Analysis of multi-year rainfall variation and shallow groundwater flow field monitoring in Huaibei Plain
-
摘要:
研究目的 变化环境下地下水时空规律的研究有助于水资源精细化管理和区域水资源安全保障。
研究方法 本文基于淮北平原区典型气象站1953—2019年月降雨数据,采用小波分析及M-K检验法,研究多年尺度降雨周期性变化及趋势规律;结合395个国家级监测井及地下水统测数据,采用主成分分析法进行监测井优化评价。
研究结果 淮北平原多年降雨量呈现多时空尺度变化特征,南部地区主周期较北部地区偏小,但周期尺度较多,变化更为复杂;西北部的浅层地下水位持续下降,其余区域水位处于有升有降的波动状态;南部区域浅层地下水水位在1970年、2003年及2019年3个时段呈现出先降低再恢复,北部部分区域地下水水位则呈现先升高再降低的特征,研究区水位总体存在下降趋势,但2000年以来水位总体有所回升;经主成分分析优化后的277个监测井(221个水利井和56个自然资源井)能代表395个原国家监测井的总体水位变化情况。
结论 国家地下水监测工程长序列监测数据能够很好地服务于流域尺度水资源评价及管理,但省市级尺度或重点区域还需要进行优化和加密,地下水位统测可有效填补,该工作应在重要河湖两侧、淮河北岸一带、东北部山前平原等高水力梯度区域进行加密。
Abstract:This paper is the result of groundwater survey engineering.
Objective The study on the temporal and spatial law of groundwater under changing environment is helpful to the fine management of water resources and the guarantee for regional water resources security.
Methods Based on the rainfall data of typical weather stations in the Huaibei Plain from 1953 to 2019, the wavelet analysis and M-K test method was used to study the periodic changes and trend of rainfall on a multi-year scale. Combined with 395 national monitoring wells and groundwater monitoring data, the principal components analytical method was used to optimize the evaluation of monitoring wells.
Results The results show that the rainfall in Huaibei Plain appears multiple temporal and spatial scales variation characteristics: The shallow groundwater level has declined continuously in the northwest, while fluctuated greatly in the other regions; In 1970, 2003 and 2019, the shallow groundwater level in the southern region decreased firstly and then recovered, and on the contrast, the shallow groundwater level in the northern region increased firstly and then decreased; The groundwater level in the study area has generally declined; And since 2000, the water level has somewhat risen; The 277 monitoring wells (221 water wells and 56 natural resource wells) optimized by principal component analysis can represent the overall water level changes of 395 original national monitoring wells.
Conclusions The long-term monitoring data of the national groundwater monitoring project can well serve the evaluation and management of water resources at the basin scale, but still need to be optimized and densified at the provincial, municipal scales or key areas. The artificial observation in unified time period can also make up for this deficiency which should be densified in the high hydraulic gradient areas such as both sides of important rivers and lakes, the north bank of Huaihe River, and the piedmont plain in the northeast.
-
表 1 水利监测井主成分分析结果统计(m)
Table 1. The principal component analysis results of monitoring wells from Water Sector(m)
表 2 自然资源监测井主成分分析结果统计(m)
Table 2. The principal component analysis results of monitoring wells from Natural resources department(m)
表 3 2018年淮北平原主要地(市)地下水开采量
Table 3. Groundwater exploitation in major cities of Huaibei Plain in 2018
-
Ahmadian M, Chavoshian M. 2012. Spatial variability zonation of groundwater-table by use geo-statistical methods in central region of Hamadan province[J]. Journal of Annals of Biological Research, 3(11): 5304-5312.
Ahmed Waqas, Zulfiqar Ali Rahimoon, Carlos Anthony Oroza, Salman Sarwar, Abdul Latif Qureshi, Jehangir Framroze Punthakey, Muhammad Arfan. 2020. Modelling groundwater hydraulics to design a groundwater level monitoring network for sustainable management of fresh groundwater Lensin Lower Indus Basin, Pakistan[J]. Applied Sciences, 10(15): 5200. https://doi.org/10.3390/app10155200 doi: 10.3390/app10155200
Chen X, Hao Z C, Dai M L. 2016. Danimic analysis of shallow groundwater in Huaibei Plain[J]. Journal of Anhui Agriculture Science, 44(28): 73-76(in Chinese with English abstract).
Chen Xiao. 2019. Study on Evolution and Prediction of Groundwater Depth in Huaibei Plain of Anhui Province[D]. Hefei: Anhui Agricultural University (in Chinese with English abstract).
Cui Linfeng, Yang Xue, Chen Bangsong, Li Haitao. 2019. Optimum design of regional groundwater level monitoring networks in Wuhan[J]. Ground Water, 41(4): 33-36(in Chinese with English abstract).
Gocic M, Trajkovic S. 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia[J]. Global & Planetary Change, 100(1): 172-182.
Gong Jianshi, Wang Hesheng, Li Liang, Zhou Kai'e, Ye Yonghong, Zhu Chunfang, Xu Naizhen, Tao Xiaohu, Tan Mengjiao, Shu Longcang, Zhao Guizhang. 2021. Groundwater resources and development potential in Huaihe River Basin[J]. Geology in China, 48(4): 1052-1061(in Chinese with English abstract).
Guo Wenxian, Li Yue, Zhang Ling, Zhao Rongsheng, Wang Hongxiang. 2019. Analysis of annual runoff and sediment variation and driving factors at Yichang Station in Yangtze River over 60 years[J]. Journal of China Hydrology, 39(6): 69-73(in Chinese with English abstract).
Janardhanan Sreekanth, Dan Gladish, Dennis Gonzalez, Dan Pagendam, Trevor Pickett, Tao Cui. 2020. Optimal design and prediction-independent verification of groundwater monitoring network[J]. Water, 12(1): 123. https://doi.org/10.3390/w12010123 doi: 10.3390/w12010123
Jiang Yuehua, Lin Liangjun, Chen Lide, Ni Huayong, Ge Weiya, Cheng Hangxin, Zhai Gangyi, Wang Guiling, Ban Yizhong, Li Yuan, Lei Mingtang, Tan Chengxuan, Su Jingwen, Zhou Quanping, Zhang Taili, Li Yun, Liu Hongying, Peng Ke, Wang Hanmei. 2017. Research on conditions of resources and environment and major geological problems in the Yangtze River Economic Zone[J]. Geology in China, 44(6): 1045-1061. (in Chinese with English abstract).
Júnez-Ferreira H E, Herrera G S, Saucedo E, Pacheco-Guerrero A, 2019. A. Pacheco-Guerrero. Influence of available data on the geostatistical-based design of optimal spatiotemporal groundwater-level-monitoring networks[J]. Hydrogeology Journal, 27: 1207-1227. doi: 10.1007/s10040-018-01921-w
Lei Kunchao, Luo Yong, Chen Beibei, Guo Gaoxuan, Jia Sanman, Tian Fang, Zhou Yi. 2016. Optimization design of land subsidence levelling network of Beijing Plain[J]. Geology in China, 43(4): 1457-1467(in Chinese with English abstract).
Liu Zhizheng, Wu Xiaodong, Lin Hongxiao. 2010. Kriging interpolation model and its application in optimization of groundwater level monitoring network[J]. Yangtae River, 41(9): 14-17(in Chinese with English abstract).
Machiwal Deepesh, Mishra Amit, Jha Madan K, Sharma Arun, Sisodia S S. 2012. Modeling short-term spatial and temporal variability of groundwater level using geostatistics and GIS[J]. Journal of Natural Resource Research, 21(1): 117-136. doi: 10.1007/s11053-011-9167-8
Song Ge, Huang Jinting, Ning Bohan, Wang Jiawei, Zeng Lei. 2021. Effects of groundwater level on vegetation in the arid area of western China[J]. China Geology, 4(3): 527-535.
Sun Fangqiang, Yin Lihe, Jia Wuhui, Zhang Jun, Wang Xiaoyong, Zhu Lifeng, Zhang Xinxin, Tang Xiaoping, Dong Jiaqiu. 2020. Soil water movement and deep drainage through thick vadose zones on the northern slope of the Tianshan Mountain: Croplands vs. natural lands[J]. China Geology, 3(1): 113-123. doi: 10.31035/cg2020008
Wang Faxin, Bai Ju. 2014. Distribution characteristics of shallow groundwater depth in huaibei plain[J]. Ground Water, 36(5): 51-53(in Chinese with English abstract).
Wang Guiling, Zhang Wei, Ma Feng, Lin Wenjing, Liang Jiyun, Zhu Xi. 2018. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 1(2): 273-285. doi: 10.31035/cg2018021
Wang Haojie, Zuo Qiting, Luo ZengLiang. 2017. Runoff evolution characteristics of a typical station in Shayinghe River basin and attribution analysis[J]. South to North Water Transfers and Water Science & Tenchnology, 15(5): 36-42(in Chinese with English abstract).
Yao Rui, Sun Peng, Zhang Qiang, Jiang Shangming, Xia Min, Wang Hongjun. 2020. Spatiotemporal patterns of the shallow groundwater depth across the Huaibei Plain[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 59(2): 110-119(in Chinese with English abstract).
陈玺, 郝振纯, 戴明龙. 2016. 淮北平原浅层地下水动态研究[J]. 安徽农业科学, 44(28): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201628024.htm
陈笑. 2019. 安徽省淮北平原地下水位埋深演变及预测研究[D]. 合肥: 安徽农业大学.
崔霖峰, 杨雪, 陈邦松, 李海涛. 2019. 武汉市区域地下水位监测网优化研究[J]. 地下水, 44(4): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201904012.htm
龚建师, 王赫生, 李亮, 周锴锷, 叶永红, 朱春芳, 徐乃政, 陶小虎, 檀梦皎, 束龙仓, 赵贵章. 2021. 淮河流域地下水资源概况及开发潜力[J]. 中国地质, 48(4): 1052-1061. http://geochina.cgs.gov.cn/geochina/article/abstract/20210405?st=search
郭文献, 李越, 张陵, 赵荣生, 王鸿翔. 2019. 近60年长江中游宜昌站水沙变化与驱动因素分析[J]. 水文, 39(6): 69-73, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201906012.htm
姜月华, 林良俊, 陈立德, 倪化勇, 葛伟亚, 成杭新, 翟刚毅, 王贵玲, 班宜忠, 李媛, 雷明堂, 谭成轩, 苏晶文, 周权平, 张泰丽, 李云, 刘红樱, 彭柯, 王寒梅. 2017. 长江经济带资源环境条件与重大地质问题[J]. 中国地质, 44(6): 1045-1061. http://geochina.cgs.gov.cn/geochina/article/abstract/20170601?st=search
雷坤超, 罗勇, 陈蓓蓓, 郭高轩, 贾三满, 田芳, 周毅. 2016. 北京平原区地面沉降水准监测网点位优化[J]. 中国地质, 43(4): 1457-1467. http://geochina.cgs.gov.cn/geochina/article/abstract/20160429?st=search
刘治政, 吴晓东, 林洪孝. 2010. Kriging插值模型在地下水位监测网优化中的应用[J]. 人民长江, 41(9): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201009005.htm
王发信, 柏菊. 2014. 淮北平原浅层地下水位埋深区域分布特点[J]. 地下水, 36(5): 51-53.
王豪杰, 左其亭, 罗增良. 2017. 沙颍河代表站径流演变特征及归因分析[J]. 南水北调与水利科技, 15(5): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201705006.htm
姚蕊, 孙鹏, 张强, 蒋尚明, 夏敏, 汪军红. 2020. 淮北平原区浅层地下水埋深时空分布特征[J]. 中山大学学报(自然科学版), 59(2): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ202002013.htm