中国地质调查局 中国地质科学院主办
科学出版社出版

冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束

赵子锐, 张薇, 王贵玲, 邢林啸, 张汉雄, 赵佳怡. 2025. 冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束[J]. 中国地质, 52(1): 246-263. doi: 10.12029/gc20230226002
引用本文: 赵子锐, 张薇, 王贵玲, 邢林啸, 张汉雄, 赵佳怡. 2025. 冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束[J]. 中国地质, 52(1): 246-263. doi: 10.12029/gc20230226002
ZHAO Zirui, ZHANG Wei, WANG Guiling, XING Linxiao, ZHANG Hanxiong, ZHAO Jiayi. 2025. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J]. Geology in China, 52(1): 246-263. doi: 10.12029/gc20230226002
Citation: ZHAO Zirui, ZHANG Wei, WANG Guiling, XING Linxiao, ZHANG Hanxiong, ZHAO Jiayi. 2025. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J]. Geology in China, 52(1): 246-263. doi: 10.12029/gc20230226002

冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束

  • 基金项目: 中国地质科学院基本科研业务费项目(SK202306)与中国地质调查项目(DD20190555)联合资助。
详细信息
    作者简介: 赵子锐,男,1996年生,博士生,主要从事地热地质方面的研究;E-mail: 184239608@qq.com
    通讯作者: 王贵玲,男,1964年生,研究员,主要从事地热资源评价方面研究;E-mail: guilingw@163.com
  • 中图分类号: P314

Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis

  • Fund Project: Supported by the projects of Basic Research Fees of Chinese Academy of Geological Sciences (No.SK202306) and China Geological Survey (No.DD20190555).
More Information
    Author Bio: ZHAO Zirui, male, born in 1996, Ph.D. candidate, mainly engaged in geothermal geology research; E-mail: 184239608@qq.com .
    Corresponding author: WANG Guiling, male, born in 1964, researcher, mainly engaged in geothermal resources evaluation research; E-mail: guilingw@163.com.
  • 研究目的

    高阳地热田赋存丰富的中低温地热资源,地热流体水文地球化学研究是认识深部地热水循环过程、揭示地热系统成因机制的有效手段。

    研究方法

    通过对高阳地热田地热水样品的水化学及同位素数据的分析,研究深部地热水的形成与演化过程。

    研究结果

    碳酸盐岩热储水化学类型为Cl–Na型,砂岩热储水化学类型为HCO3·Cl–Na和Cl·HCO3–Na型,地热水中的离子组分主要受盐岩、碳酸盐岩的溶解以及阳离子交替吸附作用控制。地热水接受太行山和燕山山区大气降水补给,补给高程在759.12~1092.33 m。雾迷山组热储温度为102~154℃,热循环深度为2524~4020 m;馆陶组热储温度为61~84℃,热循环深度为1357~2024 m。

    结论

    高阳地热田雾迷山组热储水样γNa+/γCl小于馆陶组热储,γSO42–/γClγCl/(γHCO3+CO32–)大于馆陶组热储,说明雾迷山组热储相比于馆陶组热储变质程度更高,封闭性更好,地热水循环速度更缓慢,盐化程度更高。深部热储的热量一部分通过热水沿断裂通道以热对流的方式向上传递,另一部分通过岩石以热传导的方式向上传递,形成对流−传导型地热系统。

  • 加载中
  • 图 1  渤海湾盆地构造单元(a)和冀中坳陷构造单元划分(b)(据刘海剑, 2015修改)

    Figure 1. 

    图 2  高阳低凸起及邻区地层综合柱状图(据单帅强, 2022修改)

    Figure 2. 

    图 3  研究区前新生代地质图及采样位置(据滕飞,2018 2修改)

    Figure 3. 

    图 4  高阳地热田水样Piper三线图

    Figure 4. 

    图 5  高阳地热田水样Schoeller图

    Figure 5. 

    图 6  高阳地热田微量元素与Cl含量关系

    Figure 6. 

    图 7  高阳地热田水样离子比值关系图

    Figure 7. 

    图 8  高阳地热田水样δD与δ18O关系图

    Figure 8. 

    图 9  高阳地热田水样Na–K–Mg三元图

    Figure 9. 

    图 10  高阳地热田热水各矿物SI–t

    Figure 10. 

    图 11  高阳地热田地热水成因模式(据庞玉茂, 2012修改)

    Figure 11. 

    表 1  高阳地热田水样主要离子浓度(mg/L)

    Table 1.  Main ion concentration (mg/L) of water samples in Gaoyang geothermal field

    样品编号 pH Na+ K+ Ca2+ Mg2+ HCO3 Cl SO42– F Sr2+ Li+ 偏硼酸 偏硅酸 TDS δD/‰ δ18O/‰
    GJ01 8.46 1865 165.6 18.00 12.76 456.1 2818 94.16 8.78 2.811 5.704 107.2 204.4 5563 −70 −5.6
    GJ02 8.4 2097 193.4 16.99 8.70 473.9 3096 111.7 9.68 7.327 6.563 120 182.9 6109 −70 −5.4
    GJ03 8.38 2062 186.5 23.03 11.34 571.6 3097 116.1 8.63 6.689 5.339 118.1 204.1 6461 −71 −5.9
    GJ04 7.08 1466 145.6 88.15 19.60 852.5 1978 118.3 9.45 7.970 3.744 78.48 185 4882 −72 −6.8
    GJ05 7.46 1691 149.3 88.56 20.08 838.2 2387 104.9 8.43 8.611 5.040 90.26 179.1 5122 −72 −6.4
    GJ06 7.53 1894 167.0 77.05 15.09 761.2 2746 112.3 8.42 9.714 5.781 104.2 186 5677 −71 −5.9
    GJ07 7.03 1857 147.9 106.30 15.60 906.3 2675 120.6 6.58 10.74 5.008 91.72 133.8 5618 −73 −6.4
    GJ08 7.34 823.9 37.19 53.59 8.86 574.6 996.2 92.81 2.11 3.091 0.953 25.18 78.78 2398 −75 −9.1
    GJ09 7.05 1098 73.45 55.31 7.04 675.3 1391 104.5 4.09 5.309 2.201 48.17 100.6 3212 −74 −8.2
    GJ10 6.63 1778.3 172.6 89.80 12.60 795.7 2566.8 93.7 8.57 9.712 5.150 21.99 175.3 5657.1 −71 −6.2
    GS01 7.94 463.6 4.29 6.70 0.57 589.4 275 108.1 3.14 0.280 0.057 2.3 62.92 1209 −74 −9.4
    GS02 8.19 359.6 2.90 4.97 0.62 527.2 164.1 81.49 2.99 0.148 0.039 1.26 56.11 925.7 −73 −9.4
    GS03 7.95 445.1 4.60 9.37 0.83 396.9 369.8 102 1.72 0.536 0.072 1.62 60.89 1183 −74 −9.7
    GS04 8.16 416.9 5.03 8.83 0.61 432.4 303.4 124.2 2.36 0.346 0.067 1.92 68.02 1135 −74 −9.3
    GS05 8.04 412.0 4.00 11.81 1.11 325.8 368 110.4 1.69 0.636 0.055 1.12 52.62 1115 −75 −9.9
    GS06 8.16 308.3 2.74 7.61 0.75 344.8 206.1 94.28 1.56 0.300 0.032 0.64 49.46 834.6 −76 −10.3
    GS07 8.58 242.9 1.97 5.71 0.68 296.8 116 91.4 1.33 0.116 0.014 0.46 42.93 661.1 −76 −10.2
    GQ01 7.83 99.8 1.20 82.89 49.34 179.5 105.4 327.7 0.43 0.897 0.006 <0.20 22.97 889.7 −80 −10.6
    GQ02 8.09 49.1 3.18 21.81 6.91 209.4 5.25 6.4 0.37 0.297 <0.005 <0.20 21.47 326.7 −70 −9.7
    DQJS01 5.86 2.8 0.45 4.54 0.81 4.74 1.79 7.8 0.15 0.016 <0.005 <0.20 <1.00 35.62 −55 −8.5
      注:pH无量纲。
    下载: 导出CSV

    表 2  水化学指标统计

    Table 2.  Statistics of water chemistry index

    热储类型 化学指标 最小值/
    (mg/L)
    最大值/
    (mg/L)
    均值/
    (mg/L)
    标准差 变异系数/
    %
    化学指标 最小值/
    (mg/L)
    最大值/
    (mg/L)
    均值/
    (mg/L)
    标准差 变异系数/
    %
    Ng热储
    (n=7)
    K+ 1.97 5.03 3.65 1.12 30.76 F 1.33 3.14 2.11 0.72 34.22
    Na+ 242.90 463.60 378.34 79.53 21.02 Sr2+ 0.12 0.64 0.34 0.19 56.52
    Ca2+ 4.97 11.81 7.86 2.35 29.94 Li+ 0.01 0.07 0.05 0.02 43.03
    Mg2+ 0.57 1.11 0.74 0.19 25.26 HBO2 0.46 2.30 1.33 0.67 49.96
    Cl 116.00 369.80 257.49 98.85 38.39 H2SiO3 42.93 68.02 56.14 8.57 15.28
    SO42– 81.49 124.20 101.70 14.10 13.86 TDS 661.10 1209.00 1009.06 206.47 20.46
    HCO3 296.80 589.40 416.19 108.38 26.04 pH 7.94 8.58 8.15 0.22 2.67
    Jxw热储
    (n=10)
    K+ 37.19 193.40 143.85 49.99 34.75 F 2.11 9.68 7.47 2.49 33.33
    Na+ 823.90 2097.00 1663.22 415.74 25.00 Sr2+ 2.81 10.74 7.20 2.74 38.12
    Ca2+ 16.99 106.30 61.68 33.24 53.90 Li+ 0.95 6.56 4.55 1.75 38.39
    Mg2+ 7.04 20.08 13.17 4.46 33.84 HBO2 21.99 120.00 80.53 36.52 45.35
    Cl 996.20 3097.00 2375.10 709.37 29.87 H2SiO3 78.78 204.40 163.00 43.54 26.71
    SO42– 92.81 120.60 106.91 10.54 9.86 TDS 2398.00 6461.00 5069.91 1286.71 25.38
    HCO3 456.10 906.30 690.54 163.42 23.67 pH 6.63 8.46 7.54 0.66 8.71
      注:pH无量纲。
    下载: 导出CSV

    表 3  地热水化学指标相关系数

    Table 3.  Correlation coefficients of geothermal water chemistry indexes

    K+ Na+ Ca2+ Mg2+ Cl SO42− HCO3 TDS pH 温度
    Ng
    热储
    K+ 1.000
    Na+ 0.912** 1.000
    Ca2+ 0.595 0.477 1.000
    Mg2+ 0.086 0.097 0.813* 1.000
    Cl 0.863* 0.827* 0.872* 0.553 1.000
    SO42– 0.819* 0.598 0.661 0.140 0.702 1.000
    HCO3 0.364 0.583 −0.404 −0.607 0.028 0.021 1.000
    TDS 0.943** 0.995** 0.550 0.145 0.870* 0.667 0.510 1.000
    pH −0.760* −0.910** −0.498 −0.226 −0.799* −0.406 −0.496 −0.899** 1.000
    温度 0.766* 0.707 0.298 −0.038 0.546 0.481 0.467 0.709 −0.493 1.000
    Jxw
    热储
    K+ 1
    Na+ 0.970** 1
    Ca2+ −0.131 −0.179 1
    Mg2+ 0.334 0.246 0.630 1
    Cl 0.962** 0.998** −0.225 0.215 1
    SO42– 0.387 0.417 0.218 0.362 0.376 1
    HCO3 −0.012 −0.066 0.971** 0.692* −0.117 0.389 1
    TDS 0.985** 0.987** −0.108 0.326 0.981** 0.446 0.017 1
    pH 0.422 0.497 −0.861** −0.233 0.535 0.065 −0.791** 0.424 1
    温度 0.703* 0.590 −0.268 0.098 0.605 −0.139 −0.208 0.656* 0.298 1
      注:**在0.01级别(双尾),相关性显著;*在0.05级别(双尾),相关性显著。
    下载: 导出CSV

    表 4  地热水特征系数

    Table 4.  Characteristic coefficients of geothermal water

    样品编号热储地层γNa+/γCl100×γSO42–/γClγCl/γ(HCO3+CO32–)
    GJ01Jxw1.022.478.10
    GJ021.042.679.17
    GJ031.032.778.30
    GJ041.144.413.99
    GJ051.093.244.90
    GJ061.063.026.21
    GJ071.073.335.08
    GJ081.286.872.98
    GJ091.225.563.54
    GJ101.072.705.54
    GS01Ng2.6028.990.80
    GS023.3836.720.54
    GS031.8620.331.60
    GS042.1230.261.21
    GS051.7322.161.94
    GS062.3133.731.03
    GS073.2358.100.60
    GQ01Q1.46229.631.01
    GQ0214.2086.670.04
    下载: 导出CSV

    表 5  热储温度计算结果(℃)

    Table 5.  Calculation results of thermal storage temperature (℃)

    样品编号 井口温度 Na–K Na–K–Ca K–Mg 石英 玉髓 多矿物
    平衡法
    GJ01 88 216 222 142 164 141 150
    GJ02 88 219 228 154 157 133 155
    GJ03 100 217 223 148 164 141 146
    GJ04 84 225 207 131 158 134 130
    GJ05 82 215 203 131 156 131 122
    GJ06 82 215 207 140 158 134 131
    GJ07 67 207 197 135 139 112 121
    GJ08 71 164 158 102 111 82 113
    GJ09 66 193 183 125 123 95 117
    GJ10 104 223 210 144 155 130 141
    GS01 62 77 98 81 100 70 82
    GS02 73 71 92 71 95 65 91
    GS03 69 82 99 78 99 69 85
    GS04 82 89 105 84 104 74 95
    GS05 67 80 95 72 92 62 77
    GS06 46 76 91 67 89 59 82
    GS07 45 72 87 61 83 52 79
    下载: 导出CSV
  • [1]

    Appelo C A J, Postma D. 2004. Geochemistry, Groundwater and Pollution[M]. CRC Press.

    [2]

    Chang Jian, Qiu Nansheng, Zhao Xianzheng, Xu Qiuchen, Jin Fengming, Han Chunyuan, Ma Xuefeng, Dong Xiongying, Liang Xiaojuan. 2016. Present–day geothermal regime of the Jizhong depression in Bohai Bay basin, East China[J]. Chinese Journal of Geophysics, 59(3): 1003−1016 (in Chinese with English abstract).

    [3]

    Chen Moxiang. 1988. Geothermal in North China[M]. Beijing: Science Press, 1–214 (in Chinese).

    [4]

    Chen Moxiang, Wang Jiyang, Wang Ji’an, Deng Xiao, Yang Shuzhen, Xiong Liangping, Zhang Juming. 1990. The characteristics of the geothermal field and its formation mechanism in the North China down–faulted basin[J]. Acta Geologica Sinica, 64(1): 80−91 (in Chinese with English abstract).

    [5]

    Chen Zongyu. 2001. Groundwater Resources Evolution Based on Paleoenvironmental Information from Groundwater System in North China Plain[D]. Changchun: Jilin University, 1–139 (in Chinese with English abstract).

    [6]

    Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702−1703. doi: 10.1126/science.133.3465.1702

    [7]

    Cui Yue, Zhu Chuanqing, Qiu Nansheng, Tang Boning, Guo Sasa. 2020. Geothermal lithospheric thickness in the central Jizhong depression and its geothermal significance[J]. Acta Geologica Sinica, 94(7): 1960−1969 (in Chinese with English abstract).

    [8]

    Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1/4): 41−50. doi: 10.1016/0375-6505(77)90007-4

    [9]

    Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749−2765. doi: 10.1016/0016-7037(88)90143-3

    [10]

    Hai Kuo. 2019. Using Several Methods to Estimate the Temperatures of Deep Geothermal Reservoirs[D]. Beijing: China University of Geosciences (Beijing), 1–102 (in Chinese with English abstract).

    [11]

    Li Jun, Zhou Shengzhang, Zhao Yi, Zhao Ruike, Dang Zhiwen, Pan Minqiang, Zhu Danni, Zhou Changsong. 2021. Major ionic characteristics and factors of karst groundwater at Huixian karst wetland, China[J]. Environmental Science, 42(4): 1750−1760 (in Chinese with English abstract).

    [12]

    Li Yiman, Pang Zhonghe, Luo Ji, Chen Kai. 2021. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas[J]. Geological Review, 67(4): 1050−1056 (in Chinese with English abstract).

    [13]

    Liu Haijian. 2015. Relationships between Cenozoic Extension and Strike–slip of Raoyang Sag in Jizhong Depression[D]. Qingdao: China University of Petroleum (East China), 1–69 (in Chinese with English abstract).

    [14]

    Liu Jianrong, Song Xianfang, Yuan Guofu, Sun Xiaomin, Liu Xin, Wang Shiqin. 2009. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 54(22): 3521−3531 (in Chinese). doi: 10.1360/csb2009-54-22-3521

    [15]

    Liu Kai, Liu Yingchao, Sun Ying, Liu Jiurong, Wang Shufang, Liu Zongming. 2015. Characteristics of deuterium excess parameters of geothermal water in Beijing[J]. Geology in China, 42(6): 2029−2035 (in Chinese with English abstract).

    [16]

    Liu Mingliang, He Tong, Wu Qifan, Guo Qinghai. 2020. Hydrogeochemistry of geothermal waters from Xiongan New Area and its indicating significance[J]. Earth Science, 45(6): 2221−2231 (in Chinese with English abstract).

    [17]

    Ma Feng, Wang Guiling, Zhang Wei, Zhu Xi, Zhang Hanxiong, Yue Gaofan. 2020. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1981−1990 (in Chinese with English abstract).

    [18]

    Mao X M, Zhu D B, Ndikubwimana I, He Y Y, Shi Z D. 2021. The mechanism of high–salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 593: 125889. doi: 10.1016/j.jhydrol.2020.125889

    [19]

    Miao Q Z, Wang G L, Qi S H, Xing L X, Xin H L, Zhou X N. 2022. Genetic mechanism of geothermal anomaly in the Gaoyang Uplift of the Jizhong Depression[J]. Frontiers in Earth Science, 10: 885197. doi: 10.3389/feart.2022.885197

    [20]

    Pang J M, Pang Z H, Lü M, Tian J, Kong Y L. 2018. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China[J]. Environmental Earth Sciences, 77(1): 1−21. doi: 10.1007/s12665-017-7169-5

    [21]

    Pang Yumao. 2012. Geological Structure Characteristics and the Influence on Hydrocarbon Accumulation in Jizhong Depression[D]. Qingdao: China University of Petroleum (East China), 1–80 (in Chinese with English abstract).

    [22]

    Reed M, Spycher N. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 48(7): 1479−1492. doi: 10.1016/0016-7037(84)90404-6

    [23]

    Shan Shuaiqiang, He Dengfa, Fang Chengming, Zhang Yuying, Hu Meiling. 2022. Structural characteristics and genetic mechanism of Gaoyang low uplift in Jizhong Depression, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 44(6): 989−996, 1007 (in Chinese with English abstract).

    [24]

    Sui Shaoqiang. 2020. Genetic analysis of karst thermal reservoir in Gaoyang geothermal field, Hebei Province, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 492−497 (in Chinese with English abstract).

    [25]

    Sun Houyun, Wei Xiaofeng, Gan Fengwei, Wang Heng, Jia Fengchao, He Zexin, Li Duojie, Li Jian, Zhang Jing. 2020. Genetic type and formation mechanism of strontium–rich groundwater in the upper and middle reaches of Luanhe river basin[J]. Acta Geoscientica Sinica, 41(1): 65−79 (in Chinese with English abstract).

    [26]

    Wang G L, Zhang W, Ma F, Lin W J, Liang J Y, Zhu X. 2018. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 1(2): 273−285. doi: 10.31035/cg2018021

    [27]

    Wang G L, Wang W L, Zhang W, Ma F, Liu F. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing–Tianjin–Hebei region in China[J]. China Geology, 3(1): 173−181. doi: 10.31035/cg2020013

    [28]

    Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017a. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 38(4): 449−459 (in Chinese with English abstract).

    [29]

    Wang Guiling, Zhang Wei, Lin Wenjing, Liu Feng, Zhu Xi, Liu Yanguang, Li jun. 2017b. Research on formation mode and development potential of geothermal resources in Beijing–Tianjin–Hebei region[J]. Geology in China, 44(6): 1074−1085 (in Chinese with English abstract).

    [30]

    Wang Guiling, Gao Jun, Zhang Baojian, Xing Yifei, Zhang Wei, Ma Feng. 2020. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1970−1980 (in Chinese with English abstract).

    [31]

    Wang Guiling, Lin Wenjing. 2020. Main hydrogeothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(7): 1923−1937 (in Chinese with English abstract).

    [32]

    Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review, 30(32): 25−31 (in Chinese with English abstract).

    [33]

    Wang Siqi, Zhang Baojian, Li Yanyan, Xing Yifei, Yuan Wenzhen, Li Jun, Gao Jun, Zhao Tian. 2021. Heat accumulation mechanism of deep ancient buried hill in the northeast of Gaoyang geothermal field, Xiong′an New Area[J]. Bulletin of Geological Science and Technology, 40(3): 12−21 (in Chinese with English abstract).

    [34]

    Xing Yifei, Wang Huiqun, Li Jie, Teng Yanguo, Zhang Baojian, Li Yanyan, Wang Guiling. 2022. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors[J]. Geology in China, 49(6): 1711−1722 (in Chinese with English abstract).

    [35]

    Yin Z Y, Luo Q K, Wu J F, Xu S H, Wu J C. 2021. Identification of the long–term variations of groundwater and their governing factors based on hydrochemical and isotopic data in a river Basin[J]. Journal of Hydrology, 592: 125604. doi: 10.1016/j.jhydrol.2020.125604

    [36]

    Yuan Jianfei. 2010. Transport of Boron in the Aquatic Environment of the Yangbajing Geothermal Field, Tibet[D]. Wuhan: China University of Geosciences, 1–74 (in Chinese with English abstract).

    [37]

    Zhang B J, Zhao T, Li Y Y, Xing Y F, Wang G L, Gao J, Tang X C, Yuan W Z, Zhang D L. 2019a. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example[J]. China Geology, 2(4): 512−521. doi: 10.31035/cg2018132

    [38]

    Zhang B J, Wang S Q, Kang F X, Wu Y Q, Li Y Y, Gao J, Yuan W Z, Xing Y F. 2022. Heat accumulation mechanism of the Gaoyang carbonatite geothermal field, Hebei Province, North China[J]. Frontiers in Earth Science, 10: 858814. doi: 10.3389/feart.2022.858814

    [39]

    Zhang Renquan, Liang Xing, Jin Menggui, Wan Li, Yu Qingchun. 2011. Fundamentals of Hydrogeology (6th Edition)[M]. Beijing: Geological Publishing House (in Chinese).

    [40]

    Zhang W, Wang G L, Xing L X, Li T X, Zhao J Y. 2019b. Geochemical response of deep geothermal processes in the Litang region, Western Sichuan[J]. Energy Exploration and Exploitation, 37(2): 626−645. doi: 10.1177/0144598718812550

    [41]

    Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 46(2): 255−268 (in Chinese with English abstract).

    [42]

    Zhang Wei, Wang Guiling, Zhao Jiayi, Liufeng. 2021. Geochemical characteristics of medium–high temperature geothermal fluids in West Sichuan and their geological implications[J]. Geoscience, 35(1): 188−198 (in Chinese with English abstract).

    [43]

    Zhang Wenchao, Yang Dexiang, Chen Yanjun, Qian Zheng, Zhang Chaowen, Liu Huifang. 2008. Sedimentary structural characteristics and hydrocarbon distributed rules of Jizhong depression[J]. Acta Geologica Sinica, 82(8): 1103−1112 (in Chinese with English abstract).

    [44]

    Zhao Jiayi, Zhang Wei, Ma Feng, Zhu Xi, Zhang Hanxiong, Wang Guiling. 2020. Geochemical characteristics of the geothermal fluid in the Rongcheng geothermal field, Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1991−2001 (in Chinese with English abstract).

    [45]

    Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton[J]. Science China: Earth Science, 42(8): 1135−1159 (in Chinese).

    [46]

    Zhu Xi, Wang Guiling, Ma Feng, Zhang Wei, Zhang Qinglian, Zhang Hanxiong. 2021. Hydrogeochemistry of geothermal waters from Taihang Mountain–Xiong’an New Area and its indicating significance[J]. Earth Science, 46(7): 2594−2608 (in Chinese with English abstract).

    [47]

    常健, 邱楠生, 赵贤正, 许威, 徐秋晨, 金凤鸣, 韩春元, 马学峰, 董雄英, 梁小娟. 2016. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 59(3): 1003−1016. doi: 10.6038/cjg20160322

    [48]

    陈墨香. 1988. 华北地热[M]. 北京: 科学出版社, 1–214.

    [49]

    陈墨香, 汪集旸, 汪缉安, 邓孝, 杨淑贞, 熊亮萍, 张菊明. 1990. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 64(1): 80−91.

    [50]

    陈宗宇. 2001. 从华北平原地下水系统中古环境信息研究地下水资源演化[D]. 长春: 吉林大学, 1–139.

    [51]

    崔悦, 朱传庆, 邱楠生, 唐博宁, 郭飒飒. 2020. 冀中坳陷中部现今热岩石圈厚度及地热学意义探讨[J]. 地质学报, 94(7): 1960−1969. doi: 10.3969/j.issn.0001-5717.2020.07.005

    [52]

    海阔. 2019. 运用多种方法估算深部热储温度[D]. 北京: 中国地质大学(北京), 1–102.

    [53]

    李军, 邹胜章, 赵一, 赵瑞科, 党志文, 潘民强, 朱丹尼, 周长松. 2021. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 42(4): 1750−1760.

    [54]

    李义曼, 庞忠和, 罗霁, 陈凯. 2021. SiO2地温计沸腾校正方法在高原地区的适用性分析[J]. 地质论评, 67(4): 1050−1056.

    [55]

    刘海剑. 2015. 冀中坳陷饶阳凹陷新生代伸展与走滑关系研究[D]. 青岛: 中国石油大学(华东), 1–69.

    [56]

    刘凯, 刘颖超, 孙颖, 刘久荣, 王树芳, 刘宗明. 2015. 北京地区地热水氘过量参数特征分析[J]. 中国地质, 42(6): 2029−2035.

    [57]

    刘明亮, 何曈, 吴启帆, 郭清海. 2020. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 45(6): 2221−2231.

    [58]

    柳鉴容, 宋献方, 袁国富, 孙晓敏, 刘鑫, 王仕琴. 2009. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 54(22): 3521−3531.

    [59]

    马峰, 王贵玲, 张薇, 朱喜, 张汉雄, 岳高凡. 2020. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 94(7): 1981−1990. doi: 10.3969/j.issn.0001-5717.2020.07.007

    [60]

    庞玉茂. 2012. 冀中坳陷地质结构特征及对油气成藏的影响[D]. 青岛: 中国石油大学(华东), 1–80.

    [61]

    单帅强, 何登发, 方成名, 张煜颖, 胡美玲. 2022. 渤海湾盆地冀中坳陷高阳低凸起构造特征及成因机制[J]. 石油实验地质, 44(6): 989−996,1007. doi: 10.11781/sysydz202206989

    [62]

    隋少强. 2020. 河北高阳地热田岩溶热储的成因[J]. 成都理工大学学报(自然科学版), 47(4): 492−497.

    [63]

    孙厚云, 卫晓锋, 甘凤伟, 王恒, 贾凤超, 何泽新, 李多杰, 李健, 张竞. 2020. 滦河流域中上游富锶地下水成因类型与形成机制[J]. 地球学报, 41(1): 65−79. doi: 10.3975/cagsb.2019.061701

    [64]

    王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017a. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−459.

    [65]

    王贵玲, 张薇, 蔺文静, 刘峰, 朱喜, 刘彦广, 李郡. 2017b. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 44(6): 1074−1085.

    [66]

    王贵玲, 高俊, 张保建, 邢一飞, 张薇, 马峰. 2020. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 94(7): 1970−1980. doi: 10.3969/j.issn.0001-5717.2020.07.006

    [67]

    王贵玲, 蔺文静. 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(7): 1923−1937. doi: 10.3969/j.issn.0001-5717.2020.07.002

    [68]

    王思琪, 张保建, 李燕燕, 邢一飞, 袁文真, 李郡, 高俊, 赵甜. 2021. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 40(3): 12−21.

    [69]

    汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 30(32): 25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    [70]

    邢一飞, 王慧群, 李捷, 滕彦国, 张保健, 李燕燕, 王贵玲. 2022. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质, 49(6): 1711−1722. doi: 10.12029/gc20220601

    [71]

    袁建飞. 2010. 西藏羊八井高温地热田水环境中硼的迁移和转化研究[D]. 武汉: 中国地质大学, 1–74.

    [72]

    张人权, 梁杏, 靳孟贵, 万力, 于青春. 2011. 水文地质学基础(第6版)[M]. 北京: 地质出版社.

    [73]

    张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255−268. doi: 10.12029/gc20190204

    [74]

    张薇, 王贵玲, 赵佳怡, 刘峰. 2021. 四川西部中高温地热流体地球化学特征及其地质意义[J]. 现代地质, 35(1): 188−198.

    [75]

    张文朝, 杨德相, 陈彦均, 钱铮, 张超文, 刘会纺. 2008. 冀中坳陷古近系沉积构造特征与油气分布规律[J]. 地质学报, 82(8): 1103−1112. doi: 10.3321/j.issn:0001-5717.2008.08.011

    [76]

    赵佳怡, 张薇, 马峰, 朱喜, 张汉雄, 王贵玲. 2020. 雄安新区容城地热田地热流体化学特征[J]. 地质学报, 94(7): 1991−2001. doi: 10.3969/j.issn.0001-5717.2020.07.008

    [77]

    朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏[J]. 中国科学: 地球科学, 42(8): 1135−1159.

    [78]

    朱喜, 王贵玲, 马峰, 张薇, 张庆莲, 张汉雄. 2021. 太行山–雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学, 46(7): 2594−2608.

  • 加载中

(11)

(5)

计量
  • 文章访问数:  46
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2023-02-26
修回日期:  2023-07-05
刊出日期:  2025-01-25

目录