-
摘要:
胶状黄铁矿广泛分布在多种地质体中, 对其成分标型进行深入研究可以获得大量成因信息。通过分析胶状黄铁矿的矿物形态、晶体结构, 并利用Fe-S、Co-Ni、S-Se、Se-Te和δ34S图解, 对胶状黄铁矿的组成特征进行对比研究, 可以有效区分其成因类型。沉积成因的胶状黄铁矿多呈球形、椭球状和团块状的聚合形态, Co/Ni<l, S/Se>2.5×104, Se/Te<0.45, δ34S值变化范围较宽(-13‰~+13‰), 显微镜下常具有鲕粒替代的假象结构。热液成因的胶状黄铁矿多呈不规则的脉状, 微观结构常具有一定的定向性, 1<Co/Ni<5, S/Se<2.5×104, Se/Te>0.45, 其中岩浆热液成因的胶状黄铁矿Co/Ni、S/Se和Se/Te均高于变质热液成因, δ34S值范围较窄, 通常集中于0~5‰。沉积成因的胶状黄铁矿成核和晚期环带生长的过程主要发生在厌氧的早期成岩阶段, 在硫酸盐还原菌的作用下结晶出纳米粒级的微晶黄铁矿, H2S存在的厌氧环境中, Cu、Zn、Mo等金属元素以硫化物固溶体的形式进入结晶的纳米级黄铁矿颗粒而富集。而热液成因的胶状黄铁矿可作为一种载体矿物, Au、As等元素按层状-岛状生长模型赋存在胶状黄铁矿的生长环带中; 中低温条件下可相变为磁黄铁矿等矿物, 进一步促进Cu等元素沉淀。
Abstract:Colloform pyrite is widely distributed in various geological bodies and the genetic information can be obtained by in-depth study of its classification type.By comparing and analyzing the morphology, the internal structure and geochemical features, the hydrothermal and sedimentary colloform pyrite can be effectively distinguished.In combination with the mapping method of Fe-S, Co-Ni, S-Se, Se-Te and sulfur isotope mapping proposed in this paper, the trace characteristics of colloform pyrite of various genetic types were compared.The colloform pyrite of sedimentary origin is mostly spherical, ellipsoidal and agglomerated, with Co/Ni < l, S/Se > 2.5×104, Se/Te < 0.45, and a wide-ranging δ34S ratio(-13‰~+13‰).Under the microscope, mineral isomorphism of clay are often observed.The colloform pyrite of hydrothermal origin mostly occurs as irregular veins and has a certain orientation, with 1 < Co/Ni < 5, lower S/Se ratio(< 2.5×104), and the Se/Te ratio more than 0.45, as well as a narrow range of 34S ratio(0~ 5‰).Among them, the colloform pyrite Co/Ni, S/Se and Se/Te of magmatic hydrothermal origin are all higher than the metamorphic hydrothermal origin.The nucleated and growing process of sedimentary colloform pyrite origin is under the anaerobic condition.In the bacterial sulfate reduction zone with the H2S, metal elements such as Cu, Zn and Mo are enriched in the crystalline nano-sized pyrite particles in the form of sulfide melt.The colloform pyrite of hydrothermal origin can be used as a mineral carrier.Au, As and other elements occur in the zone of colloform pyrite as a consequence of heteroepitaxial Stranski-Krastanov growth.The mineralogical phase can be changed into pyrrhotite under the lower temperature, which promotes the precipitation of copper.
-
图 2 不同成因胶状黄铁矿硫同位素特征值与不同岩性硫同位素值对比(数据来源同图 1)
Figure 2.
图 4 胶体黄铁矿反射光(a)、拉曼图像(b)和激光消融ICP-MS组成图(c)(利用炭质物质、石英的1660 cm-1(G峰) 和463 cm-1特征光谱位置生成二维强度拉曼图像;注意银屑夹杂物的存在(方框所示)[30])
Figure 4.
表 1 胶状黄铁矿在不同地区的产状及成因类型
Table 1. Occurrence and genetic types of colloform pyrite in different areas
成因类型 矿床类型 产地 胶状黄铁矿特征 资料来源 沉积成因 古沉积岩 南非太古界威特沃特斯兰德盆地中砾岩 形状近球形,直径1~5 mm;同心环、胶状、放射状结构,裂隙较多;含有石英、白云母等杂质 [12, 30] 美国东部上泥盆统黑色页岩 鲕粒结构,并有黄铁矿化皮壳;被粗晶黄铁矿生长胶结;含铁粘土矿物纹层 [19] 加拿大萨斯克切温省奥陶纪温尼伯组中前海砂岩 鲕粒结构,直径0.2~10 m,存在黄铁矿和白铁矿的交替纹层 [20] 新西兰南部古近系—新近系砂金矿 胶状、羽状结构;核部为黄铁矿微球粒,外围为大量多圈层同心环放射状白铁矿 [31] SEDEX矿床 澳大利亚新南威尔士州布罗肯希尔型型矿床 同心环带状结构;层间夹杂有铁氧化物 [29] MVT铅锌矿 美国密苏里州东南部Casteel矿床 胶状或同心环状结构;黄铜矿通过放射状裂隙贯穿颗粒 [16] 热液成因 矽卡岩型矿床 铜陵上泥盆统层状铜-金矿床 胶状结构,共中心分布,呈脉状分布 [32] VMS矿床 土耳其东北部上白垩统VMS矿床 胶状结构,具有同心生长纹;黄铁矿部分替代黄铜矿和闪锌矿 [24] 新布伦维克省卢维考VMS矿床 环状、胶状结构;黄铁矿存在重结晶现象,并被黝铜矿、方铅矿,或少量的黄铜矿替代 [16] 俄罗斯南乌拉尔志留系Yaman-Kasy VMS矿床 层状或球状结构;黄铁矿存在破碎、重结晶的现象;局部被黄铜矿替代 [23] 塞尔维亚CokaMarinpolymetallic矿床 结构由似胶状的核部和韵律环状的外围组成,外层黄铜矿微粒 [33] (VMS)-SEDEX矿床 南阿拉斯加州Greens Crack多金属硫化物矿床 黄铁矿层不连续, 核部黄铁矿结晶较好,外围呈拉长状结晶,垂直于环带方向 [2] 斑岩-浅成低温矿床 阿根廷Agua Rica斑岩-高硫低温矿床 同心环状、胶状结构;核部富钴;核部存在金红石和黄铜矿杂质 [34] 现代海底热液硫化物矿床 海底块状硫化物,帕纳雷阿岛 纹理呈放射状和似针状结构;白铁矿被明矾石和蛋白石包裹 [35] 表 2 不同成因的胶状黄铁矿矿物学特征
Table 2. Mineralogical characteristics of colloform pyrite with different origins
技术 沉积成因 热液成因 SEM 纳米级黄铁矿微晶黄铁矿紧密聚合,带有伊利石等粘土颗粒和有机质复合颗粒 纳米级黄铁矿微晶黄铁矿松散堆积,常与自然金、黄铜矿、菱铁矿等颗粒共生 TEM 多数片状,少量呈他形粒状 粒状,排布呈定向性 EDS Si、O、Al、K、C、Mg等 Fe、O、C、Au、S等 表 3 不同成因胶状黄铁矿主量和微量平均质量分数[45]
Table 3. Geochemistry parameters of colloform pyrite from different areas and of different origins
成因 类型 Fe/% S/% Co/10-6 Ni/10-6 Te/10-6 Se/10-6 AVG S.D. AVG S.D. AVG S.D. AVG S.D. AVG S.D. AVG S.D. 沉积成因 古沉积岩型 46.9 1.07 52.67 0.51 15.53 5.83 133.7 22.9 28.9 24.5 8.4 1.7 SEDEX 47.16 0.84 53.31 0.93 15.59 4.66 128.8 5.1 19.59 15.1 4.8 3.1 MVT 46.1 0.42 53.3 0.73 14.7 6.3 127.3 6.4 22.9 7.3 9.2 2.0 热液成因 火山热液型 46.24 0.54 52.85 0.58 233.0 274.6 78.9 63.4 68.1 90.4 40.0 69.9 次火山热液型 46.54 0.50 52.57 0.67 628.8 399.9 428 1630 -- -- 240 165 岩浆热液型 46.35 0.99 52.74 1.23 587.3 623.1 294.8 659.4 177.3 530.5 84.5 254.9 变质热液型 46.82 0.86 52.69 0.74 58.8 73.8 130.0 116.0 5.4 1.7 4.5 3.9 卡林型 45.09 1.70 51.25 2.99 603.3 836.6 902.0 1699 30.3 81.9 65.5 245.1 表 4 不同成因的胶状黄铁矿成因类型和成矿机理
Table 4. The genetic types and metallogenic mechanism of colloform pyrite with different origins
要素 沉积成因 热液成因 环境 沉积厌氧还原环境,半封闭的大陆边缘海盆 低温浅部地下环境或热液喷口喷出的高温流体与周围海水的快速混合 来源 富含铁氧化物的沉积层溶解进入相应沉积环境,铁氧化物经过生物化学还原作用,即可成为溶解度较大的亚铁离子在厌氧环境中迁移进入海水中 Fe和S的过度饱和溶液使胶状黄铁矿成核生长率大于结晶生长率;S(单质)和O2会增加微晶黄铁矿浓度,使胶状黄铁矿环带自形微晶生长速率加快 电子供体 滨海生物质衍生的有机质 深部地质过程释放的甲烷和氢气 成矿机理 晚期H2S存在的缺氧环境下,Cu、Zn、Mo等金属元素以硫化物固溶体的形式,进入结晶的纳米级黄铁矿颗粒而富集 Au、As等金属元素按照异质外延层状-岛状生长模型生长,中温条件下可相变为磁黄铁矿等矿物,Cu等元素溶液遇到铁硫化物易反应转化为铜硫化物 典型矿床 南非太古宙威特沃特斯兰德盆地古沉积岩型锰矿、加拿大萨斯克切温省奥陶纪温尼伯组中前海砂岩型铁矿、中国伊犁盆地蒙其古尔铀矿床 阿根廷阿瓜瑞卡斑岩-高硫低温铜矿、新布伦维克省卢维考海底热液型金矿床、中国长江中下游地区黄狮涝矿床、中国贵州水银洞金矿床 -
[1] Deng J, Yang L Q, Sun Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone Belt[J]. Acta Geologica Sinica, 2003, 77(4): 537-546.
[2] Barrie C D, Boyce A J, Boyle A P. Growth controls in colloform pyrite[J]. American Mineralogist, 2009, 94(4): 415-429. doi: 10.2138/am.2009.3053
[3] Zhang Y J, Du Y P, Xu H R, et al. Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach[J]. Cryst Eng Comm, 2011, 12(11): 3658-3663.
[4] Gao S, Huang F, Gu X P, et al. Growth pattern and its indication of spheroidal nano-micro crystal aggregates of pyrite in the Baiyunpu Pb-Zn polymetallic deposit, Central Hunan[J]. Acta Geologica Sinica, 2014, 88(6): 1770-1783. doi: 10.1111/1755-6724.12343
[5] Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid, and gold- deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602. doi: 10.1016/j.oregeorev.2015.08.021
[6] Gao S, Huang F, Wang Y H, et al. A review of research progress in the genesis of colloform pyrite and its environmental indications[J]. Acta Geologica Sinica, 2016, 90(4): 1353-1369. doi: 10.1111/1755-6724.12774
[7] Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. doi: 10.2113/econgeo.111.1.105
[8] Deng J, Wang C M, Bagas L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272. doi: 10.1016/j.earscirev.2018.05.001
[9] Zhang Y, Shao Y J, Chen H Y, et al. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes[J]. Ore Geology Reviews, 2017, 88: 534-549. doi: 10.1016/j.oregeorev.2016.08.002
[10] Ohfuji H, Boyle A P, Prior D J, et al. Structure of framboidal pyrite: An electron backscatter diffraction study[J]. American Mineralogist, 2005, 90(11/12): 1693-1704.
[11] McKibben M A, Eldridge C S. Microscopic sulfur isotope variations in ore minerals from the viburnum trend, southeast Missouri; A SHRIMP study[J]. Economic Geology, 1995, 90(2): 228-245. doi: 10.2113/gsecongeo.90.2.228
[12] Koglin N, Frimmel H E, Lawrie Minter W E, et al. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 2010, 45(3): 259-280. doi: 10.1007/s00126-009-0272-0
[13] Yang L Q, Deng J, Li N, et al. Isotopic characteristics of gold deposits in the Yangshan Gold Belt, West Qinling, central China: Implications for fluid and metal sources and ore genesis[J]. Journal of Geochemical Exploration, 2016, 168: 103-118. doi: 10.1016/j.gexplo.2016.06.006
[14] Lebedev L M. Metacolloids in Endogenic Deposits[M]. New York: Plenum Press, 1967: 162-196.
[15] Freitag K, Boyle A P, Nelson E, et al. The use of electron backscatter diffraction and orientation contrast imaging as tools for sulphide textural studies: Example from the Greens Creek deposit(Alaska)[J]. Mineralium Deposita, 2004, 39(1): 103-113. doi: 10.1007/s00126-003-0386-8
[16] McClenaghan S H, Lentz D R, Beaumont-Smith C J. The gold-rich Louvicourt volcanogenic massive sulfide deposit, New Brunswick: A Kuroko analogue in the Bathurst Mining Camp[J]. Exploration and Mining Geology, 2006, 15(3/4): 127-154.
[17] Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study[J]. Geochimica et Cosmochimica Acta, 2015, 159: 16-41. doi: 10.1016/j.gca.2015.03.020
[18] Yang L Q, Deng J, Guo R P, et al. World-class Xincheng gold deposit: An example from the giant Jiaodong Gold Province[J]. Geoscience Frontiers, 2016, 7(3): 419-430. doi: 10.1016/j.gsf.2015.08.006
[19] Schieber J, Riciputi L. Pyrite ooids in Devonian black Shales record intermittent sea-level drop and shallow-water conditions[J]. Geology, 2004, 32(4): 305-308. doi: 10.1130/G20202.1
[20] Schieber J, Riciputi L. Pyrite and marcasite coated grains in the Ordovician Winnipeg Formation, Canada: An intertwined record of surface conditions, stratigraphic condensation, geochemical "Reworking, " and microbial activity[J]. Journal of Sedimentary Research, 2005, 75(5): 907-920. doi: 10.2110/jsr.2005.070
[21] Barrie C D, Boyce A J, Boyle A P, et al. On the growth of colloform textures: A case study of sphalerite from the Galmoy ore body, Ireland[J]. Journal of the Geological Society, 2009, 166(3): 563-582. doi: 10.1144/0016-76492008-080
[22] Deng J, Qiu K F, Wang Q F, et al. In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685. doi: 10.5382/econgeo.4711
[23] Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit(Southern Urals, Russia)using laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111-1141. doi: 10.2113/gsecongeo.104.8.1111
[24] Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt(NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129-149. doi: 10.1016/j.oregeorev.2014.05.006
[25] Deng J, Wang Q F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. doi: 10.1016/j.gr.2015.10.003
[26] Yuan B X, Luan W L, Tu S T, et al. One-step synthesis of pure pyrite FeS2 with different morphologies in water[J]. New Journal of Chemistry, 2015, 39(5): 3571-3577. doi: 10.1039/C4NJ02243B
[27] Zhang J, Deng J, Chen H Y, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process[J]. Gondwana Research, 2014, 26(2): 557-575. doi: 10.1016/j.gr.2013.11.003
[28] Yang L Q, Deng J, Wang Z L, et al. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 165-178. doi: 10.1016/j.oregeorev.2015.07.006
[29] Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita, 2014, 49(1): 49-74. doi: 10.1007/s00126-013-0473-4
[30] Agangi A, Hofmann A, Rollion-Bard C, et al. Gold accumulation in the Archaean Witwatersrand Basin, South Africa- Evidence from concentrically laminated pyrite[J]. Earth-Science Reviews, 2015, 140: 27-53. doi: 10.1016/j.earscirev.2014.10.009
[31] Falconer D M, Craw D, Youngson J H, et al. Gold and sulphide minerals in Tertiary quartz pebble conglomerate gold placers, Southland, New Zealand[J]. Ore Geology Reviews, 2006, 28(4): 525-545. doi: 10.1016/j.oregeorev.2005.03.009
[32] 任云生, 刘连登. 铜陵地区热液成因胶状黄铁矿及其成矿意义[J]. 矿床地质, 2006, 25(S1): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1029.htm
[33] Pacevski A, Moritz R, Kouzmanov K, et al. Texture and composition of Pb-bearing pyrite from the Coka Marin polymetallic deposit, Serbia, controlled by nanoscale inclusions[J]. Canadian Mineralogist, 2012, 50(1): 1-20. doi: 10.3749/canmin.50.1.1
[34] Franchini M, McFarlane C, Maydagán L, et al. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition[J]. Ore Geology Reviews, 2015, 66: 366-387. doi: 10.1016/j.oregeorev.2014.10.022
[35] Dekov V M, Kamenov G D, Abrasheva M D, et al. Mineralogical and geochemical investigation of seafloor massive sulfides from Panarea Platform(Aeolian Arc, Tyrrhenian Sea)[J]. Chemical Geology, 2013, 335: 136-148. doi: 10.1016/j.chemgeo.2012.10.048
[36] 徐亮, 谢巧勤, 周跃, 等. 安徽铜陵矿集区铜官山矿田胶状黄铁矿矿物学特征及其对成矿作用的制约[J]. 岩石学报, 2019, 35(12): 3721-3733. doi: 10.18654/1000-0569/2019.12.09
[37] 徐亮. 铜陵新桥矿床胶状黄铁矿成因及其纳米矿物学特性[D]. 肥工业大学硕士学位论文, 2017.
[38] 谢巧勤, 陈天虎, 范子良, 等. 铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J]. 中国科学: 地球科学, 2014, 44(12): 2665-2674. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412006.htm
[39] Deng J, Wang C M, Bagas L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8): 987-1006. doi: 10.1007/s00126-015-0584-1
[40] Li Y, Selby D, Li X H, et al. Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle-Lower Yangtze River Metallogenic Belt, China[J]. Geology, 2018, 46(5): 391-394. doi: 10.1130/G39995.1
[41] Deditius A P, Reich M, Kesler S E, et al. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 2014, 140: 644-670. doi: 10.1016/j.gca.2014.05.045
[42] Blanchard M, Alfredsson M, Brodholt J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 615-630. doi: 10.1016/j.gca.2006.10.010
[43] 张宇, 邵拥军, 周鑫, 等. 安徽铜陵新桥铜硫铁矿床胶状黄铁矿成因分析[J]. 矿床地质, 2012, 31(S1): 167-168. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1086.htm
[44] Genna D, Gaboury D. Deciphering the hydrothermal evolution of a VMS System by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod Deposits, Abitibi, Canada, and implications for exploration[J]. Economic Geology, 2015, 110(8): 2087-2108. doi: 10.2113/econgeo.110.8.2087
[45] 严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm
[46] 肖鑫, 周涛发, 范裕, 等. 安徽铜陵新桥铜硫金矿床的成因: 来自两类黄铁矿微形貌学、地球化学特征的证据[J]. 岩石学报, 2016, 32(2): 369-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602007.htm
[47] Yang L Q, Deng J, Dilek Y, et al. Structure, Geochronology, and Petrogenesis of the Late Triassic Puziba Granitoid Dikes in the Mianlue Suture Zone, Qinling Orogen, China[J]. Geological Society of America Bulletin, 2015, 127(11/12): 1831-1854.
[48] Zhang L, Weinberg R F, Yang L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441. doi: 10.5382/econgeo.4716
[49] 张宇, 邵拥军, 周鑫, 等. 安徽铜陵新桥铜硫铁矿床胶状黄铁矿主、微量元素特征[J]. 中国有色金属学报, 2013, 23(12): 3492-3502. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201312031.htm
[50] Yang L Q. Editorial for special issue "Polymetallic Metallogenic system"[J]. Minerals, 2019, 9(7): 435. doi: 10.3390/min9070435
[51] 汪在聪, 刘建明, 刘红涛, 等. 稳定同位素热液来源示踪的复杂性和多解性评述——以造山型金矿为例[J]. 岩石矿物学杂志, 2010, 29(5): 577-590. doi: 10.3969/j.issn.1000-6524.2010.05.013
[52] Deng J, Wang Q F, Santosh M, et al. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274. doi: 10.1007/s00126-019-00925-0
[53] Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita, 2014, 49(1): 49-74. doi: 10.1007/s00126-013-0473-4
[54] 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
[55] Yang L Q, Guo L N, Wang Z L, et al. Timing and mechanism of gold mineralization at the Wang'ershan gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2017, 88: 491-510. doi: 10.1016/j.oregeorev.2016.06.027
[56] Tatsuo Nozaki, Toshiro Nagase, Takayuki Ushikubo, et al. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 2021, 49(2): 222-227. doi: 10.1130/G47943.1
[57] Large R R, Danyushevsky L, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668. doi: 10.2113/gsecongeo.104.5.635
[58] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
[59] Wu Y F, Fougerouse D, Evans K, et al. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 2019, 47(7): 641-644. doi: 10.1130/G46114.1
[60] Groves D I, Santosh M, Deng J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55(2): 275-292. doi: 10.1007/s00126-019-00877-5
[61] 徐亮, 谢巧勤, 陈天虎, 等. 铜陵矿集区层状硫化物矿床成因——来自胶状黄铁矿-菱铁矿型矿石矿物学制约[J]. 地质论评, 2017, 63(6): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706009.htm
[62] Liu X T, Fike D, Li A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505: 66-75. doi: 10.1016/j.chemgeo.2018.12.014
[63] 刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001011.htm