商丹洋早寒武世俯冲作用——来自甘肃关子镇蛇绿混杂岩古坡高镁安山岩的证据

毕志伟, 吴纪修, 张亚光, 王晓赛, 王强, 刘腾飞, 王文. 商丹洋早寒武世俯冲作用——来自甘肃关子镇蛇绿混杂岩古坡高镁安山岩的证据[J]. 地质通报, 2022, 41(5): 740-753. doi: 10.12097/j.issn.1671-2552.2022.05.003
引用本文: 毕志伟, 吴纪修, 张亚光, 王晓赛, 王强, 刘腾飞, 王文. 商丹洋早寒武世俯冲作用——来自甘肃关子镇蛇绿混杂岩古坡高镁安山岩的证据[J]. 地质通报, 2022, 41(5): 740-753. doi: 10.12097/j.issn.1671-2552.2022.05.003
BI Zhiwei, WU Jixiu, ZHANG Yaguang, WANG Xiaosai, WANG Qiang, LIU Tengfei, WANG Wen. Early Cambrian subduction of the Shangdan Ocean: New evidence from the Gupo high-Mg andesite in the Guanzi Town ophiolite mélanges, Gansu Province[J]. Geological Bulletin of China, 2022, 41(5): 740-753. doi: 10.12097/j.issn.1671-2552.2022.05.003
Citation: BI Zhiwei, WU Jixiu, ZHANG Yaguang, WANG Xiaosai, WANG Qiang, LIU Tengfei, WANG Wen. Early Cambrian subduction of the Shangdan Ocean: New evidence from the Gupo high-Mg andesite in the Guanzi Town ophiolite mélanges, Gansu Province[J]. Geological Bulletin of China, 2022, 41(5): 740-753. doi: 10.12097/j.issn.1671-2552.2022.05.003

商丹洋早寒武世俯冲作用——来自甘肃关子镇蛇绿混杂岩古坡高镁安山岩的证据

  • 基金项目:
    中国地质调查局项目《共和—略阳地区区域地质调查》(编号DD20190072)
详细信息
    作者简介: 毕志伟(1984-),男,高级工程师,从事区域地质矿产调查工作。E-mail: 11196363@qq.com
  • 中图分类号: P534.41;P588.14+4

Early Cambrian subduction of the Shangdan Ocean: New evidence from the Gupo high-Mg andesite in the Guanzi Town ophiolite mélanges, Gansu Province

  • 古坡一带新发现中寒武世高镁安山岩,位于秦岭造山带西段商丹缝合带关子镇蛇绿混杂岩中,其岩石组合为玄武安山岩、安山岩、辉石石英闪长岩等。这些岩石具有较高的SiO2(54.27%~58.47%)、MgO(6.89%~8.99%)含量和Mg#值(61.29~67.05),较低的TiO2(0.27%~0.99%)含量和TFeO/MgO值(0.88~1.13)。稀土元素总量较低(16.59×10-6~74.5×10-6),稀土元素配分曲线总体为平坦型或微右倾型,(La/Yb)N值为1.03~4.93,无明显Eu异常。岩石富集大离子亲石元素Cs、Rb、Ba、K、U等,亏损高场强元素Nb、Ta、Hf等,具有较低的Ti/V值。上述岩石地球化学特征与日本西南Setouchi岛弧火山岩带的sanukite(赞岐岩)类似,其岩浆可能为俯冲深积物熔融产生熔体与上覆地幔楔橄榄岩平衡反应成因。与古坡变质玄武安山岩密切共生的辉石石英闪长岩LA-ICP-MS锆石U-Pb年龄为514±4.5 Ma,为中寒武世。关子镇蛇绿混杂岩中古坡玄武安山岩/辉石石英闪长岩-安山岩岩石系列为形成于俯冲环境的高镁安山岩组合。研究结果为商丹洋在中寒武世俯冲作用提供了证据。

  • 加载中
  • 图 1  关子镇蛇绿混杂岩区域位置(a)及地质简图(b)

    Figure 1. 

    图 2  变质玄武安山岩野外(a)及镜下(b)特征

    Figure 2. 

    图 3  变质辉石石英闪长岩岩墙侵入变质玄武安山岩(a)及镜下照片(b)

    Figure 3. 

    图 4  古坡变质辉石石英闪长岩(DF5)锆石阴极发光(CL)图像及U-Pb年龄

    Figure 4. 

    图 5  古坡变质辉石石英闪长岩锆石U-Pb年龄直方图(a)和谐和图(b)

    Figure 5. 

    图 6  变质玄武安山岩-安山岩岩石化学分类判别图解

    Figure 6. 

    图 7  变质玄武安山岩-安山岩稀土元素球粒陨石标准化模式图(a)及微量元素NMORB标准化蛛网图(b)

    Figure 7. 

    图 8  古坡高镁安山岩类型(赞岐岩、玻安岩、埃达克型高镁安山岩-巴哈岩)判别图[11]

    Figure 8. 

    图 9  古坡高镁安山岩Nb/Y-Ba/Y(a)、Nb/Y-Rb/Y(b)、Th-Ba/Th(c)和Th/Yb-Sr/Nd(d)判别图解

    图 10  古坡高镁安山岩Ti-V(a,据参考文献[19, 53]修改)和Th-La /Yb(b,据参考文献[27, 54]修改)构造环境判别图解

    Figure 10. 

    表 1  关子镇蛇绿混杂岩古坡变质辉石石英闪长岩LA-ICP-MS锆石U-Th-Pb测试结果

    Table 1.  LA-ICP-MS U-Th-Pb dating of zircons from Gupo metamorphic pyroxene quartz diorite in the Guanzi Town ophiolite melange

    点号 含量/10-6 Th/U 同位数比值 年龄/Ma
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/235U 206Pb/238U
    变质安山岩岩块(DF5)
    DF5-02 1874 1832 1.0 0.1396 0.0024 1.3824 0.0316 0.0720 0.0014 0.0224 0.0010 881.4 13.5 504.5 8.7
    DF5-03 750 1279 0.6 0.0683 0.0016 0.7523 0.0130 0.0804 0.0010 0.0175 0.0012 569.6 7.5 506.6 5.8
    DF5-04 963 1256 0.8 0.0618 0.0010 0.7163 0.0099 0.0843 0.0007 0.0243 0.0009 548.5 5.9 524.9 4.4
    DF5-05 1376 2188 0.6 0.1143 0.0033 1.1700 0.0210 0.0754 0.0012 0.0257 0.0010 786.7 9.8 509.5 7.0
    DF5-06 1233 1229 1.0 0.0590 0.0008 0.6640 0.0093 0.0817 0.0006 0.0236 0.0008 517.1 5.7 507.6 3.6
    DF5-10 1363 2007 0.7 0.1099 0.0016 1.1250 0.0133 0.0744 0.0008 0.0227 0.0010 765.4 6.3 500.3 4.7
    DF5-11 2105 2128 1.0 0.1365 0.0016 1.4175 0.0167 0.0754 0.0009 0.0237 0.0010 896.3 7.0 525.1 5.1
    DF5-12 1527 1559 1.0 0.1488 0.0045 1.4343 0.0423 0.0701 0.0008 0.0191 0.0009 903.3 17.7 498.2 4.5
    DF5-13 1435 1962 0.7 0.0975 0.0012 1.0666 0.0185 0.0791 0.0008 0.0179 0.0008 737.1 9.1 520.8 4.7
    DF5-15 301 1153 0.3 0.0639 0.0009 0.7170 0.0105 0.0814 0.0006 0.0239 0.0010 548.9 6.2 509.2 3.7
    DF5-16 934 1756 0.5 0.0814 0.0016 0.9050 0.0219 0.0805 0.0008 0.0226 0.0009 654.4 11.7 517 4.6
    DF5-18 941 1729 0.5 0.0810 0.0013 0.9145 0.0187 0.0817 0.0007 0.0225 0.0009 659.5 9.9 524 4.3
    DF5-19 1527 1895 0.8 0.1062 0.0033 1.1078 0.0187 0.0774 0.0015 0.0221 0.0009 757.1 9.0 516 8.9
    DF5-20 2254 2213 1.0 0.1240 0.0014 1.3140 0.0175 0.0769 0.0008 0.0186 0.0008 851.9 7.7 526 5.0
    DF5-22 1825 1318 1.4 0.1138 0.0024 1.1945 0.0305 0.0759 0.0007 0.0194 0.0011 798.0 14.1 512.2 4.4
    DF5-23 2013 1439 1.4 0.1666 0.0025 1.6503 0.0241 0.0720 0.0008 0.0241 0.0011 989.7 9.2 522.8 4.7
    DF5-24 1906 1362 1.4 0.1496 0.0042 1.4662 0.0366 0.0714 0.0007 0.0194 0.0009 916.6 15.1 507.3 4.1
    DF5-25 491 928 0.5 0.0646 0.0011 0.7416 0.0151 0.0833 0.0009 0.0288 0.0014 563.3 8.8 520.9 5.3
    下载: 导出CSV

    表 2  关子镇蛇绿混杂岩古坡变质玄武安山岩/辉石石英闪长岩-变质安山岩主量、微量和稀土元素分析结果

    Table 2.  Major, trace element and REE analyses of the Gupo metamorphic basaltic andesite/ pyroxene quartz diorite-metamorphic andesite/diorite in the Guanzi Town ophiolite melange

    样品号 YQ013 PM01YQ01 PM01YQ02 PM01YQ03 PM01YQ04 PM03YQ8 PM03YQ9 YQ011
    岩性 变质辉石石英闪长岩 变质玄武安山岩 变质安山岩
    SiO2 54.31 54.98 54.56 54.36 54.27 58.31 58.47 57.31
    Al2O3 16.77 17.07 16.56 16.30 18.38 14.41 12.49 16.67
    TiO2 0.93 0.38 0.40 0.40 0.45 0.31 0.27 0.63
    Fe2O3 4.54 1.86 2.26 2.17 2.53 2.26 1.84 3.83
    FeO 4.02 5.90 5.91 6.11 5.67 6.12 6.23 4.07
    CaO 9.34 8.46 8.88 9.21 7.51 6.78 8.29 7.38
    MgO 7.20 8.28 8.76 8.87 7.69 8.17 8.99 6.89
    K2O 1.27 0.90 0.78 0.78 0.80 0.11 0.09 1.50
    Na2O 1.20 1.88 1.60 1.51 2.37 3.35 3.15 1.39
    MnO 0.15 0.19 0.18 0.18 0.21 0.15 0.14 0.15
    P2O5 0.29 0.11 0.10 0.10 0.11 0.05 0.04 0.20
    烧失量 3.1 2.39 2.17 2.06 2.14 0.73 0.98 3.06
    Mg# 61.29 66.08 66.25 66.22 63.31 64.12 67.05 62.06
    TFeO/MgO 1.13 0.92 0.91 0.91 1.03 1.00 0.88 1.09
    Na2O/K2O 0.94 2.08 2.04 1.94 2.97 30.42 34.27 0.92
    La 12.50 2.30 2.30 2.38 2.04 2.00 1.67 9.56
    Ce 27.90 5.74 6.06 5.75 6.74 4.72 5.16 23.00
    Pr 3.46 0.86 0.87 0.83 0.92 0.72 0.59 2.61
    Nd 14.00 4.20 4.13 3.94 4.69 3.48 2.82 10.40
    Sm 3.37 1.24 1.20 1.14 1.40 1.06 0.86 2.54
    Eu 1.10 0.38 0.38 0.38 0.48 0.36 0.32 0.70
    Gd 3.67 1.52 1.49 1.41 1.74 1.19 0.98 2.70
    Tb 0.49 0.23 0.22 0.21 0.26 0.25 0.20 0.38
    Dy 3.19 1.67 1.66 1.52 1.90 1.74 1.40 2.62
    Ho 0.62 0.34 0.34 0.32 0.40 0.39 0.30 0.53
    Er 1.86 1.04 1.06 0.98 1.24 1.13 0.88 1.73
    Tm 0.26 0.16 0.16 0.15 0.18 0.22 0.17 0.25
    Yb 1.82 1.01 1.02 0.98 1.18 1.39 1.06 1.79
    Lu 0.29 0.16 0.16 0.16 0.18 0.24 0.18 0.29
    Y 17.60 8.29 8.99 8.23 10.80 10.44 8.34 14.90
    Cs 2.30 2.96 1.24 0.85 1.52 0.48 1.66 3.40
    Rb 5.90 15.20 5.90 5.90 5.90 1.77 1.24 5.90
    Ba 176.00 53.00 46.80 56.80 36.10 28.80 13.24 247.00
    Th 4.10 0.78 0.66 0.54 0.38 0.81 0.53 4.90
    U 1.15 0.48 0.44 0.42 0.44 0.52 0.22 1.11
    Nb 12.10 3.30 3.40 3.40 3.80 1.17 0.58 9.50
    Ta 0.70 0.17 0.16 0.16 0.17 0.13 0.08 0.60
    Pb 10.10 1.80 1.74 1.58 1.64 2.37 3.39 9.50
    Sr 98.90 148.00 144.00 126.00 164.00 121.40 137.35 84.70
    P 1244.49 478.04 441.21 450.62 490.38 200.29 188.27 880.40
    Zr 85.40 29.80 27.30 25.20 35.10 345.85 57.05 89.20
    Hf 0.20 0.17 0.15 0.17 0.18 9.06 1.69 0.20
    V 214.00 208.00 216.00 230.00 226.00 195.80 182.36 159.00
    Cr 1152.00 1373.00 1808.00 1830.00 919.00 394.70 488.60 1293.00
    Ni 210.00 158.00 170.00 168.00 134.00 90.77 119.28 358.00
    LREE 62.33 14.72 14.94 14.42 16.27 12.33 11.42 48.81
    HREE 12.2 6.13 6.11 5.73 7.08 6.54 5.17 10.29
    ΣREE 74.53 20.85 21.05 20.15 23.35 18.87 16.59 59.10
    LaN/YbN 4.93 1.63 1.62 1.74 1.24 1.03 1.13 3.83
    δEu 0.96 0.85 0.87 0.92 0.94 0.98 1.06 0.82
    Sr/Y 5.62 17.85 16.02 15.31 15.19 11.63 16.47 5.68
    La/Yb 6.87 2.28 2.25 2.43 1.73 1.44 1.57 5.34
    Ti/V 27.62 17.59 19.12 18.45 18.11 9.34 8.61 26.15
    Th/La 0.33 0.34 0.29 0.23 0.19 0.40 0.32 0.51
    Th/Sm 1.22 0.63 0.55 0.47 0.27 0.76 0.61 1.93
    Th/Yb 2.25 0.77 0.65 0.55 0.32 0.58 0.50 2.74
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 3  实验HMA熔浆的MgO最低值和建议值[1, 42]

    Table 3.  The lowest value of MgO of they experimental HMA-melt and the suggested values

    元素 实验HMA的MgO最低值 建议MgO最低值
    SiO2/% 52.98 54.35 60.26 52 55 60
    MgO/% 6.58 6.00 5.77 7.0 6.0 5.7
    下载: 导出CSV
  • [1]

    邓晋福, 刘翠, 冯艳芳, 等, 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类[J]. 中国地质, 2010, 37(4): 1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025

    [2]

    Saunders A D, Rogers G, Marriner G F, et al. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas[J]. Journal of Volcanology and Geothermal Research, 1987, 32(1/3): 223-245. https://www.researchgate.net/publication/223167679_Geochemistry_of_Cenezoic_volcanic_rocks_Baja_California_Mexico_Implications_for_the_petrogenesis_of_post-subduction_magmas

    [3]

    Crawford A J, Falloon T J, Green D H. Classification, petrogenesis and tectonic setting of boninites[C]//Crawford A J. Boninites and Related Rocks. London: Unwin Hyman, 1989: 1-49.

    [4]

    Tatsumi Y, Maruyama S. Boninites and high-Mg andesites: Tectonics and petrogenesis[C]//Crawford A J. Boninites and Related Rocks. London: Unwin Hyaman, 1989: 50-71.

    [5]

    Kelemen P B. Genesis of high Mg-number andesites and the continental-crust[J]. Contributions to Mineralogy and Petrology, 1995, 120(1): 1-19. doi: 10.1007/BF00311004

    [6]

    Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective[J]. Rev. Geophys, 1995, 33(3): 267-309. doi: 10.1029/95RG01302

    [7]

    Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Rev. Geophys., 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    [8]

    Schiano P, Clocchiatti R, Shimizu N, et al. Hydrous, silica-rich melts in the sub-arcmantle and their relationship with erupted arc lavas[J]. Nature, 1995, 377(6550): 595-600. doi: 10.1038/377595a0

    [9]

    Shimoda G, Tatsumi Y, Nohda S, et al. Setouchi high-Mg andesites revisited: Geochemical evidence for melting of subducting sediments[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 479-492. https://www.sciencedirect.com/science/article/pii/S0012821X98001058

    [10]

    Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J]. Nature, 2001, 409(6819): 500-504. doi: 10.1038/35054039

    [11]

    Kamei A, Owada M, Nagao T, et al. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions[J]. Lithos, 2004, 75(3/4): 359-371. https://www.sciencedirect.com/science/article/abs/pii/S002449370400057X

    [12]

    张旗, 钱青, 翟明国, 等. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义[J]. 岩石矿物学杂志, 2005, 24(2): 117-125. doi: 10.3969/j.issn.1000-6524.2005.02.005

    [13]

    Tatsumi Y. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: Analogy to Archean magmatism and continental crust formation?[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 467-499. doi: 10.1146/annurev.earth.34.031405.125014

    [14]

    王强, 赵振华, 许继峰, 等. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义[J]. 岩石学报, 2006, 22(1): 11-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601002.htm

    [15]

    Viruete J E, Contreras F, Stein C. Magmatic relationships and ages between adakites, andesites and Nb enriched basalt-andesites from Hipaniola: record of a major change in the Caribbeanisland arc magma sources[J]. Lithos, 2007, 99(3/4): 151-177.

    [16]

    Pallares C, Maury RC, Bellon H, et al. Slabtearing following ridge-trench collision: Evidence from Miocene volcanism in Baja California, Mexico[J]. Journal of Volcanology and Geothermal Research, 2007, 161(1/2): 95-117. https://www.sciencedirect.com/science/article/pii/S0377027306003945

    [17]

    Wang Q, Wyman D, Xu J, et al. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane(Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge[J]. Contributions to Mineralogy and Petrology, 2008, 155(4): 473-490. doi: 10.1007/s00410-007-0253-1

    [18]

    唐功建, 王强. 高镁安山岩及其地球动力学意义[J]. 岩石学报, 2010, 26: 2495-2512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008022.htm

    [19]

    Ishizuka O, Tani K, Reagan M K. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue[J]. Elements, 2014, 10(2): 115-120. doi: 10.2113/gselements.10.2.115

    [20]

    邓晋福, 冯艳芳, 狄永军, 等. 岩浆弧火成岩构造组合与洋陆转换[J]. 地质论评, 2015, 61(3): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503001.htm

    [21]

    肖庆辉, 李廷栋, 潘桂棠, 等. 识别洋陆转换的岩石学思路———洋内弧与初始俯冲的识别[J]. 中国地质, 2016, 43(3): 721-737. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603003.htm

    [22]

    Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: new insights from IODP drilling[J]. International Geology Review, 2017, 59(11): 1-12. https://www.researchgate.net/publication/312477478_Subduction_initiation_and_ophiolite_crust_new_insights_from_IODP_drilling

    [23]

    王金芳, 李英杰, 李红阳, 等. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据[J]. 地质论评, 2020, 66(2): 289-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002004.htm

    [24]

    熊光强, 刘敏, 张达, 等. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005022.htm

    [25]

    陈雨, 周德进, 王二七, 等. 北祁连肃南县大岔大坂蛇绿岩中玻安岩系岩石的发现及其地球化学特征[J]. 岩石学报, 1995, 11(增): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.010.htm

    [26]

    袁超, 孙敏, 李继亮, 等. 西昆仑库地蛇绿岩的构造背景: 来自玻安岩系岩石的新证据[J]. 地球化学, 2002, 31(1): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200201006.htm

    [27]

    Tatsumi Y, Hanyu T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1081. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003GC000530

    [28]

    邱瑞照, 蔡志勇, 李金发. 青藏高原西部蛇绿岩中玻安岩(boninite)及其地质意义[J]. 现代地质, 2004, 18(3): 305-308. doi: 10.3969/j.issn.1000-8527.2004.03.006

    [29]

    史仁灯, 杨经绥, 许志琴, 等. 西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义[J]. 科学通报, 2004, 49(12): 1179-1184. doi: 10.3321/j.issn:0023-074X.2004.12.012

    [30]

    史仁灯. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 2005, 51(6): 681- 693. doi: 10.3321/j.issn:0371-5736.2005.06.010

    [31]

    Osozawa S, Shinjo R, Lo C H, et al. Geochemistry and geochronology of the troodos ophiolite: an SSZ ophiolite generated by subduction initiation and an extended episodeof ridge subduction?[J] Litho, 2012, 4(6): 497-510. doi: 10.1130/L205.1

    [32]

    Cluzel D, Ulrich M, Jourdan F, et al. Early eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of new caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc[J]. Lithos, 2016, 260: 429-442. doi: 10.1016/j.lithos.2016.04.031

    [33]

    裴先治, 丁仨平, 胡波, 等. 西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义[J]. 地质通报, 2004, 23(12): 1202-1208. doi: 10.3969/j.issn.1671-2552.2004.12.006 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2004012217&flag=1

    [34]

    裴先治, 丁仨平, 李佐臣, 等. 西秦岭北缘关子镇蛇绿岩的形成时代: 来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质学报, 2007, (11): 1550-1561. doi: 10.3321/j.issn:0001-5717.2007.11.010

    [35]

    杨钊, 董云鹏, 柳小明, 等. 西秦岭天水地区关子镇蛇绿岩锆石LA-ICP-MS U-Pb定年[J]. 地质通报, 2006, 25(11): 1321-1325. doi: 10.3969/j.issn.1671-2552.2006.11.012 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2006011243&flag=1

    [36]

    李王晔, 李曙光, 裴先治, 等. 西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U-Pb年龄[J]. 岩石学报, 2007, (11): 2836-2844. doi: 10.3969/j.issn.1000-0569.2007.11.014

    [37]

    董云鹏, 杨钊, 张国伟, 等. 西秦岭关子镇蛇绿岩地球化学及其大地构造意义[J]. 地质学报, 2008, (9): 1186-1194. doi: 10.3321/j.issn:0001-5717.2008.09.004

    [38]

    吴纪修, 王文, 黄增保, 等西秦岭温泉钼矿区含钼花岗斑岩锆石U-Pb年龄、Hf同位素组成及岩浆物质来源讨论[J]. 中国地质, 2021, 48(5): 1596-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202105022.htm

    [39]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    [40]

    赵振华. 微量元素地球化学原理(第二版)[M]. 北京: 科学出版社, 2016.

    [41]

    Tatsumi Y. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan[J]. Geology, 2001, 29(4): 323-326. doi: 10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2

    [42]

    Defant M J, Drummond M S. Derivation of some morden arc magmas by of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0

    [43]

    Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochem-ical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geo-logical Society of America Bulletin, 2011, 123: 387-411. doi: 10.1130/B30446.1

    [44]

    Dilek Y, Furnes H. Ophiolites and Their Origins[J]. Elements, 2014, 10: 93-100. doi: 10.2113/gselements.10.2.93

    [45]

    张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1): 1-12. doi: 10.3969/j.issn.1671-2552.2012.01.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120101&flag=1

    [46]

    裴先治, 李勇, 陆松年, 等. 西秦岭天水地区关子镇中基性岩浆杂岩体锆石U-Pb年龄及其地质意义[J]. 地质通报, 2005, 24(1): 23-29. doi: 10.3969/j.issn.1671-2552.2005.01.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20050104&flag=1

    [47]

    董云鹏, 张国伟, 杨钊, 等. 西秦岭武山E-MORB型蛇绿岩及相关火山岩地球化学[J]. 中国科学(D辑), 2007, (S1): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1022.htm

    [48]

    邱家骧. 国际地科联火成岩分类学分委会推荐的火山岩分类简介[J]. 现代地质, 1991, 5(4): 457-468. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199104012.htm

    [49]

    Ross P S, BédardJ H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams[J]. Canadian Journal of Earth Sciences, 2009, 46(11): 823-839. doi: 10.1139/E09-054

    [50]

    Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [51]

    Zhao Z, Mo X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassicmagmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J]. Lithos, 2009, 113(1/2): 190-212. https://www.sciencedirect.com/science/article/pii/S0024493709000516

    [52]

    Zhang Y X, Li Z W, Wang W G, et al. Late Jurassic-Early Cretaceous episodic development of the BangongMeso-Tethyansubduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China[J]. Journal of Asian Earth Sciences, 2017, 135(MAR. ): 212-242.

    [53]

    Dobson P F, Blank J G, Maruyama S, et al. Petrology and geochemistry of boninite-series volcanic rocks, Chichi-Jima, Bonin islands, Japan[J]. International Geology Review, 2006, 48(8): 669-701. doi: 10.2747/0020-6814.48.8.669

    [54]

    Reagan M K, Ishizuka Osamu, Sterner R J. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): 1-17. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GC002871

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1486
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2021-01-07
修回日期:  2021-06-01
刊出日期:  2022-05-15

目录