俊楫, 王玉洁, 孙健. 2015. 炭化温度对废旧布袋制备活性炭性能的影响及其表征[J]. 环境科学学报, 35(11): 3775-3780. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201511047.htm
刘莹莹, 秦海芝, 李恋卿, 潘根兴, 张旭辉, 郑金伟, 韩晓君, 俞欣研. 2012. 不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性[J]. 生态环境学报, 21(1): 146-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201201027.htm
王昌宇, 张素荣, 刘继红, 邢怡, 李名则, 刘庆学. 2021. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J]. 中国地质, 48(6): 1697-1709. http://geochina.cgs.gov.cn/geochina/article/abstract/20210603?st=search
吴敏, 宁平, 吴迪. 2013. 滇池底泥制备的生物炭对重金属的吸附研究[J]. 昆明理工大学学报(自然科学版), (2): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201302020.htm
杨育振, 刘森荣, 费新强, 李丽芬, 肖明顺, 高宝龙. 2020. 大冶铜绿山矿区周边土壤-水稻中镉赋存状态及转化迁移规律研究[J]. 资源环境与工程, 34(1): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202001010.htm
杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 2021. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 45(5): 1147-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105006.htm
尹德超, 祁晓凡, 王雨山, 徐蓉桢, 安永会, 王旭清, 耿红杰. 2022. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价[J]. 中国地质, 49(3): 979-992. http://geochina.cgs.gov.cn/geochina/article/abstract/20220321?st=search
-