Application and evaluation method of the importance of ecological protection in Changdu City of the east Qinghai−Xizang Plateau
-
摘要:
研究目的 昌都市是青藏高原东部的重要生态门户,当前“双评价”指南推荐的生态系统服务评价方法无法准确反映研究区生态系统特征,本文改进了生态保护重要性评价方法,提高了将研究结果纳入生态保护实践的可行性,评价结果可以为生态保护红线划定以及后期生态修复工作奠定基础。
研究方法 基于高原环境特征,将碳储存与冻融侵蚀纳入评价体系,并运用改进后的生态系统服务与生态敏感性评价方法,评价了昌都市的生态保护重要性。
研究结果 昌都市生态保护极重要区占区域总面积的51.35%,主要分为两类:一是生态环境良好,具有重要的水土保持及水源涵养功能的区域,主要分布在金沙江、澜沧江及怒江两岸的山地;二是由于生态系统质量较差,已出现植被退化、土地沙化、水土流失等环境问题,主要分布在丁青县北部、八宿县中南部及边坝县西部。
结论 昌都市大部分地区处于生态保护极重要区和重要区,生态系统服务功能强,但部分区域生态系统敏感性也较高,在开发过程中需要分区制定生态保护措施并严格落实生态保护工作,降低气候变化背景下各种人类活动对生态系统的不利影响,保障青藏高原生态屏障区的建设。
Abstract:This paper is the result of ecological geological survey engineering.
Objective Changdu City serves as a critical ecological corridor on the eastern Qinghai−Xizang Plateau. The ecosystem service evaluation methodology recommended by the existing "dual evaluation" guidelines fails to adequately capture the unique characteristics of the ecosystem within the study area. This paper enhances the assessment methodology regarding the significance of ecological protection, thereby improving the feasibility of integrating the research findings into practical ecological conservation efforts. The evaluation outcomes will provide a foundational basis for establishing ecological protection boundaries and inform subsequent ecological restoration initiatives.
Methods In light of the distinctive characteristics of the plateau environment, the evaluation system incorporates carbon sequestration and freeze−thaw erosion processes. Utilizing enhanced methodologies for assessing ecosystem services and ecological sensitivity, this study evaluates the significance of ecological protection in Changdu City.
Results The highly significant ecological protection zone in Changdu City encompasses 51.35% of the total land area and is primarily categorized into two distinct types. The first category consists of regions exhibiting favorable ecological conditions that play crucial roles in water and soil conservation; These areas are predominantly located in the mountainous regions along the Jinsha River, Lancang River, and Nujiang River. The second category comprises areas experiencing vegetation degradation, land desertification, soil and water erosion, and other environmental challenges, which are mainly found in the northern part of Dingqing County, as well as the central and southern regions of Basu County and the western section of Bianba County.
Conclusions The majority of regions within Changdu City are situated in areas designated as critically important and significant for ecological protection, exhibiting robust ecosystem service functions. However, certain areas also demonstrate heightened sensitivity to ecological disturbances. Consequently, it is imperative to devise and rigorously implement tailored ecological protection measures that correspond to the specific characteristics of each area during the development process. This approach aims to mitigate the adverse impacts of various anthropogenic activities on the ecosystem in the context of climate change, thereby ensuring the integrity of the ecological barrier of the Qinghai−Xizang Plateau.
-
-
图 5 生态系统服务功能重要性评价(生态系统服务功能分区具体见表4)
Figure 5.
表 1 主要数据概况
Table 1. Overview of research data
名称 类型 分辨率 数据来源 NPP数据集 栅格 1 km 中国科学院资源环境数据云平台 NDVI数据 栅格 1 km 中国科学院资源环境数据云平台 气象、气候数据集 栅格/文本 1 km 中国科学院资源环境数据云平台
昌都市气象局土壤数据集 栅格 1 km 寒区旱区科学数据中心 地层岩性数据 矢量 — 全国1︰250万地质图 高程数据集 DEM栅格数据 30 m 地理空间数据云平台 西藏自治区国家级自然保护区功能区划数据 矢量 — “数据禾”数据服务 长期稳定耕地范围 矢量 — 遥感影像解译 现有城镇建成区 矢量 — 遥感影像解译 表 2 生态保护重要性级别矩阵
Table 2. Judging matrix of ecological protection importance
级别 生态敏感性 极敏感 敏感 一般敏感 生态系统服务
功能重要性极重要 极重要 极重要 极重要 重要 极重要 重要 重要 一般重要 极重要 重要 一般重要 表 3 生态系统服务功能重要性统计
Table 3. Statistics of ecosystem service function importance
区域 极重要 重要 一般重要 面积/km2 比重/% 面积/km2 比重/% 面积/km2 比重/% 八宿县 5038.68 41.06 1565.19 12.76 5666.17 46.18 边坝县 3969.37 45.13 1470.01 16.71 3355.99 38.16 察雅县 3247.88 39.35 2173.87 26.33 2833.08 34.32 丁青县 5553.36 44.48 1788.45 14.32 5143.26 41.20 贡觉县 3573.38 56.43 2722.63 42.99 36.43 0.58 江达县 9362.93 70.45 3314.86 24.94 612.21 4.61 卡若区 4452.33 40.98 5350.08 49.24 1063.43 9.79 类乌齐县 2784.91 43.53 1256.15 19.64 2356.01 36.83 洛隆县 3324.26 41.26 1027.01 12.75 3706.16 46.00 芒康县 5744.90 50.49 3907.09 34.33 1727.35 15.18 左贡县 5204.37 44.52 640.41 5.48 5844.78 50.00 合计 52256.37 47.58 25215.74 22.96 32344.87 29.45 表 4 生态系统服务功能分区
Table 4. The subarea of ecosystem service function
一级分区 二级分区 生态系统
主要服务功能保护建议 涉及县区 藏东南高寒林区生态保护区(I) 北部植被恢复及生物多样性保护亚区(I1) 水土保持、碳固定、生物多样性保护 植被恢复、湿地保护、生境保护等 卡若区、
类乌齐县北部草灌植被恢复亚区(I2) 水土保持、水源涵养 灌草植被恢复、湿地保护、生境保护等 丁青县 金沙江上游植被恢复亚区(I3) 水土保持、水源涵养、
碳固定灌草植被恢复、森林植被的抚育以及水土流失的治理 江达县 怒江上游生态综合
保护区(II)怒江上游高寒植被保护与湿地综合保护亚区(II1) 水土保持、水源涵养、防风固沙和碳固定 灌草植被恢复以及湿地质量的监管和保护 边坝县 怒江上游草灌植被综合保护亚区(II2) 水土保持、水源涵养、防风固沙 草地、灌木植被恢复以及水土流失的治理 洛隆县 怒江上游生态保护与综合保护亚区(II3) 水源涵养、水土保持、防风固沙和碳固定 植被保护、生境保护、湿地保护以及石漠化和水土流失的治理 左贡县、八宿县 两江综合生态涵养区(III) 两江水源涵养综合修复工程(III1) 水源涵养、水土保持、防风固沙和碳固定 植被保护、生境保护、湿地保护以及水土流失的治理 察雅县、贡觉县 两江生物多样性保护−水质提升综合修复工程(III2) 水源涵养、水土保持、防风固沙和碳固定 植植被保护、生境保护、湿地保护以及水土流失和水污染的治理 芒康县 表 5 生态敏感性等级统计
Table 5. Statistics of ecological sensitivity classifcation
区域 极敏感 敏感 一般敏感 面积/km2 比重/% 面积/km2 比重/% 面积/km2 比重/% 八宿县 384.02 3.13 7389.74 60.23 4494.82 36.64 边坝县 725.50 8.31 6169.15 70.66 1836.21 21.03 察雅县 464.37 5.61 7180.60 86.70 636.88 7.69 丁青县 76.80 0.62 10362.65 82.99 2046.54 16.39 贡觉县 633.34 10.00 5076.16 80.12 626.25 9.88 江达县 3.54 0.03 12735.31 95.49 597.89 4.48 卡若区 588.44 5.41 10015.26 92.15 264.68 2.44 类乌齐县 4.73 0.07 6043.90 94.51 346.21 5.41 洛隆县 503.36 6.26 6548.44 81.46 986.64 12.27 芒康县 2961.10 25.87 7756.04 67.76 729.05 6.37 左贡县 1729.87 14.78 7603.61 64.99 2366.75 20.23 合计 8075.07 7.35 86880.86 79.06 14931.91 13.59 表 6 昌都市生态保护重要性等级评价结果
Table 6. Evaluation results of the importance levels of ecological protection in Changdu City
区域 极重要 重要 一般重要 面积/km2 比重/% 面积/km2 比重/% 面积/km2 比重/% 八宿县 5376.82 43.92 5663.38 46.26 1203.30 9.83 边坝县 4549.25 52.05 3694.33 42.27 497.02 5.69 察雅县 3581.38 43.09 4466.02 53.73 263.97 3.18 丁青县 5691.91 45.62 6106.89 48.94 678.94 5.44 贡觉县 3787.08 59.73 2519.57 39.74 33.29 0.53 江达县 9330.36 70.18 3901.23 29.34 63.02 0.47 卡若区 4685.99 43.18 6055.76 55.80 110.58 1.02 类乌齐县 2741.92 43.27 3408.97 53.80 185.49 2.93 洛隆县 3756.16 46.51 3770.43 46.69 549.33 6.80 芒康县 7098.54 61.81 4090.28 35.62 294.88 2.57 左贡县 5792.98 49.68 4087.91 35.06 1779.99 15.26 合计 56392.41 51.35 47764.76 43.49 5659.81 5.15 -
[1] Barral M P, Oscar M N. 2012. Land−use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina[J]. Agriculture, Ecosystems & Environment, 154: 34–43.
[2] Bonnesoeur V, Locatelli B, Guariguata M R, Ochoa–Tocachi B F, Vanacker V, Mao Z, Stokes A, Mathez–Stiefel S–L. 2019. Impacts of forests and forestation on hydrological services in the Andes: A systematic review[J]. Forest Ecology and Management, 433: 569−584. doi: 10.1016/j.foreco.2018.11.033
[3] Cai X, Li Z, Liang Y. 2021. Tempo–spatial changes of ecological vulnerability in the arid area based on ordered weighted average model[J]. Ecological Indicators, 133: 108398. doi: 10.1016/j.ecolind.2021.108398
[4] Guo Bing, Jiang Lin. 2017. Evaluation of freeze–thaw erosion in Qinghai–Tibet Plateau based on multi–source data[J]. Bulletin of Soil and Water Conservation, 37(4): 12−19 (in Chinese with English abstract).
[5] Guo Changbao, Zhang Yongshuang, Jiang Wenliang, Shi Jusong, Meng Wen, Du Yuben, Ma Chuntian. 2017. Discussion on the environmental and engineering geological problems along the Sichuan Tibet Railway and its adjacent area[J]. Geoscience, 31(5): 877−889 (in Chinese with English abstract).
[6] Guo Kun. 2018. Study on Vegetation Restoration and Selection of Sand–tolerant Grass species in Severe Sandy Land along the Qinghai–Tibet Railway[D]. Beijing: Beijing Forestry University, 1–59 (in Chinese with English abstract).
[7] Jiang Yuehua, Ni Huayong, Zhou Quanping, Cheng Zhiyan, Duan Xuejun, Zhu Zhimin, Wu Jicun, Ren Haiyan, Fan Chenzi, Yang Jinwei, Chen Chao, Hu Jian, Wang Xiaolong, Jiang Xiaye, Liu Yongbing, Yang Hai, Guo Wei, Feng Naiqi, Wei Guagnqing, Jin Yang, Yang Hui, Liu Lin, Mei Shijia, Zhang Hong, Chen Pengjun, Yuan Jihai, Qi Qiuju, Lü Jinsong, Gu Xuan, Liu Peng. 2021. Key technology of ecological restoration demonstration in the Yangtze River Economic Zone and its application[J]. Geology in China, 48(5): 1305−1333 (in Chinese with English abstract).
[8] Liu Yi, Shi Peidong, Liu Miao, Xu Kairan, Zhang Ning, Jiang Peng, Wang Weijia, Jiang Yuge. 2024. Spatial pattern of water conservation function and ecological management suggestions in the catchment area of the upper reaches of Qinhe River in the Yellow River Basin from 1990 to 2020[J]. Geology in China, 51(6): 1917−1929 (in Chinese with English abstract).
[9] Mo Xuanxue. 2010. A review and prospect of geological researches on the Qinghai–Tibet Plateau[J]. Geology in China, 37(4): 841−853 (in Chinese with English abstract).
[10] Naidoo R, Balmford A, Costanza R, Fisher B, Green R E, Lehner B, Malcolm T, Ricketts T H. 2008. Global mapping of ecosystem services and conservation priorities[J]. Proceedings of the National Academy of Sciences, 105(28): 9495−9500. doi: 10.1073/pnas.0707823105
[11] Nie Y, Liu W, Liu Q, Hu X, Westoby M J. 2020. Reconstructing the Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya: Evolution, process and impacts[J]. Geomorphology, 370: 107393. doi: 10.1016/j.geomorph.2020.107393
[12] Niu Xiaonan, Ni Huan, Chen Guoguang, Zhang Dingyuan, Zhang Jing, Zhang Jie, Wu Jiayu. 2022. Evaluation of ecological conservation importance of Fujian Province[J]. Acta Ecologica Sinica, 42(3): 1−12 (in Chinese with English abstract).
[13] Opdam P, Nassauer J I, Wang Z, Albert C, Bentrup G, Castella J–C, Mcalpine C, Liu J, Sheppard S, Swaffield S. 2013. Science for action at the local landscape scale[J]. Landscape Ecology, 28(8): 1439−1445. doi: 10.1007/s10980-013-9925-6
[14] Peng J, Liu Z, Liu Y, Wu J, Han Y. 2012. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent[J]. Ecological Indicators, 14(1): 28−39. doi: 10.1016/j.ecolind.2011.08.011
[15] Peng J, Zhao S, Dong J, Liu Y, Meersmans J, Li H, Wu J. 2019. Applying ant colony algorithm to identify ecological security patterns in megacities[J]. Environmental Modelling & Software, 117: 214−222.
[16] Ren Dezhi, Ge Liwen, Wang Ruihong, Zhang Na, Pan Gang. 2016. Carbon storage and spatial pattern of forest vegetation in Changdu, Tibet[J]. Chinese Journal of Ecology, 35(4): 903−908 (in Chinese with English abstract).
[17] Ruiz M, Romero E, Pérez M, Fernández I. 2012. Development and application of a multi–criteria spatial decision support system for planning sustainable industrial areas in Northern Spain[J]. Automation in Construction, 22: 320−333. doi: 10.1016/j.autcon.2011.09.009
[18] Sun X Y, Zhang R J, Huang W, Sun A, Lin L J, Xu H, Jiang D C. 2019. The response between glacier evolution and eco–geological environment on the Qinghai–Tibet Plateau[J]. China Geology, 2(1): 1–7.
[19] Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing and Environment, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
[20] Wang C, Tang C, Fu B, Lü Y, Xiao S, Zhang J. 2022. Determining critical thresholds of ecological restoration based on ecosystem service index: A case study in the Pingjiang catchment in southern China[J]. Journal of Environmental Management, 303: 114220. doi: 10.1016/j.jenvman.2021.114220
[21] Wang Chenghu, Gao Guiyun, Yang Shixin, Yao Rui, Hung Luyuan. 2019. Analysis and prediction of stress fields of Sichuan—Tibet railway area based on contemporary tectonic stress field zoning in Western China[J]. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242−2253 (in Chinese with English abstract).
[22] Wang Lixia, Zou Chagnxin, Wang Yan, Lin Naifeng, Wu Dan, Jiang Hong, Xu Delin. 2017. Methods to identify the boundary of ecological protection red line regions using GIS: A case study in Changping, Beijing[J]. Acta Ecologica Sinica, 37(18): 6176−6185 (in Chinese with English abstract).
[23] Wang Liyan, Xiao Yan, Jiang Ling, Ouyang Zhiyun. 2017. Assessment and analysis of the freeze–thaw erosion sensitivity on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 39(1): 61−69 (in Chinese with English abstract).
[24] Wang Siyuan, Zhao Minmin, Yan Jing, Ma Xin, Diao Yujie, Fu Lei, Luo Qian. 2021. Evaluation on the importance of ecological protection in Changdu section of the Sichuan–Tibet railway[J]. Geoscience, 35(1): 234−243 (in Chinese with English abstract).
[25] Wu J. 2013. Landscape sustainability science: Ecosystem services and human well–being in changing landscapes[J]. Landscape Ecology, 28(6): 999−1023. doi: 10.1007/s10980-013-9894-9
[26] Xiang J, Li X, Xiao R, Wang Y. 2021. Effects of land use transition on ecological vulnerability in poverty–stricken mountainous areas of China: A complex network approach[J]. Journal of Environmental Management, 297: 113206. doi: 10.1016/j.jenvman.2021.113206
[27] Xu Mo, Jiang Liangwen, Li Xiao, Qi Jihong, Zhang Qiang, Li Xiao. 2021. Major engineering hydrogeological problems along the Ya’an–Linzhi section of the Sichuan–Tibet Railway[J]. Hydrogeology & Engineering Geology, 48(5): 13−22 (in Chinese with English abstract).
[28] Xue Yiguo, Kong Fanmeng, Yang Weimin, Qiu Daohong, Su Maoxin, Fu Kang, Ma Xinmin. 2020. Main unfavorable geological conditions and engineering geological problems along Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445–468 (in Chinese with English abstract).
[29] Zhang Q, Yuan R, Singh V P, Xu C Y, Fan K, Shen Z, Wang G, Zhao J. 2022. Dynamic vulnerability of ecological systems to climate changes across the Qinghai–Tibet Plateau, China[J]. Ecological Indicators, 134: 108483. doi: 10.1016/j.ecolind.2021.108483
[30] Zhao Y, Chen D, Fan J. 2020. Sustainable development problems and countermeasures: A case study of the Qinghai–Tibet Plateau[J]. Geography and Sustainability, 1(4): 275−283. doi: 10.1016/j.geosus.2020.11.002
[31] Zhao Z, Liu J, Peng J, Li S, Wang Y. 2015. Nonlinear features and complexity patterns of vegetation dynamics in the transition zone of North China[J]. Ecological Indicators, 49: 237−246. doi: 10.1016/j.ecolind.2014.08.038
[32] Zheng Guangyu, Song Ci, Wu Zhanbo, Luo Yunwu, Huang Jubin, Li Hao, Cheng Chang. 2021. Study on the influence of linear engineering on regional vegetation in southeast Tibet Plateau[J]. Journal of Geological Hazards and Environment Preservation, 32(2): 110−112 (in Chinese with English abstract).
[33] 郭兵, 姜琳. 2017. 基于多源地空耦合数据的青藏高原冻融侵蚀强度评价[J]. 水土保持通报, 37(4): 12−19.
[34] 郭长宝, 张永双, 蒋良文, 石菊松, 孟文, 杜宇本, 马春田. 2017. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 31(5): 877−889. doi: 10.3969/j.issn.1000-8527.2017.05.001
[35] 郭坤. 2018. 青藏铁路沿线严重沙化段植被恢复及耐沙埋草种筛选研究[D]. 北京: 北京林业大学, 1–59.
[36] 姜月华, 倪化勇, 周权平, 程知言, 段学军, 朱志敏, 吴吉春, 任海彦, 范晨子, 杨晋炜, 陈超, 胡建, 王晓龙, 姜夏烨, 刘永兵, 杨海, 郭威, 冯乃琦, 魏广庆, 金阳, 杨辉, 刘林, 梅世嘉, 张鸿, 陈澎军, 袁继海, 齐秋菊, 吕劲松, 顾轩, 刘鹏. 2021. 长江经济带生态修复示范关键技术及其应用[J]. 中国地质, 48(5): 1305−1333. doi: 10.12029/gc20210501
[37] 刘义, 史佩东, 刘淼, 许凯然, 张宁, 姜鹏, 王玮迦, 姜禹戈. 2024. 1990—2020年黄河流域沁河上游汇水区水源涵养功能空间格局与生态治理建议[J]. 中国地质, 51(6): 1917−1929. doi: 10.12029/gc20220901001
[38] 莫宣学. 2010. 青藏高原地质研究的回顾与展望[J]. 中国地质, 37(4): 841−853. doi: 10.3969/j.issn.1000-3657.2010.04.002
[39] 牛晓楠, 倪欢, 陈国光, 张定源, 张景, 张洁, 吴佳瑜. 2022. 福建省生态保护重要性评价[J]. 生态学报, 42(3): 1−12.
[40] 任德智, 葛立雯, 王瑞红, 张娜, 潘刚. 2016. 西藏昌都地区森林植被碳储量及空间分布格局[J]. 生态学杂志, 35(4): 903−908.
[41] 王成虎, 高桂云, 杨树新, 姚瑞, 黄禄渊. 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估[J]. 岩石力学与工程学报, 38(11): 2242−2253.
[42] 王丽霞, 邹长新, 王燕, 林乃峰, 吴丹, 姜宏, 徐德琳. 2017. 基于GIS识别生态保护红线边界的方法—以北京市昌平区为例[J]. 生态学报, 37(18): 6176−6185.
[43] 王莉雁, 肖燚, 江凌, 欧阳志云. 2017. 青藏高原冻融侵蚀敏感性评价与分析[J]. 冰川冻土, 39(1): 61−69.
[44] 王思源, 赵敏敏, 闫晶, 马鑫, 刁玉杰, 付雷, 罗倩. 2021. 川藏铁路西藏昌都段生态保护重要性评价[J]. 现代地质, 35(1): 234−243.
[45] 许模, 蒋良文, 李潇, 漆继红, 张强, 李晓. 2021. 川藏铁路雅安至林芝段重大工程水文地质问题[J]. 水文地质工程地质, 48(5): 13−22.
[46] 薛翊国, 孔凡猛, 杨为民, 邱道宏, 苏茂鑫, 傅康, 马新民. 2020. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 39(3): 445−468.
[47] 郑光玉, 宋词, 吴展波, 罗运武, 黄炬斌, 黎灏, 陈畅. 2021. 青藏高原东南部线性工程对区域植被的影响研究[J]. 地质灾害与环境保护, 32(2): 110−112. doi: 10.3969/j.issn.1006-4362.2021.02.021
-