Control of sea level changes on high-frequency sequence and sedimentary evolution of Lianglitage Formation in the Tazhong Area
-
摘要:
研究目的 碳酸盐岩地层易受海平面变化影响而发育高频层序,但是反映海平面变化的地化指标的精度不足,导致高频层序对海平面振荡的响应认识不够深入,高频海平面变化对台地边缘礁滩沉积的高频层序和沉积演化的控制尚不明确。
研究方法 论文研究选取塔里木盆地塔中地区某钻井的上奥陶统良里塔格组连续取心资料,通过密集取样开展微相分析和碳、氧同位素测试分析。
研究结果 该井良里塔格组中上部发育7种微相类型,沉积演化分析表明良里塔格组沉积中—晚期,沉积环境由潮坪向生物礁-颗粒滩再到较深水的开阔台地演化。碳、氧同位素测试显示δ13C为0.5993‰~1.6228‰(均值1.139‰),δ18O值为-8.3608‰~-5.1452‰(均值为-6.790‰);δ13C和δ18O的振荡变化与微相变化和沉积旋回对应良好。古海洋条件分析表明,良里塔格组沉积时期气候温热,礁、滩体发育层段样品的古温度值最高,代表着高的碳酸盐产率;Z值所反映的古盐度在底部潮坪沉积段最高,在高频旋回的顶部古盐度均明显减小,指示可能存在大气淡水的影响。与塔北地区南缘和巴楚地区的δ13C和δ18O存在一定差异,主要受控于沉积环境和古水深。
结论 良里塔格组中—上部存在至少3个完整的海平面升降变化周期,内部又包括至少2个次级周期;不同级别的海平面振荡主要受古气候变化驱动,并控制了高频层序的发育。海平面先缓慢上升再持续稳定或小规模振荡,是连续厚层的生物碎屑和砂屑颗粒滩沉积发育的有利条件;良里塔格组沉积晚期海平面快速上升,沉积环境向滩间洼地和较深水的开阔台地转变。在高频层序顶部海平面的小规模下降导致的早期岩溶作用是礁滩体储层质量改善的重要因素。
Abstract:This paper is the result of oil and gas exploration engineering.
Objective Carbonate strata are susceptible to sea-level changes and thus develop high-frequency sequences. However, the accuracy of geochemical indicators reflecting sea-level changes is insufficient, resulting in poor understanding about the high-frequency sea-level fluctuation. The controls of sea-level changes on the high-frequency sequence and sedimentary evolution of the platform-margin reef-shoal deposits remain unclear.
Methods Continuous core data from a well in the Upper Ordovician Lianglitage Formation in the Tarim Basin were selected for microfacies analysis, carbon and oxygen isotope analyses by densely-collected samples.
Results Seven microfacies types developed in the middle and upper part of Lianglitage Formation. The analysis of the sedimentary evolution shows that the sedimentary environment evolved from tidal flat to reef and shoal, and to deeper platform during the middle to late period of deposition. The carbon and oxygen isotope values ranges from: δ13C is 0.5993 ‰-1.6228 ‰ (average 1.139 ‰) and δ18O value is -8.3608 ‰- -5.1452 ‰ (average -6.790 ‰). The changes of the δ13C and δ18O correspond well with the evolution of microfacies and sedimentary cycles. The analysis of paleo-ocean conditions shows that the Lianglitage Formation was deposited under warm climate and the reef and shoal samples recorded high paleo-temperature, representing a high rate of carbonate production. The paleo-salinity reflected by the Z-value is high according to the samples at the bottom of the tidal flat, and it is relatively low at the top of high-frequency cycles, probably indicating the influence of meteoric water. The range of δ13C and δ18O values differ from the Tazhong area, the southern margin of Tabei area, and Bachu area, which is mainly related to the difference in environment and water depth.
Conclusions At least three cycles of sea-level change and two secondary cycles exit in the middle to upper parts of the Lianglitage Formation. Different levels of sea-level changes are mainly driven by paleoclimate changes that control the formation of high-frequency sequences. Sea level rises slowly and then continues to be stable or oscillate on a small scale, which provide a favorable condition for the deposition and development of thick-bedded bioclasts and carbonate sands. Sea level rose sharply during the late sedimentary period of the Lianglitage Formation, and the sedimentary environment turned into inter-shoal lagoons and deeper platforms. The early-stage karstification caused by the small-scale sea-level drop at the top of the high-frequency sequence is an important factor to improve the reservoir quality of reef and shoal faces.
-
图 1 塔里木盆地晚奥陶世良里塔格组沉积期岩相古地理和碳酸盐台地边缘分布(据林畅松等, 2013修改)
Figure 1.
表 1 塔中地区TZ-X井良里塔格组古温度和Z值数据
Table 1. Paleotemperature, paleo-salinity (Z value) data of the Lianglitage Formation in Well TZ-X in Tazhong area
-
Baud A, Magaritz M, Holser W T. 1989. Permian-Triassic of the Tethys: Carbon isotope studies[J]. Geologische Rundschau, 78(2): 649-677. doi: 10.1007/BF01776196
Fang Dajun, Shen Zhongyue. 2001. Phanerozoic apparent polar-wander Paths of Tarim and plate motion[J]. Journal of Zhejiang University, 28(1): 100-106(in Chinese with English abstract).
Fu Kunrong, Huang Lili, Zhu Yi, Feng Xiangyilan, Zhang Qiao, Guan Xiaoli, Gao Da. 2018. The depositional diversity between platform margin and platform interior on the Late Ordovician carbonate rimmed-platform of Tazhong area: A case study of qualitative and quantitative integrated microfacies analysis[J]. Acta Sedimentologica Sinica, 36(1): 101-109(in Chinese with English abstract).
Gao Da, Hu Mingyi, Li Anpeng, Yang Wei, Xie Wuren, Sun Chunyan. 2021. High-frequency sequence and microfacies and their impacts on favorable reservoir of the Longwangmiao Formation in the central Sichuan Basin[J]. Earth Science, 46(10): 3520-3534.
Gao Da, Lin Changsong, Hu Mingyi, Huang Lili. 2016. Using spectral gamma ray log to recognize high-frequency sequences in carbonate strata: A case study from the Lianglitage Formation from Well T1 in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 34(4): 707-715(in Chinese with English abstract).
Gao Da, Lin Changsong, Yang Haijun, Zuo Xiangxiang, Cai Zhenzhong, Liu Jingyan, Zhang Lijuan, Li Hong. 2013. Microfacies of Late Ordovician Lianglitage Formation and their control on favorable reservoir in Tazhong area[J]. Earth Science, 38(4): 819-831(in Chinese with English abstract).
Gao Zhiyong, Zhang Shuichang, Zhu Rukai, Zhang Xingyang. 2007. Sea level change and source rock heterogeneity of Lianglitag Formation in Tazhong area[J]. Acta Petrolei Sinica, 28(5): 45-50.
Han Jianfa, Sun Chonghao, Yu Hongfeng, Ji Yungang, Zhang Zhenghong, Xu Yanlong. 2011. Kinetics of reef-shoal complexes and its restriction to reservoir in Ordovician from Tazhong Ⅰ fault belt[J]. Acta Petrologica Sinica, 27(3): 845-856(in Chinese with English abstract).
Hao Yanzhen, pan Ming, Liang Bin, Zhang Qingyu, Dan Yong, Sun Chengjie. 2015. Sea-Level variation of Late Ordovician in eastern margin of Maigaiti Slope by strontium isotope ratio analysis[J]. Xinjiang Petroleum Geology, 36(2): 159-163(in Chinese with English abstract).
He Bizhu, Jiao Cunli, Wang Shenglang, Deng Guozhen, Wang gonghuai, He Xipeng. 2009. Characteristics and exploration prospect of carbonate platform margin of Late Ordovician Lianglitage Formation in the Tazhong area, Tarim Basin[J]. Acta Geologica Sinica, 83(7): 103-1046(in Chinese with English abstract).
Ji Zhansheng, Yao Jianxin, Wu Guichun, Sun Qian, Shi Qiuyuan, Li Hao, He Jifu, Zhang Shaowen. 2018. Land submerged to carbonate platform by conodonts: Paleoenvironment reconstruction of the western Gangdese in Tibet during Triassic[J]. China Geology, 1(3): 450-452.
Jia Chengzao. 1999. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 20(3): 3-9, 94(in Chinese with English abstract).
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 73(1): 27-49.
Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 28(10): 1787-1816.
Li Rufeng, Liu Benpei. 1996. Application of carbon and oxygen isotopes to carbonate sequence stratigraphy: Analysis of Maping Formation, southern Guizhou Province[J]. Earth Science——Journal of China University of Geosciences, 21(3): 29-34(in Chinese with English abstract).
Li Yucheng. 1998. The Carbon isotope cyclostratigraphic responses to sea level change in Upper Permian limestones from south China[J]. Acta Sedimentologica Sinica, 16(3): 52-53, 55-57(in Chinese with English abstract).
Liang Wenjun, Xiao Chuantao, Xiao Kai, Lin wan. 2015. The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet[J]. Geology in China, 42(4): 1079-1091(in Chinese with English abstract).
Lin Changsong, Yang Haijun, Cai Zhenzhong, Yu Bingsong, Chen Jianqiang, Li Hao, Rui Zhifeng. 2013. Evolution of depositional architecture of the Ordovician carbonate platform in the Tarim Basin and its response to basin processes[J]. Acta Sedimentologica Sinica, 31(5): 907-919(in Chinese with English abstract).
Lin Changsong, Yang Haijun, Liu Jingyan, Cai Zhenzhong, Peng Li, Yang Xiaofa, Yang Yongheng. 2009. Paleostructural geomorphology of the Paleozoic central uplift belt and its constraint on the development of depositional facies in the Tarim Basin[J]. Science in China (Series D): Earth Sciences, 39(3): 306-316.
Liu Cunge, Liu Yongli, Luo Mingxia, Shao Xiaoming, Luo Peng, Zhang Zhili. 2016. Fluctuation characteristics and correlation of carbon isotope in Ordovician, Tarim Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 43(2): 241-248(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=669118700
Liu Jiaqing, Li Zhong, Han Yinxue, Peng Shoutao. 2010. Early diagenesis in high-frequency sequence framework of the Upper Ordovician carbonate platform in Tazhong, Tarim Basin and its influence on reservoir distribution[J]. Acta Petrologica Sinica, 26(12): 3629-3640(in Chinese with English abstract).
Liu Jiaqing, Li Zhong, Huang juncuo, Han Yinxue, Peng Haijun. 2012. Distinct sedimentary environments and their influences on carbonate reservoir evolution of the Lianglitage Formation in the Tarim Basin, northwest China[J]. Science in China: Earth Sciences, 42(12): 1802-1816.
Luo Beiwei, Wei Guoqi, Yang Wei, Dong Caiyuan. 2013. Reconstruction of the Late Sinian paleo-ocean environment in Sichuan Basin and its geological significance[J]. Geology in China, 40(4): 1099-1111(in Chinese with English abstract).
Luo Ping, Zhang Jing, Liu Wei, Song Jinmin, Zhou Gang, Sun Ping, Wang Daochuan. 2008. Characteristics of marine carbonate hydrocarbon reservoirs in China[J]. Earth Science Frontiers, 15(1): 36-50(in Chinese with English abstract).
Ma Debo, Li Honghui, Cui Wenjuan, Li Tingting, Zhu Wenping. 2019. Segments of the platform margin of Lianglitage Formation, Upper Ordovician in Tabei Uplift, Tarim Basin, and its geological significance[J]. Oil Geophysical Prospecting, 54(1): 198-207, 12-13(in Chinese with English abstract).
Niu Jun, Huang Wenhui, Wang Xin. 2016. Carbonate petrological characteristics and sedimentary environment of the Upper Ordovician in Bachu area, Tarim Basin[J]. Journal of Palaeogeography, 18(2): 207-219(in Chinese with English abstract).
Qin Peng, Hu Zhonggui, Wu Siyue, Zuo Mingtao, Han Lu. 2018. Vertical heterogeneity and formation mechanism of the platform edge reef and bank reservoir in Changxing Formation of eastern Sichuan Basin[J]. Journal of Petrology and Mineralogy, 37(1): 61-74.
Qing H, Veizer J. 1994. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 58(20): 4429-4442. doi: 10.1016/0016-7037(94)90345-X
Qu Haizhou, Wang Zhenyu, Yang Haijun, Zhang Yunfeng, Yu Hongfeng, Wang Xi. 2013. Karstification of reef-bank facies carbonate rock and its control on pore distribution: A case study of Upper Ordovician Lianglitage Formation in eastern Tazhong area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 40(5): 552-558(in Chinese with English abstract).
Qu Haizhou, Wang Zhenyu, Zhang Zhenghong, Zhang Yunfeng, Yu Hongfeng, Zheng Jian. 2014. Characteristics and evdution of sedimentary facies in the rimmed platform, Upper Ordovician, Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 32(5): 823-831(in Chinese with English abstract).
Ren Dawei, Jiang Wei, Gao Da, Du Liu, Luo Xianfu. 2018. Control of sedimentary facies and high-frequency sequences on the reservoir of Longwangmiao Formation in Moxi area, Central Sichuan Basin[J]. Geology and resources, 27(1): 77-82.
Rong Hui, Jiao Yangquan, Wu Liqun, Li Rong, Wang Rui, Lu Chao, Lu Lin. 2010. Oolitic shoal composition and its implication of Feixianguan Formation in Yudongzi section of Erlangmiao, Jiangyou, Sichuan, China[J]. Journal of China University of Ggeosciences, 35(1): 125-136. doi: 10.3799/dqkx.2010.013
Shao Longyi. 1994. The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc[J]. Journal of China University of Mining & Technology, 23(1): 39-45(in Chinese with English abstract).
Wang Chuanshang, Li Zhihong, Peng Zhongqin, Wang Baozhong, Zhang Guotao. 2014. The carbon isotope variation and its responses to sea level changes during the late Early Devonian period in Guizhou and Guangxi[J]. Geology in China, 41(6): 2039-2047(in Chinese with English abstract).
Yang Haijun, Liu Sheng, Li Yuping, Li Yong, Wu Guanghui, Wang Zhenyu, Chen Jingshan. 2000. Characteristics analysis of Middle-Upper Ordovician carbonate reservoir in Tazhong area[J]. Marine Origin Petroleun Geology, (Z1): 73-83(in Chinese with English abstract).
Zhang Jiangyong, Zhao Li, Li Bo, Li Xuejie, Zhong Hexian, Tian Chengjing. 2020. Carbonate cycle in sub-bottom strata in the South China Sea and the east sea area of Taiwan Island[J]. Geology in China, 47(5): 1486-1500(in Chinese with English abstract).
Zhang Lijuan, Li Yong, Zhou Chenggang, Li Meng, Han Jie, Zhang Bo. 2007. Lithofacies Paleogeographical characteristics and reef-shoal distribution during the Ordovician in the Tarim Basin[J]. Oil & Gas Geology, 28(6): 731-737(in Chinese with English abstract).
Zhang Xiulian. 1985. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Acta Sedimentologica Sinica, 3(4): 17-30(in Chinese with English abstract).
Zhang Yixuan, Bai Chenyang, Liu Yujia, Yang Hailin, Livio Ruffine, Lai Yong, Lu Hailong. 2022. Sedimentary characteristics of the northern continental slope of the Danube Canyon in the northwest of the Black Sea and its relation with paleoclimate changes[J]. Geology in China, 49(3): 880-900(in Chinese with English abstract).
Zhang Yuxi, Chen Jianwen, Zhou Jiangyu, Yuan Yong. 2019. Sedimentological sequence and depositional evolutionary model of Lower Triassic carbonate rocks in the South Yellow Sea Basin[J]. China Geology, 2(3): 301-314.
Zhao Guowei. 2013. Late Ordovician Sea-Level Changes in Bachu Area, Xinjiang: Carbon, Oxygen and Strontium Isotopic Records[D]. Changchun: Jilin University (in Chinese with English abstract).
Zhao Wenzhi, Shen Anjiang, Zhou Jingao, Wang Xiaofang, Lu Junming. 2014. Types, characteristics, origin and exploration significance of reef-shoal reservoirs: A case study of Tarim Basin, NW China and Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 41(3): 257-267(in Chinese with English abstract).
Zhao Xueqin, Yang Haijun, Ma Qing, Zhou Chenggang, sun chonghao, Yin Tiejun, Cai Quan, Sun Shiyong. 2014. Sedimentary evolution and platform development models for the Ordovician carbonate rocks in northern Tarim Basin[J]. Sedimentary Geology and Tethyan Geology, 34(2): 36-42(in Chinese with English abstract).
Zhao Zongju, Chen Xuan, Pan Mao, Wu Xingning, Zheng Xingping, Pan Wenqing. 2010. Milankovitch cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu area, Tarim Basin[J]. Acta Geologica Sinica, 84(4): 518-536(in Chinese with English abstract).
Zhao Zongju. 2015. Indicators of global sea-level change and research methods of marine tectonic sequences: Take Ordovician of Tarim Basin as an example[J]. Acta Petrolei Sinica, 36(3): 262-273(in Chinese with English abstract).
Zheng Yangdi, Cai Jinggong. 2013. Characteristics of carbon and oxygen isotopes of carbonate rocks in South Yellow Sea Basin and their implication[J]. Petroleum Geology and Experiment, 35(3): 307-313(in Chinese with English abstract).
Zuo Mingtao, Hu Zhonggui, Zhang Chunlin, Hu Mingyi, Yang Wei, Mo Wuling. 2021. Control of differential tectonic activities on carbonate reservoirs in craton basin: A case study of the subsalt reservoir of Majiagou Formation in Ordos Basin[J]. Geology in China, 48(3): 794-806(in Chinese with English abstract).
方大钧, 沈忠悦. 2001. 塔里木地块各时代视磁极及板块漂移[J]. 浙江大学学报(理学版). 28(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX200101017.htm
付坤荣, 黄理力, 祝怡, 冯翔艺蓝, 章巧, 关小丽, 高达. 2018. 塔中地区晚奥陶世碳酸盐台缘与台内沉积差异——定性和定量的碳酸盐岩微相综合分析[J]. 沉积学报, 36(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201801011.htm
高达, 胡明毅, 李安鹏, 杨威, 谢武仁, 孙春燕. 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制[J]. 地球科学, 46(10): 3520-3534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202110008.htm
高达, 林畅松, 杨海军, 左璠璠, 蔡振忠, 刘景彦, 张丽娟, 李虹. 2013. 塔中地区良里塔格组沉积微相及其对有利储层的控制[J]. 地球科学, 38(4): 819-831. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304016.htm
高达, 林畅松, 胡明毅, 黄理力. 2016. 利用自然伽马能谱测井识别碳酸盐岩高频层序——以塔里木盆地塔中地区T1井良里塔格组为例[J]. 沉积学报, 34(4): 707-715. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201604011.htm
高志勇, 张水昌, 朱如凯, 张兴阳. 2007. 塔中地区良里塔格组海平面变化与烃源岩的非均质性[J]. 石油学报, 28(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200705009.htm
韩剑发, 孙崇浩, 于红枫, 吉云刚, 张正红, 徐彦龙. 2011. 塔中Ⅰ号坡折带奥陶系礁滩复合体发育动力学及其控储机制[J]. 岩石学报, 27(3): 845-856. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103022.htm
郝彦珍, 潘明, 梁彬, 张庆玉, 淡永, 孙成杰. 2015. 依据锶同位素比值判断麦盖提斜坡东缘晚奥陶世海平面变化[J]. 新疆石油地质, 36(2): 159-163. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201502007.htm
何碧竹, 焦存礼, 王生朗, 邓国振, 汪功怀, 何希鹏. 2009. 塔里木盆地塔中地区上奥陶统近环带状台地边缘相带特征及勘探前景[J]. 地质学报, 83(7): 1039-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200907012.htm
贾承造. 1999. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 20(3): 3-9, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD903.000.htm
李儒峰, 刘本培. 1996. 碳氧同位素演化与碳酸盐岩层序地层学关系研究[J]. 地球科学——中国地质大学学报, 21(3): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX603.004.htm
李玉成. 1998. 华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应[J]. 沉积学报, 16(3): 52-53, 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB803.008.htm
梁文君, 肖传桃, 肖凯, 林婉. 2015. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质, 42(4): 1079-1091. http://geochina.cgs.gov.cn/geochina/article/abstract/20150422?st=search
林畅松, 杨海军, 蔡振中, 于炳松, 陈建强, 李浩, 芮志峰. 2013. 塔里木盆地奥陶纪碳酸盐岩台地的层序结构演化及其对盆地过程的响应[J]. 沉积学报, 31(5): 907-919. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305016.htm
林畅松, 杨海军, 刘景彦, 蔡振中, 彭莉, 阳孝法, 杨永恒. 2009. 塔里木盆地古生代中央隆起带古构造地貌及其对沉积相发育分布的制约[J]. 中国科学(D辑): 地球科学, 39(3): 306-316. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903007.htm
刘存革, 刘永立, 罗明霞, 邵小明, 罗鹏, 张智礼. 2016. 塔里木盆地奥陶纪碳同位素波动特征与对比[J]. 成都理工大学学报(自然科学版), 43(2): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201602011.htm
刘嘉庆, 李忠, 韩银学, 彭守涛. 2010. 塔里木盆地塔中上奥陶统碳酸盐台地高频层序控制的早期成岩作用及其对储层分布的影响[J]. 岩石学报, 26(12): 3629-3640. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012015.htm
刘嘉庆, 李忠, 黄君凑, 韩银学, 彭海军. 2012. 塔里木盆地良里塔格组沉积环境差异及其对碳酸盐储层发育的制约[J]. 中国科学: 地球科学, 42(12): 1802-1816. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201212004.htm
罗贝维, 魏国齐, 杨威, 董才源. 2013. 四川盆地晚震旦世古海洋环境恢复及地质意义[J]. 中国地质, 40(4): 1099-1111. http://geochina.cgs.gov.cn/geochina/article/abstract/20130409?st=search
罗平, 张静, 刘伟, 宋金民, 周刚, 孙萍, 王道串. 2008. 中国海相碳酸盐岩油气储层基本特征[J]. 地学前缘, 15(1): 36-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801005.htm
马德波, 李洪辉, 崔文娟, 李婷婷, 朱文平. 2019. 塔北地区上奥陶统良里塔格组台缘带分段性及石油地质意义[J]. 石油地球物理勘探, 54(1): 198-207, 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201901023.htm
牛君, 黄文辉, 王鑫. 2016. 塔里木盆地巴楚地区上奥陶统碳酸盐岩岩石学特征及沉积环境[J]. 古地理学报, 18(2): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201602008.htm
秦鹏, 胡忠贵, 吴嗣跃, 左洺滔, 韩露. 2018. 川东长兴组台缘礁滩相储层纵向非均质性特征及形成机制——以川东宣汉盘龙洞长兴组剖面为例[J]. 岩石矿物学杂志, 37(1): 61-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201801006.htm
屈海洲, 王振宇, 杨海军, 张云峰, 于红枫, 王茜. 2013. 礁滩相碳酸盐岩岩溶作用及其对孔隙分布的控制——以塔中东部上奥陶统良里塔格组为例[J]. 石油勘探与开发, 40(5): 552-558 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201305007.htm
屈海洲, 王振宇, 张正红, 张云峰, 于红枫, 郑剑. 2014. 塔中地区晚奥陶世镶边台地沉积演化[J]. 沉积学报, 32(5): 823-831. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201405004.htm
任大伟, 江维, 高达, 杜柳, 罗贤富. 2018. 川中磨溪地区龙王庙组沉积相与高频层序对储层的控制[J]. 地质与资源, 27(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201801010.htm
荣辉, 焦养泉, 吴立群, 李荣, 王瑞, 鲁超, 吕琳. 2010. 江油二郎庙鱼洞子剖面飞仙关组鲕粒滩内部构成[J]. 地球科学——中国地质大学学报, 35(1): 125-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001016.htm
邵龙义. 1994. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报, 23(1): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD401.005.htm
王传尚, 李志宏, 彭中勤, 王保忠, 张国涛. 2014. 黔桂地区早泥盆世晚期碳稳定同位素变化及其对海平面变化的响应[J]. 中国地质, 41(6): 2039-2047. http://geochina.cgs.gov.cn/geochina/article/abstract/20140618?st=search
杨海军, 刘胜, 李宇平, 李勇, 邬光辉, 王振宇, 陈景山. 2000. 塔中地区中-上奥陶统碳酸盐岩储集层特征分析[J]. 海相油气地质, (Z1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ2000Z1019.htm
张江勇, 赵利, 李波, 李学杰, 钟和贤, 田成静. 2020. 南海与台湾岛东部海域浅地层碳酸盐旋回[J]. 中国地质, 47(5): 1486-1500. http://geochina.cgs.gov.cn/geochina/article/abstract/20200515?st=search
张丽娟, 李勇, 周成刚, 李猛, 韩杰, 张博. 2007. 塔里木盆地奥陶纪岩相古地理特征及礁滩分布[J]. 石油与天然气地质, 28(6): 731-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706006.htm
张秀莲. 1985. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 3(4): 17-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504001.htm
张艺璇, 白辰阳, 刘宇佳, 杨海琳, Livio Ruffine, 赖勇, 卢海龙. 2022. 黑海西北部多瑙河峡谷北侧陆坡沉积特征及其与古气候的关系[J]. 中国地质, 49(3): 880-900. http://geochina.cgs.gov.cn/geochina/article/abstract/20220314?st=search
赵国伟. 2013. 新疆巴楚地区中-晚奥陶世海平面变化: 碳、氧、锶同位素记录[D]. 长春: 吉林大学.
赵文智, 沈安江, 周进高, 王小芳, 陆俊明. 2014. 礁滩储集层类型、特征、成因及勘探意义——以塔里木和四川盆地为例[J]. 石油勘探与开发, 41(3): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403004.htm
赵学钦, 杨海军, 马青, 周成刚, 孙崇浩, 尹铁君, 蔡泉, 孙仕勇. 2014. 塔北奥陶系碳酸盐岩沉积演化特征及台地发育模式[J]. 沉积与特提斯地质, 34(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201402005.htm
赵宗举, 陈轩, 潘懋, 吴兴宁, 郑兴平, 潘文庆. 2010. 塔里木盆地塔中-巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J]. 地质学报, 84(4): 518-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004008.htm
赵宗举. 2015. 全球海平面变化指标及海相构造层序研究方法——以塔里木盆地奥陶系为例[J]. 石油学报, 36(3): 262-273. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201503003.htm
郑仰帝, 蔡进功. 2013. 南黄海盆地碳酸盐岩碳氧同位素特征及意义[J]. 石油实验地质, 35(3): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201303016.htm
左洺滔, 胡忠贵, 张春林, 胡明毅, 杨威, 莫午零. 2021. 克拉通盆地差异性构造活动对碳酸盐岩储集体的控制——以鄂尔多斯盆地马家沟组盐下储层为例[J]. 中国地质, 48(3): 794-806. http://geochina.cgs.gov.cn/geochina/article/abstract/20210310?st=search