胶西北焦家断裂带深部成矿流体包裹体特征

舒磊, 沈昆, 于学峰, 单伟, 杨德平, 宋英昕, 迟乃杰, 王秀凤. 胶西北焦家断裂带深部成矿流体包裹体特征[J]. 地质通报, 2022, 41(6): 1068-1080. doi: 10.12097/j.issn.1671-2552.2022.06.013
引用本文: 舒磊, 沈昆, 于学峰, 单伟, 杨德平, 宋英昕, 迟乃杰, 王秀凤. 胶西北焦家断裂带深部成矿流体包裹体特征[J]. 地质通报, 2022, 41(6): 1068-1080. doi: 10.12097/j.issn.1671-2552.2022.06.013
SHU Lei, SHEN Kun, YU Xuefeng, SHAN Wei, YANG Deping, SONG Yingxin, CHI Naijie, WANG Xiufeng. The study of fluid inclusions in the deep part of the Jiaojia fault zone in the northwest of Jiaodong Peninsula[J]. Geological Bulletin of China, 2022, 41(6): 1068-1080. doi: 10.12097/j.issn.1671-2552.2022.06.013
Citation: SHU Lei, SHEN Kun, YU Xuefeng, SHAN Wei, YANG Deping, SONG Yingxin, CHI Naijie, WANG Xiufeng. The study of fluid inclusions in the deep part of the Jiaojia fault zone in the northwest of Jiaodong Peninsula[J]. Geological Bulletin of China, 2022, 41(6): 1068-1080. doi: 10.12097/j.issn.1671-2552.2022.06.013

胶西北焦家断裂带深部成矿流体包裹体特征

  • 基金项目:
    国家自然科学基金项目《胶东金矿垂向迁移-沉淀的精细过程研究——以招远-莱州成矿带为例》(批准号: 4187030119)、《招平断裂带北段3千米超深部控矿构造格架与成矿机理》(批准号: 42172094)、《胶东焦家金矿田超深部流体-蚀变与金富集机理——依托于3000米科研深钻》(批准号: 41773076)和国家重点研发计划项目《蚀变岩型金矿立体地球化学探测试验示范》(编号: 2016YFC06006)
详细信息
    作者简介: 舒磊(1982-), 男, 在读硕士生, 高级工程师, 从事岩石与矿物学研究。E-mail: shuleidky@shandong.cn
    通讯作者: 沈昆(1939-), 男, 教授级高工, 从事岩石学、矿床学、流体包裹体地球化学等研究。E-mail: shenkun@sdu.edu.cn 于学峰(1962-), 男, 研究员, 从事矿产勘查及矿床学、资源评价与技术管理等研究。E-mail: xfengy@sohu.com
  • 中图分类号: P618.51

The study of fluid inclusions in the deep part of the Jiaojia fault zone in the northwest of Jiaodong Peninsula

More Information
  • 焦家断裂带是胶西北地区最重要的断裂带之一, 很多大中型金矿床沿此带分布。依托莱州市吴一村地区焦家断裂带深部的"中国岩金第一见矿深钻"钻孔岩心, 挑选了不同蚀变阶段及主断裂带上下盘不同深度的花岗岩、黄铁绢英岩和金矿石开展流体包裹体岩相学、显微测温及激光拉曼分析研究, 识别出3个成矿阶段、5个世代富含流体包裹体的石英和两大类型流体包裹体; 焦家断裂带深部金成矿流体性质为中-低盐度H2O-NaCl-CO2±CH4流体; 成矿流体来源为地幔富含成矿金属的流体与浅部下渗大气降水混合成因, 并可能有壳源变质流体的参与; 成矿流体中金主要以一价金的硫氢络合物(AuHSo)形式迁移。岩相学观察及显微测温结果表明, 主成矿阶段发生了H2O-CO2流体不混溶作用, 并导致金矿化, 发生流体不混溶的温度压力条件分别为210~260℃和150~210 MPa。中生代, 古太平洋板块向欧亚大陆的北西向俯冲, 引起胶东地区强烈的挤压变形和岩浆活动(形成玲珑花岗岩体)。随后, 在早白垩世, 构造体制从挤压向伸展转换, 导致郭家岭花岗岩的侵位、郯庐断裂带的左型走滑运动, 以及一系列NE—NNE向次级断裂形成, 为深部岩浆-热液流体的上升提供了通道。在岩浆-热液流体上升过程中与地壳中-上部循环的变质水和大气水发生混合, 最终形成金矿床。

  • 加载中
  • 图 1  胶西北焦家金矿带区域地质简图(据参考文献[25]修改)

    Figure 1. 

    图 2  焦家断裂带深部矿石

    Figure 2. 

    图 3  深钻揭示的岩性及蚀变分带(据参考文献[23]修改)

    Figure 3. 

    图 4  流体包裹体类型及特征

    Figure 4. 

    图 5  流体包裹体激光拉曼光谱

    Figure 5. 

    表 1  深钻中石英类型及特征

    Table 1.  Types and characteristics of quartz in the deep drill hole

    石英类型 成矿阶段 赋存岩石 镜下特征 流体包裹体丰度
    Q1 黑云二长花岗岩 他形、粒状、较透明 ++
    Q2 黄铁绢英岩 乳浊状、不透明或较透明 +++
    Q3 硅化岩石 乳浊状、不透明 +++
    Q4 黄铁矿裂隙、孔隙 他形、粒状、较透明 +
    Q5 碳酸盐化岩石 自形、较透明 +
    下载: 导出CSV

    表 2  不同成矿阶段C型和H型流体包裹体显微测温结果

    Table 2.  Microthermometry data of C type and H type fluid inclusions in different mineralization stages

    成矿阶段 包裹体类型 测试个数 TmCO2/℃ Tmice/℃ Tm cla/℃ ThCO2/℃ Thtot/℃ s/% ρ/(g·cm-3) p/MPa
    I成矿前 C型 32 -57.2~-56.6 5.2~6.6 14.1~24.3 292~330 6.4~8.7 0.8~1.0 150~210
    H型 12 -1.6~-0.6 160~184 1.1~2.8
    Ⅱ主成矿期 C1型 80 -58.2~-56.6 4~7.5 19.2~29.5 210~260 4.8~10.5 0.7~1.0 150~200
    C2型 30 -57.4~-56.6 6~7.8 13~28 230~330 4.3~7.4 0.7~1.0 160~210
    H1 40 -5~-0.8 130~148 1.4~7.9
    Ⅲ成矿后 H型 20 -2.1~-1 120~145 1.7~3.6
      注:TmCO2—CO2固相最后熔化温度;Tm ice—冰最后熔化温度;Tm cla—笼合物分解温度;ThCO2—CO2相均一温度;Thtot—流体包裹体完全均一温度;s—流体包裹体盐度;ρ—流体包裹体密度;p—压力
    下载: 导出CSV
  • [1]

    李广帅. 胶东焦家断裂带金矿床地质特征及成矿规律[D]. 中国地质大学(北京) 硕士学位论文, 2017.

    [2]

    宋明春, 崔书学, 周明岭, 等. 山东省焦家矿区深部超大型金矿床及其对"焦家式"金矿的启示[J]. 地质学报, 2010, 84(9) : 1349-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201009009.htm

    [3]

    Fan H R, Hu F F, Yang J H, et al. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the Jiaodong Peninsula, eastern China[C]//Zhai M G, Windley B F, Kusky T M, et al. Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia, 2007: 303-316.

    [4]

    Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: Are they unique?[J]. Geoscience Frontiers, 2014, 5(2) : 139-153. doi: 10.1016/j.gsf.2013.11.001

    [5]

    张祖青, 赖勇, 陈衍景. 山东玲珑金矿流体包裹体地球化学特征[J]. 岩石学报, 2007, 23(9) : 2207-2216. doi: 10.3969/j.issn.1000-0569.2007.09.019

    [6]

    胡芳芳, 范宏瑞, 沈昆, 等. 胶东乳山脉状金矿床成矿流体性质与演化[J]. 岩石学报, 2005, 21(5) : 1329-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505001.htm

    [7]

    胡芳芳, 范宏瑞, 于虎, 等. 胶东三甲金矿床流体包裹体特征[J]. 岩石学报, 2008, 24(9) : 2037-2044. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809012.htm

    [8]

    胡芳芳, 范宏瑞, 杨奎锋, 等. 胶东牟平邓格庄金矿床流体包裹体研究[J]. 岩石学报, 2007, 23(9) : 2155-2164. doi: 10.3969/j.issn.1000-0569.2007.09.014

    [9]

    蓝廷广, 范宏瑞, 胡芳芳, 等. 胶东石城金矿床成矿流体特征及成矿作用[J]. 岩石学报, 2010, 26(5) : 1512-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005016.htm

    [10]

    王力, 孙丰月, 王佳良. 山东金岭金矿床成矿流体地球化学特征[J]. 岩石学报, 2010, 26(12) : 3735-3744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012026.htm

    [11]

    蔡亚春, 范宏瑞, 胡芳芳, 等. 胶东胡八庄金矿成矿流体、稳定同位素及成矿时代研究[J]. 岩石学报, 2011, 27(5) : 1341-1351. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105010.htm

    [12]

    沈昆, 胡受奚, 孙景贵, 等. 山东招远大尹格庄金矿成矿流体特征[J]. 岩石学报, 2000, 16(4) : 542-550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004012.htm

    [13]

    周国发, 吕古贤, 邓军, 等. 山东三山岛金矿床流体包裹体特征及其地质意义[J]. 现代地质, 2008, (1) : 24-33. doi: 10.3969/j.issn.1000-8527.2008.01.004

    [14]

    陆丽娜, 范宏瑞, 胡芳芳, 等. 胶西北新城金矿成矿流体与矿床成因[J]. 矿床地质, 2011, 30(3) : 522-532. doi: 10.3969/j.issn.0258-7106.2011.03.014

    [15]

    薛琮一. 胶东新城金矿床成矿流体特征[D]. 中国地质大学(北京) 硕士学位论文, 2011.

    [16]

    姜晓辉, 范宏瑞, 胡芳芳, 等. 胶东三山岛金矿中深部成矿流体对比及矿床成因[J]. 岩石学报, 2011, 27(5) : 1327-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105009.htm

    [17]

    刘育, 杨立强, 郭林楠, 等. 胶东大尹格庄金矿床成矿流体组成[J]. 岩石学报, 2014, 30(9) : 2507-2517. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409005.htm

    [18]

    赵泽霖, 李俊建, 党智财, 等. 胶西北焦家金矿深部成矿流体性质及成矿作用[J]. 地质论评, 2020, 66(2) : 425-438. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002015.htm

    [19]

    Roedder E. Fluid Inclusions[M]. Mineralogical Society of America, Reviews in Mineralogy, 1984.

    [20]

    Goldstein R H. Systematics of Fluid Inclusions in Diagenetic Minerals[M]. SEPM, 1994.

    [21]

    Kerkhof A M V D, Hein U F. Fluid inclusion petrography[J]. Lithos, 2001, 55(1) : 27-47.

    [22]

    Chi G, Diamond L W, Lu H, et al. Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion[J]. Minerals, 2020, 11(1) : 1-23. doi: 10.3390/min11010001

    [23]

    于学峰, 杨德平, 李大鹏, 等. 胶东焦家金矿带3000m深部成矿特征及其地质意义[J]. 岩石学报, 2019, 35(9) : 2893-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909018.htm

    [24]

    迟乃杰, 韩作振, 单伟, 等. 胶西北焦家断裂带深部载金黄铁矿标型特征研究及其地质意义[J]. 地球学报, 2020, 41(6) : 949-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006020.htm

    [25]

    杨德平, 于学峰, 王林钢, 等. 山东省莱州曲家金矿区原生晕立体地球化学模型及对元素迁移和深部找矿的启示[J]. 地球学报, 2020, 41(6) : 899-918. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006017.htm

    [26]

    吕古贤. 胶东玲珑-焦家式金矿床矿源岩系(序) 列研究[J]. 地质地球化学, 2001, 29(3) : 140-143. doi: 10.3969/j.issn.1672-9250.2001.03.025

    [27]

    陈衍景, Pirajno F, 赖勇, 等. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 2004, 20(4) : 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm

    [28]

    吕古贤, 郭涛, 舒斌, 等. 胶东金矿集中区构造控岩控矿地质特征研究[J]. 地球学报, 2006, 27(5) : 471-478. doi: 10.3321/j.issn:1006-3021.2006.05.009

    [29]

    姚晓峰, 程志中, 杜泽忠, 等. 胶西北地区谢家沟金矿岩脉U-Pb年龄及其对成矿时限的制约[J]. 地质通报, 2020, 39(8) : 1153-1162. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200803&flag=1

    [30]

    Tang J, Zheng Y F, Wu Y B, et al. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen[J]. Precambrian Research, 2007, 152(1/2) : 48-82.

    [31]

    Tang J, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J]. Precambrian Research, 2008, 161(3/4) : 389-418.

    [32]

    Zhai M, Santosh M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth[J]. Gondwana Research, 2013, 24(1) : 275-297. doi: 10.1016/j.gr.2013.02.007

    [33]

    Deng J, Liu X, Wang Q, et al. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686. doi: 10.1016/j.oregeorev.2014.04.018

    [34]

    Yang K F, Fan H R, Santosh M, et al. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J]. Lithos, 2012, 146/147: 112-127. doi: 10.1016/j.lithos.2012.04.035

    [35]

    杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9) : 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm

    [36]

    宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2) : 215-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002002.htm

    [37]

    苗来成, 罗镇宽, 关康, 等. 胶东招掖金矿带控矿断裂演化规律[J]. 地质找矿论丛, 1997, (1) : 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK199701003.htm

    [38]

    李厚民, 沈远超, 毛景文, 等. 石英、黄铁矿及其包裹体的稀土元素特征——以胶东焦家式金矿为例[J]. 岩石学报, 2003, 19(2) : 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200302007.htm

    [39]

    汪劲草, 夏斌, 汤静如. 对玲珑-焦家矿集区几个关键地质问题的认识[J]. 大地构造与成矿学, 2003, (2) : 147-151. doi: 10.3969/j.issn.1001-1552.2003.02.007

    [40]

    李俊建, 罗镇宽, 刘晓阳, 等. 胶东中生代花岗岩及大型_超大型金矿床形成的地球动力学环境[J]. 矿床地质, 2005, 24(4) : 361-372. doi: 10.3969/j.issn.0258-7106.2005.04.002

    [41]

    宋明春, 王化江, 崔书学, 等. 胶西北主要成矿带深部金矿床与浅部金矿的关系[J]. 矿床地质, 2010, 29(S1) : 989-990. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1495.htm

    [42]

    Touret J L R. Fluids in metamorphic rocks[J]. Lithos, 2001, 55(1) : 1-25.

    [43]

    Shu L, Shen K, Yang R, et al. SEM-CL Study of Quartz Containing Fluid Inclusions in Wangjiazhuang Porphyry Copper(-Molybdenum) Deposit, Western Shandong, China[J]. Journal of Earth Science, 2020, 31(2) : 330-341. doi: 10.1007/s12583-019-1025-3

    [44]

    沈昆, 舒磊, 刘鹏瑞, 等. 山东邹平王家庄铜(钼) 矿床蚀变围岩中含云母流体包裹体的成因及其意义[J]. 岩石学报, 2018, 34(12) : 3509-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812004.htm

    [45]

    卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011, 27(5) : 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105002.htm

    [46]

    Li X H, Klyukin Y I, Steele-Macinnis M, et al. Phase equilibria, thermodynamic properties, and solubility of quartz in saline-aqueous-carbonic fluids: Application to orogenic and intrusion-related gold deposits[J]. Geochimica et Cosmochimica Acta, 2020, 283: 201-221. doi: 10.1016/j.gca.2020.06.008

    [47]

    范宏瑞, 胡芳芳, 杨进辉, 等. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 2005, 21(5) : 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm

    [48]

    Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-Nacl solutions[J]. Pergamon, 1993, 57(3) : 683-684.

    [49]

    Collins P L F. Gas hydrates in CO2 -bearing fluid inclusions and the use of freezing data for estimation of salinity[J]. Economic Geology, 1979, 74(6) : 1435-1444. doi: 10.2113/gsecongeo.74.6.1435

    [50]

    Bakker R J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties[J]. Chemical Geology, 2003, 194(1/3) : 1-23.

    [51]

    文博杰, 范宏瑞, 胡芳芳, 等. 胶西北三山岛伟晶岩型脉状钼矿化成因及对胶东钼成矿的指示意义[J]. 岩石学报, 2015, 31(4) : 1002-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504009.htm

    [52]

    Hall D L, Bodnar R J. Methane in fluid inclusions from granulites: A product of hydrogen diffusion?[J]. Pergamon, 1990, 54(3) : 641-651.

    [53]

    Ridley J, Hagemann S G. Interpretation of post-entrapment fluid-inclusion re-equilibration at the Three Mile Hill, Marvel Loch and Griffins Find high-temperature lode-gold deposits, Yilgarn Craton, Western Australia[J]. Chemical Geology, 1999, 154(1) : 257-278.

    [54]

    Gammons C H, Yu Y, Williams-Jones A E. The disproportionation of gold(I) chloride complexes at 25 to 200℃[J]. Geochimica et Cosmochimica Acta, 1997, 61(10) : 1971-1983. doi: 10.1016/S0016-7037(97)00060-4

    [55]

    朱永峰, 安芳. 热液成矿作用地球化学: 以金矿为例[J]. 地学前缘, 2010, 17(2) : 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002011.htm

    [56]

    Yang L Q, Deng J, Wang Z L, et al. Relationships Between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment[M]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2016: 105-126.

    [57]

    Buchholz P, Oberthur T, Luders V, et al. Multistage Au-As-Sb Mineralization and Crustal-Scale Fluid Evolution in the Kwekwe District, Midlands Greenstone Belt, Zimbabwe: A Combined Geochemical, Mineralogical, Stable Isotope, and Fluid Inclusion Study[J]. Economic Geology, 2007, 102(3) : 347-378. doi: 10.2113/gsecongeo.102.3.347

    [58]

    Helgeson H C, Garrels R M. Hydrothermal transport and deposition of gold[J]. Economic Geology, 1968, 63(6) : 622-635. doi: 10.2113/gsecongeo.63.6.622

    [59]

    Archibald S M, Migdisov A A, Williams-Jones A E. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures[J]. Geochimica et Cosmochimica Acta, 2001, 65(23) : 4413-4423. doi: 10.1016/S0016-7037(01)00730-X

    [60]

    Archibald S M, Migdisov A A, Williams-Jones A E. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures[J]. Geochimica et Cosmochimica Acta, 2002, 66(9) : 1611-1619. doi: 10.1016/S0016-7037(01)00867-5

    [61]

    Seward T M. The hydrothermal geochemistry of gold[J]. Gold Metallogeny and Exploration, 1991: 37-62.

    [62]

    Hayashi Ki, Ohmoto H. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250~350℃[J]. Pergamon, 1991, 55(8) : 2111-2126.

    [63]

    Gammons C H, Williams Jones A E. The solubility of Au-Ag alloy + AgCl in HCI/NaCI solutions at 300 ° C : New data on the stability of Au(I) chloride complexes in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1995, 59(17) : 3453-3468. doi: 10.1016/0016-7037(95)00234-Q

    [64]

    Renders P J, Seward T M. The stability of hydrosulphido-and sulphido-complexes of Au(I) and Ag(I) at 25℃[J]. Geochimica et Cosmochimica Acta, 1989, 53(2) : 245-253. doi: 10.1016/0016-7037(89)90377-3

    [65]

    Henley R W. Solubility of gold in hydrothermal chloride solutions[J]. Chemical Geology, 1973, 11(2) : 73-87. doi: 10.1016/0009-2541(73)90044-2

    [66]

    Wood S A. Raman spectroscopic determination of the speciation of ore metals in hydrothermal solutions: I. Speciation of antimony in alkaline sulfide solutions at 25℃[J]. Geochimica et Cosmochimica Acta, 1989: 237-244.

    [67]

    Zotov A V, Baranova N N, Bannykh L N. Solubility of the gold sulfides Au2S and AuAgS in solutions containing hydrogen sulfide at 25~80℃ and pressures of 1 and 500 bar[J]. Geochemistry International, 1996, 34(3) : 216-221.

    [68]

    Ogryzlo S P. Hydrothermal experiments with gold[J]. Economic Geology, 1935, 30(4) : 400-424. doi: 10.2113/gsecongeo.30.4.400

    [69]

    Seward T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973, 37(3) : 379-399. doi: 10.1016/0016-7037(73)90207-X

    [70]

    Shenberger D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350℃[J]. Geochimica et Cosmochimica Acta, 1989, 53(2) : 269-278. doi: 10.1016/0016-7037(89)90379-7

    [71]

    Pan P, Wood S A. Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions[J]. Mineralium Deposita, 1994, 29(5) : 373-390. doi: 10.1007/BF01886955

    [72]

    Zotov A V, Baranova N N, Daryina T G, et al. Solubility of gold in aqueous chloride fluids at 350-500℃, 500-1500 atm pressure and thermodynamic properties of AuCl2-(sol) up to 750℃ and 5000 atm[J]. Geolchimiya, 1990, (7) : 979-987.

    [73]

    Phillips G N, Evans K A. Role of CO2 in the formation of gold deposits[J]. Nature, 2004, 429(6994) : 860-863. doi: 10.1038/nature02644

    [74]

    Claire R, Michel P, Alain W. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: Ⅱ. Interpretation of fluid inclusion data in terms of immiscibility[J]. Chemical Geology, 1982, 37(1/2) : 1-27.

    [75]

    Nabelek P I, Ternes K. Fluid inclusions in the Harney Peak Granite, Black Hills, South Dakota, USA: Implications for solubility and evolution of magmatic volatiles and crystallization of leucogranite magmas[J]. Geochimica et Cosmochimica Acta, 1997, 61(7) : 1447-1465. doi: 10.1016/S0016-7037(97)00006-9

    [76]

    张理刚, 陈振胜, 刘敬秀, 等. 焦家式金矿水-岩交换作用——成矿流体氢氧同位素组成研究[J]. 矿床地质, 1994, (3) : 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.000.htm

    [77]

    张理刚, 陈振胜, 刘敬秀, 等. 焦家式金矿水-岩交换作用——蚀变岩石氢氧同位素组成研究[J]. 矿床地质, 1995, (3) : 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ503.008.htm

    [78]

    王炳成, 徐金方, 郑文深, 等. 山东胶东地区某些金矿床的氩、氢、氧稳定同位素地球化学及矿床成因[J]. 贵金属地质, 1995, (1) : 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD199501003.htm

    [79]

    王炳成, 李福堂. 玲珑花岗岩的岩石学和矿物学特征[J]. 山东地质, 1985, (1) : 1-25, 115, 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI198501000.htm

    [80]

    林文蔚, 殷秀兰. 胶东金矿成矿流体同位素的地质特征[J]. 岩石矿物学杂志, 1998, (3) : 58-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW803.006.htm

    [81]

    毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, (2) : 121-128. doi: 10.3969/j.issn.0258-7106.2002.02.004

    [82]

    张连昌, 沈远超, 李厚民, 等. 胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪[J]. 岩石学报, 2002, 18(4) : 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200204014.htm

    [83]

    孙丰月, 石准立. 试论幔源C-H-O流体与大陆板内某些地质作用[J]. 地学前缘, 1995, (2) : 167-174. doi: 10.3321/j.issn:1005-2321.1995.02.020

    [84]

    刘建明, 张宏福, 孙景贵, 等. 山东幔源岩浆岩的碳-氧和锶-钕同位素地球化学研究[J]. 中国科学(D辑), 2003, (10) : 921-930. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200310001.htm

    [85]

    毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, (2) : 121-128. doi: 10.3969/j.issn.0258-7106.2002.02.004

    [86]

    毛景文, 李厚民, 王义天, 等. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J]. 地质学报, 2005, (6) : 839-857. doi: 10.3321/j.issn:0001-5717.2005.06.013

    [87]

    刘辅臣, 卢作祥, 范永香, 等. 玲珑金矿中基性脉岩与矿化关系探讨[J]. 地球科学, 1984, (4) : 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198404003.htm

    [88]

    季海章, 赵懿英, 卢冰, 等. 胶东地区煌斑岩与金矿关系初探[J]. 地质与勘探, 1992, (2) : 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199202002.htm

    [89]

    申玉科, 邓军, 徐叶兵. 煌斑岩在玲珑金矿田形成过程中的地质意义[J]. 地质与勘探, 2005, (3) : 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200503011.htm

    [90]

    宋英昕, 宋明春, 孙伟清, 等. 胶东金矿成矿时代及区域地壳演化——基性脉岩的SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质通报, 2018, 37(5) : 908-919. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180513&flag=1

    [91]

    刘燊, 胡瑞忠, 赵军红, 等. 胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究[J]. 岩石学报, 2005, 21(3) : 947-958. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503033.htm

    [92]

    Goldfarb R J, Groves D I. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. doi: 10.1016/j.lithos.2015.07.011

    [93]

    郭林楠. 胶东型金矿床成矿机理[D]. 中国地质大学(北京) 博士学位论文, 2016.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1604
  • PDF下载数:  54
  • 施引文献:  0
出版历程
收稿日期:  2021-07-15
修回日期:  2022-01-19
刊出日期:  2022-06-15

目录