Geochemistry characteristics of Paleogene-Neogene sedimentary rocks in the Lingwu area of Yinchuan Basin, Ningxia and its enlightenment for paleoenvironmental evolution
-
摘要:
沉积岩元素地球化学特征是研究古沉积环境的一种有效方法,特别适用于露头局限分布的地区。银川盆地第四系覆盖广、沉积厚度大,古近纪—新近纪沉积仅分布于盆地周边局部地区,且露头不连续,沉积环境研究较薄弱。通过对银川盆地灵武地区古近系—新近系碎屑岩主量、微量和稀土元素的系统采样分析,探讨该时期沉积物源特征、沉积环境与古气候变化。研究结果认为:①银川盆地灵武地区古近系—新近系物源以长英质火山岩为主;②古近纪—新近纪的沉积环境总体上为氧化环境,含盐度较高,气候特征以干旱炎热为主;③新近系彰恩堡组与古近系清水营组相比,氧含量相对增加,含盐度相对较低,水体相对变迁,湖盆由封闭体系逐步向开放体系过渡。该研究成果为银川盆地和宁南盆地渐新世—中新世晚期统一湖盆系统的建立提供了基础地质资料。
Abstract:Elemental geochemistry of sedimentary rocks is an effective method to study the ancient sedimentary environment, which is especially suitable for areas with restricted outcrops.Yinchuan Basin has wide Quaternary coverage with great sedimentary thickness.The Paleogene-Neogene is only distributed in some areas around the basin, with discontinuous outcrops and relatively weak research on the sedimentary environment.Through systematic sampling and analysis of the major, trace and rare earth elements of the Paleogene-Neogene clastic rocks in the Lingwu area of the Yinchuan Basin, the characteristics of sediment sources, sedimentary environment and paleoclimate changes were discussed.The results show that the Paleogene-Neogene source in the Lingwu area of the Yinchuan Basin is dominated by felsic volcanic rocks; the sedimentary environment of the Paleogene-Neogene period was generally an oxidizing environment with high salinity, and the climate was mainly dry and hot; compared with the Qingshuiying Formation, the Zhang'enpu Formation had relatively increasing oxygen content, relatively low salinity, relatively changeable water bodies, and the lake basin gradually transitioned from a closed system to an open system.The research results provide basic geological data for the establishment of an unified lake basin system in Yinchuan Basin and Ningnan Basin from Oligocene to Late Miocene.
-
表 1 灵武地区古近系—新近系样品主量元素分析结果
Table 1. Analytical results of major elements of samples from the Paleogene-Neogene strata in the Lingwu area
样品号 层位 岩性 SiO2 Al2O3 TFe2O3 TiO2 CaO MgO K2O Na2O MnO P2O5 烧失量 CIA E-01 清水营组 泥岩 46.70 12.93 4.46 0.53 9.40 2.67 2.73 0.68 0.09 0.10 15.50 71.3 E-02 清水营组 泥岩 49.88 13.70 4.67 0.59 5.31 2.70 2.74 2.37 0.16 0.14 14.30 56.0 E-03 清水营组 泥岩 49.00 13.63 4.84 0.59 5.95 2.35 2.77 2.50 0.10 0.10 13.55 54.8 E-04 清水营组 泥岩 48.28 13.52 4.93 0.61 7.85 2.64 2.70 1.68 0.12 0.11 15.31 61.5 E-05 清水营组 泥岩 48.33 12.50 4.56 0.55 7.71 3.30 2.50 0.79 0.09 0.10 14.81 70.2 N-01 彰恩堡组 泥岩 54.87 9.93 2.97 0.46 7.01 1.88 1.93 2.32 0.08 0.08 13.94 50.5 N-02 彰恩堡组 泥岩 50.36 10.32 3.45 0.57 8.94 1.71 1.79 2.02 0.11 0.10 16.14 54.6 N-03 彰恩堡组 泥岩 57.45 9.74 2.65 0.43 6.29 1.65 2.00 1.44 0.05 0.06 13.73 58.5 N-04 彰恩堡组 泥岩 43.04 17.12 7.95 0.65 6.92 3.26 3.61 1.57 0.15 0.13 12.48 65.3 N-05 彰恩堡组 泥岩 51.74 10.54 3.42 0.47 9.15 1.89 1.98 1.54 0.07 0.08 14.69 59.3 注:主量元素含量单位为%;CIA = molar[Al2O3/(Al2O3/(Al2O3+CaO*+Na2O+K2O)]*100 表 2 灵武地区古近系—新近系样品稀土元素分析结果
Table 2. Analytical results of rare earth elements of samples from the Paleogene-Neogene strata in the Lingwu area
样品号 层位 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE LREE HREE L/H δEu δCe (La/ Yb)N (La/ Sm)N (Gd/ Yb)N E-01 清水营组 泥岩 28.50 48.00 5.78 20.60 3.96 0.87 3.24 0.58 3.52 0.67 1.83 0.32 3.01 0.34 20.20 121.22 107.71 13.51 7.97 1.11 0.88 0.95 1.38 0.61 E-02 清水营组 泥岩 35.40 59.60 8.92 32.20 4.98 1.30 3.99 0.72 4.36 0.84 2.24 0.40 2.49 0.42 25.30 157.86 142.40 15.46 9.21 1.33 0.79 1.42 1.37 0.91 E-03 清水营组 泥岩 34.90 60.20 8.81 25.50 5.00 0.93 3.96 0.72 4.33 0.82 2.18 0.37 3.74 0.40 23.40 151.86 135.34 16.52 8.19 0.96 0.81 0.93 1.34 0.60 E-04 清水营组 泥岩 33.90 57.70 6.86 25.20 4.85 0.89 4.99 0.70 4.23 0.81 2.15 0.38 2.40 0.40 23.30 145.46 129.40 16.06 8.06 0.83 0.89 1.41 1.34 1.18 E-05 清水营组 泥岩 29.70 50.80 7.78 22.20 4.20 0.87 3.35 0.61 3.65 0.72 1.92 0.34 2.14 0.36 21.00 128.64 115.55 13.09 8.83 1.06 0.79 1.39 1.36 0.89 N-01 彰恩堡组 泥岩 27.70 46.90 5.67 19.70 3.71 0.92 3.08 0.54 4.23 0.60 1.65 0.28 1.77 0.30 17.00 117.05 104.60 12.45 8.40 1.25 0.88 1.57 1.44 0.98 N-02 彰恩堡组 泥岩 30.20 50.80 6.14 21.90 6.32 1.21 4.42 0.85 3.48 0.66 1.81 0.30 1.98 0.33 18.80 130.40 116.57 13.83 8.43 1.05 0.88 1.53 0.92 1.26 N-03 彰恩堡组 泥岩 22.50 38.40 4.61 20.80 3.11 0.78 2.60 0.45 2.58 0.49 1.38 0.23 1.52 0.25 14.00 99.70 90.20 9.50 9.49 1.26 0.89 1.48 1.39 0.97 N-04 彰恩堡组 泥岩 36.00 63.10 7.12 25.10 4.80 1.00 3.84 0.69 5.90 0.82 2.13 0.37 2.34 0.40 23.40 153.61 137.12 16.49 8.32 1.07 0.93 1.54 1.44 0.93 N-05 彰恩堡组 泥岩 22.20 44.90 5.52 19.50 3.73 1.11 4.02 0.55 3.16 0.62 1.66 0.28 2.90 0.30 17.30 110.45 96.96 13.49 7.19 1.31 0.96 0.77 1.14 0.78 注:稀土元素含量单位为10-6;L/H为轻、重稀土元素含量比值;下标N表示元素相对于北美页岩标准化,标准值据Gromet等[16];δEu=EuN/(SmN×GdN)1/2,δCe=CeN/(LaN×PrN)1/2 表 3 灵武地区古近系—新近系样品微量元素分析结果
Table 3. Analytical results of trace elements of samples from the Paleogene-Neogene strata in the Lingwu area
样品号 层位 岩性 Sc V Cr Ga Rb Sr Zr B Cu Pb Ni Co Ba U Th V/Cr V/(V+Ni) Ni/Co U/Th B/Ga E-01 清水营组 泥岩 19.0 33.1 61.9 14.5 98.1 189 200 88.0 22.2 18.2 30.6 8.54 392 4.64 8.37 0.54 0.52 3.59 0.55 6.05 E-02 清水营组 泥岩 14.5 29.1 67.2 14.9 102 275 212 93.7 29.3 21.2 38.1 18.4 714 3.07 12.1 0.43 0.43 2.07 0.25 6.29 E-03 清水营组 泥岩 15.2 30.9 72.9 16.0 107 157 193 120 26.7 19.1 35.7 11.1 393 2.92 12.1 0.43 0.46 3.22 0.24 7.48 E-04 清水营组 泥岩 18.0 32.1 69.3 15.7 99.1 170 192 114 27.6 18.4 35.7 11.4 324 5.33 9.57 0.46 0.47 3.13 0.56 7.28 E-05 清水营组 泥岩 17.4 32.0 65.8 14.4 93.9 238 191 158 23.2 16.6 31.3 8.87 402 4.87 8.87 0.49 0.51 3.53 0.55 10.99 N-01 彰恩堡组 泥岩 14.8 13.9 49.5 10.6 76.8 156 249 69.5 15.3 14.9 21.7 5.61 551 2.70 7.71 0.28 0.39 3.87 0.35 6.57 N-02 彰恩堡组 泥岩 16.8 7.7 57.8 11.6 72.2 301 287 81.1 16.6 14.6 25.0 8.71 458 3.30 7.95 0.13 0.23 2.87 0.42 7.00 N-03 彰恩堡组 泥岩 13.7 14.3 42.8 10.1 75.0 147 281 67.8 13.8 15.3 19.6 7.11 546 3.26 6.71 0.33 0.42 2.76 0.49 6.74 N-04 彰恩堡组 泥岩 20.2 60.6 99.1 22.0 140 195 133 163 46.5 26.4 54.4 17.3 592 4.72 11.4 0.61 0.53 3.14 0.42 7.40 N-05 彰恩堡组 泥岩 15.4 27.9 60.9 11.6 70.9 213 215 56.8 16.0 14.1 25.5 7.92 752 3.67 7.45 0.46 0.52 3.21 0.49 4.92 注:微量元素含量单位为10-6 -
[1] 刘池洋, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿) 响应[J]. 地质学报, 2006, 80(5) : 617-638. doi: 10.3321/j.issn:0001-5717.2006.05.001
[2] 刘晓波. 鄂尔多斯地块西缘新生代盆地演化[D]. 中国地质科学院博士学位论文, 2019.
[3] 房建军. 宁南盆地沉积构造演化与改造[D]. 西北大学博士学位论文, 2009.
[4] 赵岩, 刘池洋, 张东东, 等. 宁南盆地古近纪沉积岩地球化学特征对沉积环境的反映[J]. 地质科技情报, 2016, 35(5) : 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605004.htm
[5] Zhao Y, Liu C Y, Zhang D D, et al. Geochemical characteristics of Paleogene sedimentary rocks in Ningnan Basin and their implications for sedimentary environments[J]. Geological Science and Technology Information, 2016, 35(5) : 27-33.
[6] 吴小力, 李荣西, 胡健民, 等. 中国北方宁南盆地古近纪晚期咸化湖盆演化及其区域地质意义[J]. 地质学报, 2017, 91(4) : 954-967. doi: 10.3969/j.issn.0001-5717.2017.04.018
[7] 李明涛, 李黎明, 梁志荣. 宁夏同心地区古近纪—新近纪沉积岩地球化学特征及意义[J]. 矿物岩石地球化学通报, 2020, 39(2) : 304-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202002020.htm
[8] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publishers, 1985.
[9] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5) : 635-650. doi: 10.1086/629071
[10] 屈李华, 刘喜方, 赵芳, 等. 北羌塘盆地三叠系康南组砂岩地球化学特征及其对物源区和构造背景的制约[J]. 西北地质, 2018, 51(4) : 97-113. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201804012.htm
[11] 张振凯, 周瑶琪, 彭甜明, 等. 山东灵山岛莱阳群粉砂岩地球化学特征及意义[J]. 地球科学, 2017, 42(3) : 357-377. doi: 10.3969/j.issn.1672-6561.2017.03.005
[12] 陈泰一, 魏启荣, 周江羽, 等. 西藏岗巴—东亚地区永珠组沉积时代及沉积环境[J]. 地球科学, 2018, 43(8) : 2893-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808026.htm
[13] 马学东, 李明涛, 马彦云, 等. 贺兰山东北段中奥陶统克里摩里组地球化学特征及其沉积环境分析[J]. 宁夏大学学报(自然科学版), 2018, 39(2) : 160-164. doi: 10.3969/j.issn.0253-2328.2018.02.014
[14] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1) : 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm
[15] 宁夏回族自治区地质调查院. 中国区域地质志· 宁夏志[M]. 北京: 地质出版社, 2017.
[16] Gromet L P, Dymek R F, Haskin L A, et al. The "North American shale composite": Its compilatio, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12) : 2469-2482. doi: 10.1016/0016-7037(84)90298-9
[17] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885) : 715-717. doi: 10.1038/299715a0
[18] 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA) 及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, (4) : 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019
[19] Mclennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2) : 295-303.
[20] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2) : 129-147.
[21] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4) : 531-542.
[22] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19) : 4115-4137.
[23] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of majorelement data[J]. Chemical Geology, 1988, 67(1/2) : 119-139.
[24] 王晖, 阮林森, 郭建秋, 等. 四川雅江盆地三叠纪晚期沉积地球化学特征及其大地构造意义[J]. 西北地质, 2012, 45(2) : 88-98. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201202016.htm
[25] Bhatia M R. Plate tectonics and Geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6) : 611-627.
[26] 张凤博, 杨云祥. 甘肃省灵台县灵1井延长组碎屑岩地球化学特征及对源区构造的示踪性[J]. 西北地质, 2012, 45(3) : 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201203010.htm
[27] Alberdi-Genolet M. Trace metals and organic geochemistry of the Machiques Member(Aptian-Albian) and La Luna Formation(Cenomanian-Campanian), Venezuela[J]. Chemical Geology, 1999, 160: 19-38.
[28] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin(USA)[J]. Chemical Geology, 2004, 206(3) : 373-391.
[29] 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报, 1979, 7(2) : 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ197902005.htm
[30] 吴少波. 博格达山前凹陷上二叠统乌拉泊组沉积相及沉积模式[J]. 沉积学报, 2001, 19(3) : 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200103002.htm
[31] 李福来, 曲希玉, 刘立, 等. 内蒙古东北部上二叠统林西组沉积环境[J]. 沉积学报, 2009, 27(2) : 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902009.htm
[32] 张士三. 沉积岩层中镁铝含量比的研究及其应用[J]. 矿物岩石地球化学通讯, 1988, (2) : 112-113. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH198802016.htm
[33] 侯恩刚, 高金汉, 王训练, 等. 西藏改则上三叠统日干配错组碳酸盐岩地球化学特征及沉积环境意义[J]. 矿物岩石地球化学通报, 2015, 34(3) : 556-563. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201503016.htm
[34] 席胜利, 郑聪斌, 李振宏. 鄂尔多斯盆地西缘奥陶系地球化学特征及其沉积环境意义[J]. 古地理学报, 2004, 6(2) : 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200402008.htm
[35] Suttner L J, Dutta P K. Alluvial sandstone composition and paleoclimate, I. Framework Mineralogy[J]. Journal of Sedimentary Petrology, 1986, 56(3) : 329-345.
[36] Zhao Y, Liu C Y, Zhang D D, et al. Petrography and geochemistry of the Paleogene sandstones from the Ningnan Basin, NW China: Implications for provenance, weathering and tectonic setting[J]. Arabian Journal of Geosciences, 2016, 9(17) : 683.