Distributions, properties and clean utilization of the low rank inertinite-rich coals in China
-
摘要:
研究目的 富惰质组煤以高惰质组含量为特征,煤质及工艺性质随之发生相应的变化,对清洁利用方式产生一定影响;本文以梳理、厘定低阶富惰质组煤的时空分布、煤质特征为目的,并在此基础上探讨西北地区低阶富惰质组煤的清洁利用方式。
研究方法 通过梳理大量前人勘查资料及研究成果,分析、归纳其中的煤岩、煤质数据,以此厘定中国煤富惰质组煤的时空分布特征、煤质特征,进而结合各用途的煤岩煤质指标,讨论西北低阶富惰质组煤的清洁潜势和用途。
研究结果 结果显示,中国的富惰质组煤主要分布时代为早—中侏罗世,分布区为西北地区,以鄂尔多斯盆地延安组煤,新疆北部诸盆地西山窑组煤为典型代表。西北地区低阶富惰质组煤具有低灰、低硫、低有害元素、低黏结性、较低氢含量、较低挥发分、较高二氧化碳反应性,高发热量等特点;其中氢含量、黏结性、挥发分、二氧化碳反应性等明显与高惰质组含量相关。煤质特征表明西北地区侏罗纪煤具有高清洁度和高发热量,是优质的动力用煤;同煤阶相对低挥发分和氢含量使其不利于作为直接液化用煤;而低灰、低硫、低黏结性、较强与二氧化碳反应性有利于其作为气化用煤,适用于多种气化工艺流程。此外,以陕西北部为代表的部分低阶富惰质组煤具有较高的焦油产率,为富油煤,适于低温干馏热解。
结论 西北地区低阶富惰质组煤以动力用煤和气化用煤为主要清洁利用方式,部分富油煤则应优先低温干馏热解。
Abstract:This paper is the result of mineral exploration engineering.
Objective Inertinite-rich coal is characterized by the high inertinite content, and several coal properties are personalized accordingly, which affecting its clean utilization. In this paper, we focus on both the determination of the time-space distribution of the inertinite-rich coals in China and the induction of the coal properties, clean potential and utilization mode of the low rank inertinite-rich coals in Northwest China.
Methods We sort out a large number of exploration data and research results, and coal macerals and coal properties data were analyzed and summarized. The determination of inertinite-rich coal's time-space distribution in China and their coal properties were based on the data. The clean potential and utilization mode of the low rank inertinite-rich coal in Northwest China were carried out along the coal properties combined with the indexes for various purposes.
Results It shows that the inertinite-rich coals are mainly distributed in the Early-Middle Jurassic in Northwest China. The low rank inertinite-rich coals in Northwest China are characterized by low ash, low sulfur, low harmful elements, low cohesiveness, low hydrogen content, low volatile matter, high carbon dioxide reactivity and high calorific value, among which, the hydrogen content, cohesiveness, volatile matter and carbon dioxide reactivity are obviously related to the high inertinite content. The coal properties show that the Jurassic coals in Northwest China are of high cleanliness and high calorific value, which is a high-quality power coal. The relatively low volatile matter and hydrogen content in the same coal rank make it not conducive to be used as coal for direct liquefaction. The low ash, low sulfur, low cohesiveness, strong reactivity with carbon dioxide are conducive to being used as coal for gasification, which is suitable for a variety of gasification processes. In addition, part of the low rank inertinite-rich coals represented by the northern part of Shaanxi Province are of high tar yield, which is suitable for low temperature retorting.
Conclusions The low rank inertinite-rich coals in Northwest China are suitable for power coal and gasification coal, and the tar-rich coal should be given priority to low temperature retorting.
-
表 1 西北地区主要侏罗系矿区显微煤岩组分统计
Table 1. Statistical of macerals in the main Jurrassic coal mining areas in Northwest China
表 2 污染物及有害元素分级标准及西北地区部分侏罗系矿区煤对照统计
Table 2. Classification standard of pollutants and harmful elements and comparison statistics of coal in some Jurassic mining areas in Northwest China
表 3 煤炭清洁利用指标要求与西北地区部分矿区低阶富惰质组煤煤质指标平均值及清洁利用方式
Table 3. Index of coal clean utilization requirements and the average coal property values with clean utilization suggestions of low rank inertinite-rich coals in Northwest China
-
Alimujiang·Tusiyiti, Zhuang xinguo, Zhao Yawen, Aibibaier· Maimaiti, Pan Lichuan. 2014. Coal petrology and Coal facies analysis of Xiaoxigou Mine in southern Junggar Coalfield, Xinjiang[J]. Xinjiang Geology, 34(4): 525-529(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2014.04.022
Chen Guifeng, Luo Teng. 2014. Development patterns and technology requirements of clean coal utilization[J]. Clean Coal Technology, 20(2): 99-103(in Chinese with English abstract).
Chen Jialiang. 1985. Effect of Songwe-Kiwira Coalfield's maceral composition on the chemico-technological property and industrial utilization of coal[J]. Journal of China University of Mining & Technology, 4: 89-101(in Chinese with English abstract).
Chen Peng. 2007. Nature, Classification and Utilization of Coal in China[M]. Beijing: Chemical Industry Press, 1-679(in Chinese).
Chen Shaonan. 2009. Analysis of sedimentary environment of Didao Group coal-bearing stratum in Jixi Basin[J]. Coal Technology, 6: 147-148(in Chinese with English abstract).
China National Administration of Coal Geology. 1998. Evolution and Coal Accumulation Regularity of Coal Bearing Basins in China[M]. Beijing: China Coal Industry Publishing House, 1-186(in Chinese).
Crosdale P J, Sorokin A P, Woolfe K J, Macdonald D I M. 2002. Inertinite-rich Tertiary coals from the Zeya-Bureya Basin, Far Eastern Russia[J]. International Journal of Coal Geology, 51: 215-235. doi: 10.1016/S0166-5162(02)00100-3
Dai Hewu, Ma Zhibang. 1988. Study on characteristics of bituminous coal suitable for direct liquefaction[J]. Journal of China Coal Society, 13(2): 80-86(in Chinese with English abstract).
Dai Shifeng, Hower James C, Ward Colin R, Guo Wenmu, Song Hongjian, O'Keefe Jennifer M K, Xie Panpan, Hood Madison M, Yan Xiaoyun. 2015. Element and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau[J]. International Journal of Coal Geology, 144-145: 23-47. doi: 10.1016/j.coal.2015.04.002
Du Fangpeng, Li Congcong, Qiao Junwei, Wei Yunxun, Zhang Guangchao, Luo Zheng, Tan Furong. 2018. Discussion on the potential and way of clean utilization of coal resources in Fugu mining area, northern Shaanxi[J]. Coal Geology & Exploration, 46(3): 11-14(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1986.2018.03.003
Du Fangpeng, Luo Zheng, Qiao Junwei, Zhao Xiaochen, Tan Furong, Li Congcong, Fan Qi. 2020. Petrographic, quality characteristics and clean & efficient use of Jurassic coal in Ningdong Coalfield[J]. Coal Geology & Exploration, 48(2): 71-77(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1986.2020.02.012
Fabiańska M J, Kruszewska K K J. 2003. Relationship between petrographic and geochemical characterisation of selected South African coals[J]. International Journal of Coal Geology, 54(1/2): 95-114.
Farhaduzzaman M, Abdullah W H, Islam M A. 2012. Depositional environment and hydrocarbon source potential of the Permian Gondwana coals from the Barapukuria Basin, Northwest Bangladesh[J]. International Journal of Coal Geology, 90-91: 162-179. doi: 10.1016/j.coal.2011.12.006
Feng Jie, Li Jun, Li Wenying. 2013. Influences of chemical structure and physical properties of coal macerals on coal liquefaction by quantum chemistry calculation[J]. Fuel Processing Technology, 109: 19-26. doi: 10.1016/j.fuproc.2012.09.033
Feng Yuanhan. 1992. The characteristics of the coal seams of Simen age of early Carboniferous in Guangxi[J]. Geology of Guangxi, 5(2): 57-66(in Chinese with English abstract).
Fu Liming, Zhuang Xinguo, Li Jianfu, Pang Qifa. 2011. The analysis on coal facies of coal seams in early Cretaceous Wujianfang coal basin, Inner Mongolia[J]. Coal Geology & Exploration, 39(3): 1-6, 13(in Chinese with English abstract).
Guo Yanan, Zhao Bo, Xie Xichao, Wang Fengjuan, Yang Shuopeng, Su Yufei, Tang Yuegang. 2009. Coal facies features and comparative study of southern China Late Permian bark coal[J]. Coal Geology of China, 21(12): 19-23(in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2009.12.006
Han Dexin. 1964. Preliminary study on the petrology of the Devonian Liptobioliths in Luquan, Yunnan[J]. Journal of China Coal Society, 1(1): 95-99(in Chinese with English abstract).
Han Keming. 2014. Direct Liquefaction Behaviors of Shenhua Coal and its Macerals[D]. Dalian: Dalian University of Technology, 1-61(in Chinese with English abstract).
Harvey R D, Dillon J W. 2013. Maceral distribution in Illinois coals and their paleoenvironmental implications[J]. International Journal Coal Geology, 5(1/2): 141-165.
Hou Haiai, Shao Longyi, Li Yonghong, Li Zhen, Wang Shuai, Zhang Wenlong, Wang Xuetian. 2017. Influence of coal petrology on methane adsorption capacity of the Middle Jurassic coal in the Yuqia Coalfield, northern Qaidam Basin, China[J]. Journal of Petroleum Science and Engineering, 149: 218-227. doi: 10.1016/j.petrol.2016.10.026
Hower J C, Wagner N J, O'Keefe J M K, Drew J W, Stucker J D, Richardson A R. 2012. Maceral types in some Permian southern African coals[J]. International Journal of Coal Geology, 100: 93-107. doi: 10.1016/j.coal.2012.06.007
Huang Wenhui, Tang Shuheng, Tang Xiuyi, Chen Ping, Zhao Zhigen, Wan Huan, Ao Weihua, Xiao Xiuling, Liu Jiaqi, B. Finkelman. 2010. The Jurassic coal petrology and the research significance of Northwest China[J]. Coal Geology&Exploration, 38(4): 1-6(in Chinese with English abstract).
Hunt J W, Smyth M. 1989. Origin of inertinite-rich coals of Australian cratonic basins[J]. International Journal of Coal Geology, 11(1): 23-46. doi: 10.1016/0166-5162(89)90111-0
Jiang Jinhua, Ye Ming. 1994. Coal and rock feature and correlation in Longfeng coal mine in Fushun[J]. Coal Technology of Northeast China, 2: 49-51(in Chinese with English abstract).
Jiao Kun, Yao Suping, Zhang Ke, Hu Wenxuan. 2012. An atomic force microscopy study on "Barkinite" Liptobiolith[J]. Geological Review, 58(4): 775-782(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.04.018
Jin Lijun, Han Keming, Wang Jianyou, Hu Haoquan. 2014. Direct liquefaction of Bulianta coal and its macerals[J]. Fuel Processing Technology, 128: 232-237. doi: 10.1016/j.fuproc.2014.07.033
Li Xiaoyan. 2005. Conditions of inertinite-rich coal generation, Shendong minining area: Significance of fungal alternating origin of inerts[J]. Coal Geology & Exploration, 33(5): 1-4(in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2005.05.001
Liu Dayong. 2004. Vitrinites in Typical Coal-Bearing Basins of China: The Molecular Characterization and their Kinetic Studies on the Hydrocarbon Generation and Carbon Isotope Fractionation[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1-99(in Chinese with English abstract).
Liu Dongna, Zhou Anchao, Ma Meiling. 2011. Coal Facies Characteristics of No. 5 Coal Seam in Baidong Mine Area, Datong Coalfield[J]. Coal Geology of China, 23(5): 1-4, 52(in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2011.05.01
Liu Quanyou, Krooss M Bernhard, Jin Zhijun, Wang Yi, Jan Hollenstein, Ralf Littke, Liu Wenhui. 2008. Comparison of the gas compound generation of Tarim coal and its macerals in open system non-Isothermal pyrolysis with ultra-high temperature[J]. Natural Gas Geoscience, 19(6): 748-753(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2008.06.748
Liu Wenbin, Hu Kai, Qin Jianzhong, Lu Xiancai, Li Zhiming, Yao Suping. 2008. Organic geochemistry and hydrocarbon potential of liptobiolite in Luquan, Yunnan provice[J]. Geochimica, 37(1): 68-76(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2008.01.010
Luo Teng. 2017. Study on quality based utilization industrial chain and comprehensive evaluation of low rank coal[J]. Coal Economic Research, 8: 43-47(in Chinese with English abstract).
Luo Xia, Li Jian, Hu Guoyi, Wu Damao, Li Zhisheng, Zhang Ying, Yao Jianjun. 2003. An experiment of generation and expulsion of oil from the Jurassic coals and its implication of coal generated oil in the Ordos basin[J]. Experimental Petroleum Geology, 25(1): 76-80(in Chinese with English abstract).
Ma Qingyi, Li Jiaolong, Chu Yingjun. 2013. Petrographic characteristics and peat environments of Gashun Mine[J]. Coal and Chemical Industry, 10: 22-25, 49(in Chinese with English abstract).
Pang Qifa, Zhuang Xinguo, Li Jianfu, Fu Liming, Gangtemue, Xu Yong. 2012. Petrographical, chemical and geochemical characteristics of Jurassic coal in western Chaoshui Basin, Inner Mongolia[J]. Geological Science and Technology Information, 31(1): 27-32(in Chinese with English abstract).
Qiao Junwei, Ning Shuzheng, Qin Yunhu, Zhang Ning, Li Congcong, Zhang Jianqiang, Wei Yingchun, Zhu Shifei, Zhu Kaijia. 2019. The research progress and work prospect of special purpose coal[J]. Coal Geology & Exploration, 47(1): 53-59(in Chinese with English abstract).
Qin Yunhu, Qin Yong, Li Zhuangfu, Gao Feng. 2006. Classification and the composition of high-quality environment-friendly steam coal in China[J]. Energy Technology and Management, 6: 83-85(in Chinese).
Qin Yunhu, Li Zhuangfu, Wang Shuangmei, Gao Feng. 2009. Assessment Indices and general constituting of coals for liquefaction in east China[J]. Coal Geology of China, 21(6): 14-16(in Chinese with English abstract).
Qin Yunhu, Wang Yanjun, Hu Ronghua, Wang Shuangmei, Xu Xiaoqin. 2017. Discussion on index system classification of coal for direct liquefaction and application assessment[J]. Coal Geology of China, 29(9): 7-10(in Chinese with English abstract).
Qin Zhihong, Yuan Xinhua, Zong Zhimin, Wang Yongzhi, Zhang Yu, Wei Xianyong. 1998. Coking and non-coking compositions in coals[J]. Coal Conversion, 21(3): 47-50(in Chinese with English abstract).
Qu Han. 2013. Study on coal macerals of Tertiary coals in Northeast China[J]. Technology Innovation and Application, 27: 136, 137(in Chinese).
Quan Biao, Han Dexin. 1998. Fossil communities of coal-bearing formation (Givetian, Middle Devonian) in Luquan, Yunnan——Analysis of origin of Cutinitic Liptobiolith[J]. Journal of China University of Mining & Technology, 27(3): 298-301(in Chinese with English abstract).
Richardson A R, Eble C F, Hower J C, O'Keefe J M K. 2012. A critical re-examination of the petrology of the No. 5 Block coal in eastern Kentucky with special attention to the origin of inertinite macerals in the splint lithotypes[J]. International Journal of Coal Geology, 98: 41-49.
Shu Xinqian, Wang Zurui, Xu Jingqiu, Ge Lingmei. 1996. Structural characteristics and differences among lithotypes[J]. Journal of Fuel Chemistry & Technology, 24(5): 432-433(in Chinese with English abstract).
Tang Shuheng, Qin Yong, Jiang Yaofa. 2006. Clean Coal Geology in China[M]. Beijing: Geological Publishing House, 1-242(in Chinese).
Tang Yuegang, Guo Yanan, Wang Shaoqing. 2011. The Chinese typical coal type-bark coal: A review[J]. Bulletin of National Natural Science Foundation of China, 3: 154-163(in Chinese with English abstract).
Wang Aikuan Qin Yong, Lan Fengjuan, Yang Song. 2010. Geochemical characteristics of Neogene lignite in Zhaotong Basin, Yunnan[C]//Theory and technology of coalbed methane exploration and development, 122-127(in Chinese).
Wang Dezu. 2005. A study on No. 5 coal seam facies, Huating Mining area[J]. Coal Geology of China, 17(4): 6-8, 17(in Chinese with English abstract).
Wang Hongxia, Liu Yonggang, Ma Sibi. 2022. The first discovery of large coking coal in Triassic strata of Jingtai Basin, Gansu Province[J]. Geology in China, 49(4): 1355-1356(in Chinese).
Wang Shengwei. 1986. Advance of coal pertrology and the resources assessment for the liquefaction coal[J]. Geology Science and Technology Information, 5(3): 140-148(in Chinese with English abstract).
Wang Shuangming. 1996. Coal Accumulation and Coal Resource Evaluation in Ordos Basin[M]. Beijing: China Coal Industry Publishing House, 1-437(in Chinese).
Wang Yanbin, Han Dexin, Mao Heling. 1997. Maceral and origin of Cutinitic Liptobiolith in Middle Devonian in Damaidi Area[J]. Journal of China University of Mining & Technology, 26(4): 38-41(in Chinese with English abstract).
Wu Chunlai. 2005. Development perspective of coal liquefaction in China[J]. Earth Science Frontiers, 2(3): 309-313(in Chinese with English abstract).
Xiang Hongwei, Yang Yong, Li Yongwang. 2014. Indirect coal-to-liquids technology from fundamental research to commercialization[J]. Scientia Sinica Chimica, 12: 1876-1892(in Chinese with English abstract).
Xin Shihe. 2005. Study on Coal CO2-Gasification of Coal Macerals[D]. Beijing: China Coal Research Institute, 1-71(in Chinese with English abstract).
Xing Jun, Liu Guangxiang, Xu Guangquan. 1999. Coal Facies of the huge thick coal seams in Xiaolongtan Formation, Xianfeng Basin[J]. Coal Geology & Exploration, 27: 1-4(in Chinese).
Yang Chupeng, Yao Yongjian, Li Xuejie, Liao Zewen. 2010. Oil-generating potential of Cenozoic coal-measure source rocks in Zengmu Baisn, the southern South China Sea[J]. Acta Petrolel Sinica, 31(6): 920-926(in Chinese with English abstract).
Yao Suping. 1996. Advaneces in organic petrology of oil derived from coals[J]. Advance in Earth Science, 5: 439-445(in Chinese with English abstract).
Zeng Fanhu, Chen Gang, Li Zehai, Huang Xuequn. 2013. Technical progress for pyrolysis/upgrade of low rank coal in China[J]. Chemical Fertilizer Design, 2: 4-10(in Chinese with English abstract).
Zhai Guanghua, Duan Lijiang, Tang Shuheng, Xiao Chaohui. 2012. Experimental study on CO2-coal interactions[J]. Journal of China Coal Society, 37(5): 788-793(in Chinese with English abstract).
Zhang Ji, Wei Bo, Tian Jijun, Feng Shuo. 2015. Characteristics of coal quality and coal facies of Middle-Lower Jurrasic coal seam in large ready coalfield of the Santanghu Basin, Hami, Xinjiang[J]. Acta Geologica Sinica, 89(5): 917-930(in Chinese with English abstract).
Zhang Jing, Yu Bing, Tang Jiaxiang, Guo Yingting. 1998. Petrographic characteristics and depositional environment of Upper Permian "Bark coals" in south China[J]. Journal of China University of Mining & Technology, 27(2): 176-180(in Chinese with English abstract).
Zhang Jing, Yu Bing, Tang Jiaxiang. 1999. The petrologic characteristics and facies of coal in No. Ya-8 seam of Yining Coalfield, Xinjiang[J]. Coal Geology of China, 11(1): 30-32(in Chinese).
Zhang Qun, Chen Muqiu. 1994. Coal facies of Liliu mining area in Hedong Coalfield[J]. Coal Geology & Exploration, 1: 5-9(in Chinese).
Zhao Qi. 2012. Relationship between carboxy reactivity of coal and properties of raw coal[J]. Clean Coal Technology, 18(3): 74-77(in Chinese with English abstract).
Zhao Shihua, Song Yinuo, Zheng Heng. 2009. Study on the hydrogenation kinetics of Shenhua coal liquefaction distillation residue[J]. China Chemicals, 3: 26-28(in Chinese with English abstract).
Zhong Ningning, Chen Gongyang. 2009. Key controls of the gas and oil preferences of China's major coal-bearing sequences[J]. Petroleum Exploration and Development, 36(3): 331-338(in Chinese with English abstract).
Zhou Junhu, Fang Lei, Cheng Jun, Liu Jianzhong, Xiao Haiping, Cen Kefa. 2005. Study on pyrolysis property of Shenhua coal liquefaction residual[J]. Journal of China Coal Society, 30(3): 349-352(in Chinese with English abstract).
阿力木江·吐斯依提, 庄新国, 赵亚汶, 艾比拜尔·买买提, 潘力川. 2014. 新疆准南煤田小西沟矿区煤的煤岩学及煤相分析[J]. 新疆地质, 34(4): 525-529. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201404023.htm
陈贵锋, 罗腾. 2014. 煤炭清洁利用发展模式与科技需求[J]. 洁净煤技术, 20(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201402027.htm
陈家良. 1985. 坦桑尼亚某煤田煤岩特征对煤化学工艺性质和工业利用的影响[J]. 中国矿业学院学报, 4: 89-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198504007.htm
陈鹏. 2007. 中国煤炭性质、分类和利用[M]. 北京: 化学工业出版社, 1-679.
陈少楠. 2009. 鸡西盆地含煤地层滴道组沉积环境分析[J]. 煤炭技术, 6: 147-148. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS200906075.htm
戴和武, 马治邦. 1988. 适合直接液化的烟煤特性研究[J]. 煤炭学报, 13(2): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198802011.htm
杜芳鹏, 李聪聪, 乔军伟, 魏云迅, 张光超, 雒铮, 谭富荣. 2018. 陕北府谷矿区煤炭资源清洁利用潜势及方式探讨[J]. 煤田地质与勘探, 46(3): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201803003.htm
杜芳鹏, 雒铮, 乔军伟, 赵晓辰, 谭富荣, 李聪聪, 范琪. 2020. 宁东煤田侏罗纪煤岩、煤质特征及清洁高效利用[J]. 煤田地质与勘探, 48(2): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202002012.htm
封远汉. 1992. 广西早石炭世寺门时煤质特征[J]. 广西地质, 5(2): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199202008.htm
付黎明, 庄新国, 李建伏, 庞起发. 2011. 内蒙古早白垩世五间房含煤盆地煤层煤相分析[J]. 煤田地质与勘探, 39(3): 1-6, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201103002.htm
郭亚楠, 赵博, 解锡超, 王凤娟, 杨朔鹏, 苏育飞, 唐跃刚. 2009. 华南晚二叠世树皮煤的煤相特征及对比研究[J]. 中国煤炭地质, 21(12): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200912008.htm
韩德馨. 1964. 云南禄泥盆纪劝角质残植煤的煤岩研究[J]. 煤炭学报, 1(1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB196401006.htm
韩克明. 2014. 神华煤显微组分加氢液化性能研究[D]. 大连: 大连理工大学, 1-61.
黄文辉, 唐书恒, 唐修义, 陈萍, 赵志根, 万欢, 敖卫华, 肖秀玲, 柳佳期, Finkelman B. 2010. 西北地区侏罗纪煤的煤岩特征[J]. 煤田地质与勘探, 38(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201004002.htm
姜金华, 叶鸣. 1994. 抚顺龙凤矿煤岩特征与对比[J]. 东北煤炭技术, 2: 49-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DBMT402.014.htm
焦堃, 姚素平, 张科, 胡文瑄. 2012. 树皮煤的原子力显微镜研究[J]. 地质论评, 58(4): 775-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201204019.htm
李晶, 庄新国, 周继兵, 何云龙. 2012. 新疆准东煤田西山窑组巨厚煤层煤相特征及水进水退含煤旋回的判别[J]. 吉林大学学报(地球科学版), 42(增刊2): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2013.htm
李小彦. 2005. 神东矿区富惰质组煤的形成条件研究——惰质组分的真菌交替成因意义[J]. 煤田地质与勘探, 33(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200505000.htm
刘大永. 2004. 中国典型含煤盆地镜质组结构特征及生烃、同位素动力学研究[D]. 广州: 中国科学院广州地球化学研究所, 1-99.
刘东娜, 周安朝, 马美玲. 2011. 大同煤田白洞矿区5号煤层煤相特征[J]. 中国煤炭地质, 23(5): 1-4, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201105000.htm
刘全有, Bernhard M Krooss, 金之钧, 王毅, Jan Hollenstein, Ralf Littke, 刘文汇. 2008. 塔里木盆地煤及其显微组分超高温开放体系热模拟实验气态产物对比研究[J]. 天然气地球化学, 19(6): 748-753. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200806003.htm
刘文斌, 胡凯, 秦建中, 陆现彩, 李志明, 姚素平. 2008. 云南禄劝残植煤的有机地球化学特征及其石油地质意义[J]. 地球化学, 37(1): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801010.htm
罗腾. 2017. 低阶煤分质利用产业链和综合评价研究[J]. 煤炭经济研究, 8: 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJN201708009.htm
罗霞, 李剑, 胡国艺, 伍大茂, 李志生, 张英, 姚建军. 2003. 鄂尔多斯盆地侏罗系煤生、排油能力实验及其形成煤成油可能性探讨[J]. 石油实验地质, 25(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200301012.htm
马清义, 李娇龙, 楚英军. 2013. 嘎顺矿煤的煤岩学特征和成煤环境研究[J]. 煤炭与化工, 10: 22-25, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201310006.htm
庞起发, 庄新国, 李建伏, 付黎明, 钢特穆尔, 徐永. 2012. 内蒙古潮水盆地西部侏罗系煤的岩石学、矿物学及地球化学特征[J]. 地质科技情报, 31(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201007.htm
乔军伟, 宁树正, 秦云虎, 张宁, 李聪聪, 张建强, 魏迎春, 朱士飞, 祝铠甲. 2019. 特殊用煤研究进展及工作前景[J]. 煤田地质与勘探, 47(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201901007.htm
秦云虎, 秦勇, 李壮福, 高峰. 2006. 中国优质环保型动力煤类型划分及总体构成[J]. 能源技术与管理, 6: 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT200606035.htm
秦云虎, 李壮福, 王双美, 高峰. 2009. 华东地区液化煤资源评价指标及总体构成[J]. 中国煤炭地质, 21(6): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200906006.htm
秦云虎, 王彦君, 胡荣华, 王双美, 徐晓琴. 2017. 直接液化用煤指标体系分级探讨及应用评价[J]. 中国煤炭地质, 29(9): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201709002.htm
秦志宏, 袁新华, 宗志敏, 王永志, 张玉, 魏贤勇. 1998. 煤中致黏组分和不粘组分[J]. 煤炭转化, 21(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH803.010.htm
曲晗. 2013. 东北地区第三纪煤的煤岩学特征研究[J]. 科技创新与应用, 27: 136, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201327129.htm
权彪, 韩德馨. 1998. 云南禄劝中泥盆世含煤岩系化石生态群落[J]. 中国矿业大学学报, 27(3): 298-301. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD803.020.htm
舒新前, 王祖讷, 徐精求, 葛岭梅. 1996. 神府煤煤岩组分的结构特征及其差异[J]. 燃料化学学报, 5: 426-433. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX605.008.htm
唐书恒, 秦勇, 姜尧发. 2006. 中国洁净煤地质研究[M]. 北京: 地质出版社, 1-242.
唐跃刚, 郭亚楠, 王邵清. 2011. 中国特殊煤种——树皮煤的研究进展[J]. 中国科学基金, 3: 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201103008.htm
王爱宽, 秦勇, 兰凤娟, 杨松. 2010. 云南昭通盆地新近系褐煤地球化学特征[C]//煤层气勘探开发理论与技术, 122-127.
王德祖. 2005. 华亭矿区5号煤层煤相研究[J]. 中国地质, 17(4): 6-8, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200504002.htm
王红霞, 柳永刚, 马思弼. 2022. 甘肃景泰盆地三叠系发现大型焦煤[J]. 中国地质, 49(4): 1355-1356. http://geochina.cgs.gov.cn/geochina/article/abstract/20220426?st=search
王生维. 1986. 液化煤的煤岩学研究进展及液化煤资源的评价和预测[J]. 地质科技情报, 15(3): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198603032.htm
王双明. 1996. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京: 煤炭工业出版社, 1-437.
王延斌, 韩德馨, 毛鹤龄. 1997. 大麦地中泥盆统角质残植煤的物质组成及成因[J]. 中国矿业大学学报, 26(4): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD704.009.htm
吴春来. 2005. 煤炭液化在中国的发展前景[J]. 地学前缘, 12(3): 309-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503042.htm
相宏伟, 杨勇, 李永旺. 2014. 煤炭间接液化: 从基础到工业化[J]. 中国科学: 化学, 12: 1876-1892. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201412005.htm
忻仕河. 2005. 煤岩显微组分与CO2的气化反应特性研究[D]. 北京: 煤炭科学研究总院, 1-71.
刑军, 刘光祥, 许光泉. 1999. 先锋盆地小龙潭组巨厚煤层煤相特征[J]. 煤田地质与勘探, 27: 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT904.000.htm
杨楚鹏, 姚永坚, 李学杰, 廖泽文. 2010. 南海南部曾母盆地新生界煤系烃源岩生油条件[J]. 石油学报, 31(6): 920-926. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006008.htm
姚素平. 1996. 煤成油有机岩石学研究进展[J]. 地球科学进展, 5: 439-445. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ605.002.htm
曾凡虎, 陈钢, 李泽海, 黄学群. 2013. 我国低阶煤热解提质技术进展[J]. 化肥设计, 2: 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HFSJ201302002.htm
翟光华, 段利江, 唐书恒, 肖朝辉. 2012. 二氧化碳与煤作用机理的实验研究[J]. 煤炭学报, 37(5): 788-793. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201205015.htm
张冀, 韦波, 田继军, 冯烁. 2015. 新疆哈密三塘湖特大整装煤田中-下侏罗统煤层煤质及煤相特征[J]. 地质学报, 89(5): 917-930. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201505007.htm
张井, 唐家祥, 郑雪萍, 郭英廷. 1998. 华南晚二叠世"树皮煤"的煤岩特征及沉积环境[J]. 中国矿业大学学报, 27(2): 176-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD802.015.htm
张井, 于冰, 唐家祥. 1999. 新疆伊宁煤田Ya-8煤的煤岩特征及煤相[J]. 中国煤田地质, 11(1): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199901007.htm
张群, 陈沐秋. 1994. 河东煤田离柳矿区煤相研究[J]. 煤田地质与勘探, 1: 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT401.002.htm
赵奇. 2012. 煤对CO2的化学反应性与原煤性质的关系[J]. 洁净煤技术, 18(3): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201203022.htm
赵仕华, 宋宜诺, 郑衡. 2009. 神华煤液化蒸馏残渣加氢液化动力学研究[J]. 化工文摘, 3: 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HGWZ200903015.htm
中国煤田地质总局. 1998. 中国含煤盆地演化和聚煤规律[M]. 北京: 煤炭工业出版社, 1-186.
钟宁宁, 陈恭洋. 2009. 中国主要煤系倾气倾油性主控因素[J]. 石油勘探与开发, 36(3): 331-338. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200903012.htm
周俊虎, 方磊, 程军, 刘建忠, 肖海平, 岑可法. 2005. 神华煤液化残渣的热解特性研究[J]. 煤炭学报, 30(3): 349-352. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200503018.htm