吕梁山区马兰黄土抗剪强度参数的区域变化规律及其影响因素试验研究

洪勃, 唐亚明, 冯卫, 陈新建, 冯凡, 周永恒, 尹春旺. 2023. 吕梁山区马兰黄土抗剪强度参数的区域变化规律及其影响因素试验研究. 西北地质, 56(2): 272-282. doi: 10.12401/j.nwg.2022019
引用本文: 洪勃, 唐亚明, 冯卫, 陈新建, 冯凡, 周永恒, 尹春旺. 2023. 吕梁山区马兰黄土抗剪强度参数的区域变化规律及其影响因素试验研究. 西北地质, 56(2): 272-282. doi: 10.12401/j.nwg.2022019
HONG Bo, TANG Yaming, FENG Wei, CHEN Xinjian, FENG Fan, ZHOU Yongheng, YIN Chunwang. 2023. Regional Variation and Influencing Factors of Shear Strength Parameters of Malan Loess in Lüliang Area. Northwestern Geology, 56(2): 272-282. doi: 10.12401/j.nwg.2022019
Citation: HONG Bo, TANG Yaming, FENG Wei, CHEN Xinjian, FENG Fan, ZHOU Yongheng, YIN Chunwang. 2023. Regional Variation and Influencing Factors of Shear Strength Parameters of Malan Loess in Lüliang Area. Northwestern Geology, 56(2): 272-282. doi: 10.12401/j.nwg.2022019

吕梁山区马兰黄土抗剪强度参数的区域变化规律及其影响因素试验研究

  • 基金项目: 陕西省重点产业创新链(群)项目“基于大数据的地质灾害机理及风险评估关键技术研究与应用”(2019ZDLSF07-07-02),中国地质调查局地质调查项目“吕梁山区城镇地质灾害调查”(DD20160276)和“晋陕黄土高原河曲-韩城段灾害地质调查”(DD20190642)联合资助。
详细信息
    作者简介: 洪勃(1987−),男,工程师,博士,主要从事黄土工程地质、灾害地质调查、地质安全评价以及防灾减灾方面的研究工作。E–mail:382492004@qq.com
    通讯作者: 唐亚明(1973−),女,研究员,博士生导师,主要从事地质灾害风险评价、监测预警及其信息化方面的研究工作。E–mail:tangyaming73@suhu.com
  • 中图分类号: P642.3;P642.4

Regional Variation and Influencing Factors of Shear Strength Parameters of Malan Loess in Lüliang Area

More Information
  • 为探索吕梁山区原状马兰黄土抗剪强度参数区域上的变化规律,以该地区29个区县94个取样点的马兰黄土为研究对象,通过直剪试验及其影响因素试验,分析区内马兰黄土抗剪强度参数的空间变化规律,及其抗剪强度参数cφ与天然含水率、天然干密度、增湿含水率、含盐率等影响因素的变化规律。结果表明:在水平地域上,抗剪强度参数cφ表现为东高西低、南高北低;在垂直空间上,表现为从表层向下黏聚力逐渐增大、内摩擦角逐渐降低的趋势;吕梁山东、西两侧原状马兰黄土抗剪强度参数cφ受天然含水率、天然干密度的影响较小,离散程度较大;在天然状态条件下,随着含水率的增加,黏聚力c与增湿含水率具有良好的负指数函数关系,内摩擦角φ与增湿含水率呈负线性关系;在同一含水率条件下,含盐率与抗剪强度参数cφ具有正相关关系;与含盐率相比,增湿含水率对cφ的影响作用更为显著。该研究可为该地区马兰黄土地层的工程建设及防灾减灾工作提供基础和必备条件。

  • 加载中
  • 图 1  黄土高原及研究区范围图(a)与研究区地质图(b)

    Figure 1. 

    图 2  取样点分布图(a)、取样过程示例图(b~e)与研究区马兰黄土质地分类三角图(f)

    Figure 2. 

    图 3  西侧黏聚力统计图(a)、黏聚力IDW插值图(b)与东侧黏聚力统计图(c)

    Figure 3. 

    图 4  西侧内摩擦角统计图(a)、内摩擦角IDW插值图(b)与东侧内摩擦角统计图(c)

    Figure 4. 

    图 5  黏聚力c与取样深度的关系图

    Figure 5. 

    图 6  内摩擦角φ与取样深度的关系图

    Figure 6. 

    图 7  吕梁山区马兰黄土抗剪强度参数(cφ)与天然含水率、天然干密度的关系图

    Figure 7. 

    图 8  不同地区马兰黄土增湿含水率对抗剪强度参数cφ的关系曲线图

    Figure 8. 

    图 9  抗剪强度参数cφ与含盐率、增湿含水率的关系图

    Figure 9. 

    图 10  原状黄土cφ与含水率、含盐率的相关关系分析图

    Figure 10. 

    表 1  研究区马兰黄土物理力学指标统计结果表

    Table 1.  Statistical results of physical and mechanical indexes of Malan loess in the study area

    区域指标含水率w (%)干密度ρd(g/cm3相对
    密度Gs
    孔隙比e饱和度Sr(%)液限wL(%)塑限wP(%)塑性指数Ip(%)内摩擦角φ (°)内聚力c (kPa)
    东侧最小值2.751.262.620.717.5211.4025.728.3221.714.88
    最大值18.141.842.771.5061.4220.2046.3927.8439.4061.52
    平均值9.631.432.671.0524.6117.2731.8714.6130.7526.64
    标准差3.960.120.040.1910.851.913.894.094.1513.36
    变异系数0.41140.08200.01410.18390.44070.11030.12190.27990.13490.5016
    西侧最小值2.951.302.350.492.663.6625.616.872.550.85
    最大值19.151.882.851.2351.7528.1040.7534.1044.9788.62
    平均值9.111.482.671.0125.0017.8331.4313.6027.1322.44
    标准差2.880.110.100.258.834.152.465.019.2819.42
    变异系数0.31610.07390.03740.24690.35310.23300.07810.36840.34190.8657
      注:表中数据由长安大学地质工程与测绘学院实验中心测试完成(2016~2020年)。
    下载: 导出CSV
  • 曹晓毅, 李萍. 含水量对晋西黄土抗剪强度影响的试验[J]. 煤田地质与勘探, 2014, 42(05): 77-80+99 doi: 10.3969/j.issn.1001-1986.2014.05.015

    CAO Xiao-yi, LI Ping. Experiment study on relationship between water content and shear strength of loess in west Shanxi Province[J]. Coal Geology & Exploration, 2014, 42(05): 77-80+99. doi: 10.3969/j.issn.1001-1986.2014.05.015

    董鸾花, 李萍, 夏增选, 等. 基于参数相关的Bayes估计及在黄土边坡可靠度分析中的应用[J]. 西北地质, 2020, 53(4): 186-193

    DONG Luanhua, LI Ping, XIA Zengxuan, et al. Parameters-based Bayes Estimation and Its Application in the Reliability Analysis of Loess Slope[J]. Northwestern Geology, 2020, 53(4): 186-193

    范兴科, 蒋定生, 赵合理. 黄土高原浅层原状土抗剪强度浅析[J]. 土壤侵蚀与水土保持学报, 1997, (4): 70-76

    FAN Xing-ke, JIANG Ding-sheng, ZHAO He-li. Analysis on shear strength of shallow undisturbed soil in Loess Plateau[J]. Journal of Soil and Water Conservation, 1997, (4): 70-76.

    郭倩怡, 王友林, 谢婉丽, 等. 黄土湿陷性与土体物性指标的相关性研究[J]. 西北地质, 2021, 54(1): 212-221

    GUO Qianyi, WANG Youlin, XIE Wanli, et al. Study on Correlation between Loess Collapsibility and Soil Physical Property Index[J]. Northwestern Geology, 2021, 54(1): 212-221.

    郭晓娟. 冻融循环作用下吕梁地区马兰黄土强度参数及边坡稳定性研究[D]. 太原: 太原理工大学, 2020

    GUO Xiaojuan. Study on Slope Stability and Strengrh Parameters of Malan Loess under Freezing and Thawing Cycle in Lvliang Area[D]. Taiyuan: Taiyuan University of Technology, 2020.

    郭义龙. 吕梁地区黄土湿陷性与物理指标及结构性的研究[D]. 西安: 长安大学, 2020

    GUO Yilong. Study On Collapsibility, Physical Index And Structure Of Loess In Luliang Area[D]. Xi’an: Chang’an University, 2020.

    洪勃, 杜少少, 李喜安, 等. 泾河南塬黄土的渗透特征及孕灾机制[J]. 水土保持通报, 2019, 39(03): 75-79

    HONG Bo, DU Shao-shao, LI Xi-an, et al. Infiltration Characteristics and Disaster-forming Mechanism of Loess in South Jinghe Tableland[J]. Bulletin of Soil and Water Conservation, 2019, 39(03): 75-79.

    巨玉文, 齐琼, 董震, 等. 山西西部地区黄土地质灾害与降雨的关联性分析[J]. 自然灾害学报, 2016, 25(01): 81-87

    JU Yu-wen, QI Qiong, DONG Zhen, et al. Analysis of relevance between loess geological disasters and rainfalls in the western area of Shanxi Province[J]. Journal of Natural Disasters, 2016, 25(01): 81-87.

    李萍, 白健忠, GRIFFITHS D V, 等. 黄土边坡可靠度的随机有限元分析[J]. 地球科学与环境学报, 2019, 41(1): 116-126 doi: 10.3969/j.issn.1672-6561.2019.01.010

    LI Ping, BAI Jian-zhong, GRIFFITHS D V, et al. Random Finite Element Analysis for the Reliability of Loess Slopes[J]. Journal of Earth Sciences and Environment, 2019, 41(1): 116-126. doi: 10.3969/j.issn.1672-6561.2019.01.010

    刘畅, 张平松, 杨为民, 等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质, 2020, 53(4): 176-185

    LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical Dynamic Characteristics and Stability Evaluation of Loess Landslides in Shuiwan Earthquake, Tianshui, Gansu[J]. Northwestern Geology, 2020, 53(4): 176-185.

    刘晓京, 陈新建, 冯满, 等. 可溶盐对原状黄土强度影响的试验研究[J]. 工程地质学报, 2018, 26(S): 652-656

    LIU Xiao-Jing, CHEN Xin-jian, FENG Man, et al. Study of Influence of Soluble Salts on Original Loess Strength[J]. Journal of Engineering Geology, 2018, 26(S): 652-656.

    吕萌. 山西省黄土崩塌地质灾害的现状及水敏感性分析[D]. 太原: 太原理工大学, 2016

    LV Meng. The Present Situation of the Loess Collapse of Geological Disasters in Shanxi Province and the Water Sensitivity Analysis[D]. Taiyuan: Taiyuan University of Technology, 2016.

    落合博贵, 陈丽华. 晋西黄土力学强度特性及滑坡发生机理的研究[J]. 北京林业大学学报, 1994, 16(S4): 93-100 doi: 10.13332/j.1000-1522.1994.s4.001

    OCHIAI Hiroki, CHEN Li-hua. Study on mechanical strength characteristics of loess and mechanism of landslide in western Shanxi[J]. Journal of Beijing Forestry University, 1994, 16(S4): 93-100. doi: 10.13332/j.1000-1522.1994.s4.001

    孙萍萍, 张茂省, 冯立, 等. 黄土水敏性及其时空分布规律[J]. 西北地质, 2019, 52(2): 117-124

    SUN Pingping, ZHANG Maosheng, FENG Li, et al. Water Sensitivity of Loess and Its Spatial-Temporal Distribution on the Loess Plateau[J]. Northwestern Geology, 2019, 52(2): 117-124

    王林浩, 白晓红, 冯俊琴. 压实黄土状填土抗剪强度指标的影响因素探讨[J]. 岩土工程学报, 2010, 32(S2): 132-135

    WANG Lin-hao, BAI Xiao-hong, FENG Jun-qin. Discussion on shearing strength influencing factors of compacted loess-like backfill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 132-135.

    王硕, 刘占辉. 非饱和重塑黄土抗剪强度影响因素的试验研究[J]. 石家庄铁道大学学报(自然科学版), 2010, 23(03): 86-89+93 doi: 10.13319/j.cnki.sjztddxxbzrb.2010.03.020

    WANG Shuo, LIU Zhan-hui. Test Study on Influence Factor of Shear Strength of Unsaturated Remolded Loess[J]. Journal of Shijiazhuang Railway Institute(Natural Science), 2010, 23(03): 86-89+93. doi: 10.13319/j.cnki.sjztddxxbzrb.2010.03.020

    谢庆勇. 吕梁机场工程黄土边坡的敏感性分析[J]. 路基工程, 2012, (01): 135-137 doi: 10.3969/j.issn.1003-8825.2012.01.039

    XIE Qing-yong. Sensitivity Analysis for Loess Slope of Lvliang Airport[J]. Subgrade Engineering, 2012, (01): 135-137. doi: 10.3969/j.issn.1003-8825.2012.01.039

    徐少雄, 赵景波, 杜卓群. 吕梁山地形对气候的影响分析[J]. 现代农业科技, 2020, (05): 176-9+84.

    XU Shao-xiong, ZHAO Jing-bo, DU Zhuo-qun. Analysis on Influence of Lvliang Mountain Terrain on Climate[J]. Modern Agricultural Science and Technology, 2020, (05): 176-179+84.

    于慧丽, 龙建辉, 刘海松, 等. 吕梁山区黄土边坡工程地质分区及强度参数选取[J]. 工程地质学报, 2014, 22(01): 152-159 doi: 10.3969/j.issn.1004-9665.2014.01.021

    YU Hui-li, LONG Jian-hui, LIU Hai-song, et al. Engineering Geology Division of Loess Slope and Its Strength Parameter Selection in Lvliang Mountainous Area[J]. Journal of Engineering Geology, 2014, 22(01): 152-159. doi: 10.3969/j.issn.1004-9665.2014.01.021

    张玲玲, 龙建辉, 邢鲜丽, 等. 冻融循环作用下吕梁地区马兰黄土性质研究[J]. 太原理工大学学报, 2021, 52(04): 557-563 doi: 10.16355/j.cnki.issn1007-9432tyut.2021.04.007

    ZHANG Ling-ling, LONG Jian-hui, XING Xian-li, et al. Study on the Properties of Malan Loessin Lvliang Area Under Freeze-thaw Cycles[J]. Journal of Taiyuan University of Technology, 2021, 52(04): 557-563. doi: 10.16355/j.cnki.issn1007-9432tyut.2021.04.007

    赵杰, 巨玉文. 冻融循环对永和原状黄土影响的试验研究[J]. 科学技术与工程, 2016, 16(28): 269-272 doi: 10.3969/j.issn.1671-1815.2016.28.049

    ZHAO Jie, JU Yu-wen. Test Research on Influence of Freezing and Thawing Cycle on Undisturbed Loess in Yonghe[J]. Science Technology and Engineering, 2016, 16(28): 269-272. doi: 10.3969/j.issn.1671-1815.2016.28.049

    Cui Y, Xu C, Xu S, et al. Small-scale catastrophic landslides in loess areas of China: an example of the March 15, 2019, Zaoling landslide in Shanxi Province[J]. Landslides, 2019, 17(3): 669-676.

    Juang C H, Dijkstra T, Wasowski J, et al. Loess geohazards research in China: Advances and challenges for mega engineering projects[J]. Engineering Geology, 2019, 251: 1-10. doi: 10.1016/j.enggeo.2019.01.019

    Li X A, Hong B, Wang L, et al. Microanisotropy and preferred orientation of grains and aggregates (POGA) of the Malan loess in Yan’an, China: a profile study[J]. Bulletin of Engineering Geology and the Environment, 2019, 79(4): 1893-1907.

    Liu J-W, Fan H-H, Song X-Y, et al. Characteristics of Shear Strength and Deformation of Compacted Q3 Loess[J]. Soil Mechanics and Foundation Engineering, 2020,57(1):65-72.

    Tang D Q, Peng J B, Wang Q Y, et al. Lvliang Typical Loess Landslide Mechanism and Characteristics[J]. Applied Mechanics and Materials, 2011, 90-93: 1313-1317. doi: 10.4028/www.scientific.net/AMM.90-93.1313

    Tang Y, Bi Y, Guo Z, et al. A Novel Method for Obtaining the Loess Structural Index from Computed Tomography Images: A Case Study from the Lvliang Mountains of the Loess Plateau (China)[J]. Land, 2021, 10(3): 291. doi: 10.3390/land10030291

    Tang Y, Feng F, Guo Z, et al. Integrating Principal Component Analysis with Statistically-Based Models for Analysis of Causal Factors and Landslide Susceptibility Mapping: A Comparative Study from the Loess Plateau Area in Shanxi (China)[J]. Journal of Cleaner Production, 2020, 277.

    Wang J, Xu Y, Ma Y, et al. Study on the Deformation and Failure Modes of Filling Slope in Loess Filling Engineering: A Case Study at a Loess Mountain Airport[J]. Landslides, 2018, 15(12): 2423-2435. doi: 10.1007/s10346-018-1046-5

    Wang J, Zhang D, Wang N, et al. Mechanisms of wetting-induced loess slope failures[J]. Landslides, 2019, 16(5): 937-953. doi: 10.1007/s10346-019-01144-4

  • 加载中

(10)

(1)

计量
  • 文章访问数:  1736
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2022-03-25
修回日期:  2022-09-23
刊出日期:  2023-04-20

目录