新疆西天山阿尔恰勒Pb–Zn–Cu矿床成因

苏静, 顾雪祥, 彭义伟, 沈宇凡, 舒志平, 梁清栋, 王春山, 陈曦. 2023. 新疆西天山阿尔恰勒Pb–Zn–Cu矿床成因——来自流体包裹体和同位素的证据. 西北地质, 56(1): 81-98. doi: 10.12401/j.nwg.2022031
引用本文: 苏静, 顾雪祥, 彭义伟, 沈宇凡, 舒志平, 梁清栋, 王春山, 陈曦. 2023. 新疆西天山阿尔恰勒Pb–Zn–Cu矿床成因——来自流体包裹体和同位素的证据. 西北地质, 56(1): 81-98. doi: 10.12401/j.nwg.2022031
SU Jing, GU Xuexiang, PENG Yiwei, SHEN Yufan, SHU Zhiping, LIANG Qingdong, WANG Chunshan, CHEN Xi. 2023. Genesis of the Arqiale Pb-Zn-Cu Deposit in the Western Tianshan, Xinjiang: Evidence from Fluid Inclusions and Isotopes. Northwestern Geology, 56(1): 81-98. doi: 10.12401/j.nwg.2022031
Citation: SU Jing, GU Xuexiang, PENG Yiwei, SHEN Yufan, SHU Zhiping, LIANG Qingdong, WANG Chunshan, CHEN Xi. 2023. Genesis of the Arqiale Pb-Zn-Cu Deposit in the Western Tianshan, Xinjiang: Evidence from Fluid Inclusions and Isotopes. Northwestern Geology, 56(1): 81-98. doi: 10.12401/j.nwg.2022031

新疆西天山阿尔恰勒Pb–Zn–Cu矿床成因

  • 基金项目: 国家自然科学基金项目“新疆西天山北缘晚古生代斑岩–矽卡岩型铜钼铁多金属成矿与岩浆–热液作用过程”(42130804),“斑岩成矿系统中次浅成低温热液型矿床成矿机制研究:以新疆加曼特和小于赞金矿床为例”(41702081),成都理工大学珠峰研究计划项目“青藏高原及周缘矿产资源成矿规律、勘探及开发利用”(2020ZF11407)联合资助。
详细信息
    作者简介: 苏静(1987–),女,硕士研究生,矿物学、岩石学、矿床学专业。E-mail:627098882@qq.com
    通讯作者: 顾雪祥(1963–),男,教授,博士生导师,长期从事矿床学及矿床地球化学教学与相关研究。E-mail:xuexiang_gu@cugb.edu.cn
  • 中图分类号: P611;P597

Genesis of the Arqiale Pb-Zn-Cu Deposit in the Western Tianshan, Xinjiang: Evidence from Fluid Inclusions and Isotopes

More Information
  • 阿尔恰勒Pb–Zn–Cu矿床位于新疆西天山乌孙山脉西南缘,矿体产于下石炭统阿克沙克组灰岩中,其产状整体与地层基本一致。由于矿体具有层控特征,矿区地表和深部未见侵入岩体,导致该矿床与岩浆作用的关系尚不清楚。成矿过程大致可分为4个阶段:石榴子石–辉石阶段(I)、阳起石–黑柱石阶段(II)、石英–方解石–多金属硫化物阶段(III)和碳酸盐阶段(IV)。阶段Ⅱ阳起石与阶段Ⅲ石英、方解石和闪锌矿主要发育气液两相水包裹体(L–V型)以及少量单相液相水包裹体(L型)。阶段Ⅱ中阳起石L–V型包裹体均一温度和盐度分别为278~425 ℃和2.1~13.0 wt.% NaCl eqv,阶段Ⅲ热液矿物中L–V型包裹体均一温度和盐度分别为162~342 ℃和0.5~9.0 wt.% NaCl eqv。流体包裹体和C–H–O同位素组成特征显示,初始成矿流体主要为岩浆水,后期大气降水逐渐混入,导致成矿温度和盐度的降低以及矿物质的沉淀。矿石中硫化物的δ34S值变化范围较大(−7.57‰~1.30‰),Pb同位素具有壳幔混合特征。综合矿床地质、流体包裹体和同位素特征,推断阿尔恰勒属于远端矽卡岩型Pb–Zn–Cu矿床,其成矿物质具有深部岩浆和地层的混源特征。矿区内矿体由南侧浅部的Pb–Zn矿化逐步过渡到北侧深部的Cu±Zn矿化,暗示矿区北部深部可能存在隐伏的含矿岩体及接触带铜矿体。

  • 加载中
  • 图 1  中亚造山带构造简图(a、伊犁地块位置简图(b)和伊什基里克成矿带构造简图(c)(据魏虎等,2013胡耀华,2016Gao et al.,2009Dai et al.,2019修改)

    Figure 1. 

    图 2  阿尔恰勒Pb–Zn–Cu矿区地质图(据Dai et al.,2019

    Figure 2. 

    图 3  阿尔恰勒Pb–Zn–Cu矿床3号勘探线剖面图(据Dai et al.,2019修改)

    Figure 3. 

    图 4  阿尔恰勒Pb–Zn–Cu矿床矿体露头及典型矿石特征

    Figure 4. 

    图 5  阿尔恰勒Pb–Zn–Cu矿床矿石显微组构特征

    Figure 5. 

    图 6  阿尔恰勒Pb–Zn–Cu矿床阶段Ⅱ和阶段Ⅲ流体包裹体镜下照片

    Figure 6. 

    图 7  阿尔恰勒Pb–Zn–Cu矿床阶段Ⅱ及阶段Ⅲ均一温度(a)和盐度直方图(b)

    Figure 7. 

    图 8  阿尔恰勒Pb–Zn–Cu矿床流体包裹体均一温度–盐度散点图(据Wilkinson,2001

    Figure 8. 

    图 9  阿尔恰勒Pb–Zn–Cu矿床成矿流体H–O同位素图解(底图a据Taylor,1974)和方解石–灰岩–大理岩的C–O同位素图解(底图b据Hedenquist et al.,1994

    Figure 9. 

    图 10  阿尔恰勒Pb–Zn–Cu矿S同位素直方图(a)和其他S同位素储库对比(b)(其他储库据Hoefs,2009

    Figure 10. 

    图 11  阿尔恰勒Pb–Zn–Cu矿床矿石中硫化物Pb同位素模式图(底图据Zartman et al.,1981修改)

    Figure 11. 

    表 1  阿尔恰勒Pb–Zn–Cu矿床气液两相水流体包裹体显微测温结果

    Table 1.  Temperature measurement results of two–phase aqueous inclusions from the Arqiale Pb–Zn–Cu deposit

    成矿阶段宿主矿物包裹体类型(数量)冰点温度(℃)均一温度(℃)盐度(wt.% NaCl eqv)密度(g/m³)
    阶段Ⅱ阳起石L–V(84)−9.1~−1.2278~4252.1~13.00.6~0.9
    阶段Ⅲ闪锌矿L–V(7)−5.4~−2.6226~2654.3~8.40.8~0.9
    方解石L–V(111)−5.8~−0.3162~3110.5~9.00.7~1.0
    石英L–V(3)−5.4~1.8230~3423.1~8.10.7~0.9
    下载: 导出CSV

    表 2  阿尔恰勒Pb–Zn–Cu矿床热液方解石、灰岩和大理岩C–O同位素组成

    Table 2.  C–O isotopic compositions of hydrothermal calcite, limestone and marble from the Arqiale Pb–Zn–Cu deposit

    样号样品名称δ13CV-PDB(‰)δ18OV-PDB(‰)δ18OV-SMOW(‰)资料来源
    AE-46方解石0.4−20.69.6本文
    AE-75-2方解石−0.6−16.813.6
    AE-95方解石−2.8−26.63.5
    AE-107含化石灰岩2.1−13.317.1
    AE-108含化石灰岩2.5−19.810.5
    AE-109含化石灰岩2.1−14.615.9
    AE-42不含化石灰岩0.5−23.56.7
    AE-50不含化石灰岩0.6−20.79.5
    AE-54不含化石灰岩0.3−14.316.2
    AE-58大理岩0.8−22.18.1
    AE-61大理岩−0.3−20.89.5
    AE-63大理岩2.0−22.37.9
    A6方解石0.4−26.04.1Dai et al.,2019
    A10方解石0.9−18.312.0
    A19方解石0.1−25.84.3
    A20方解石−0.2−26.43.7
    A22方解石0.3−22.37.9
    A32方解石0.1−25.44.7
    A39方解石0.2−24.85.4
    A46方解石0.6−19.510.8
    A47方解石0.5−19.710.6
    A48方解石0.8−19.211.1
    A49方解石0.7−18.611.7
    A50方解石0.9−19.011.3
    A51方解石0.6−19.011.3
    A55方解石0.1−25.54.6
    A61方解石−0.9−26.73.4
    A73方解石1.1−23.86.4
    AE-75-1方解石−0.9−25.44.8Peng et al.,2022
    AE-84方解石−1.9−22.57.7
    AE-112方解石−2.4−26.14.0
    AE-115方解石−1.0−24.06.2
    AE-120方解石−2.6−26.93.2
    下载: 导出CSV

    表 3  阿尔恰勒Pb–Zn–Cu矿床矿石中硫化物S同位素组成

    Table 3.  Sulfur isotopic compositions of sulfides in the ores from the Arqiale Pb–Zn–Cu deposit

    样品号矿物δ34SV-CDT(‰)资料来源样品号矿物δ34SV-CDT(‰)资料来源
    AECcp-1黄铜矿−5.63Peng et al.,2022 A31-2闪锌矿0.70Dai et al.,2019
    AECcp-2黄铜矿−5.81A45闪锌矿−7.00
    AECcp-3黄铜矿−5.56A52闪锌矿−4.10
    AECcp-4黄铜矿−6.18A53闪锌矿−6.80
    AESpy-1闪锌矿−6.43A54闪锌矿0.70
    AESpy-2闪锌矿−6.03A60-2闪锌矿−6.70
    AESpy-3闪锌矿−5.92A63闪锌矿0.70
    AESpy-4闪锌矿−7.12A82闪锌矿1.10
    AEPy-1黄铁矿−7.13A56黄铜矿−0.10
    AEPy-2黄铁矿−7.57A69黄铜矿1.20安玉伟,2013
    AEPy-3黄铁矿−7.47A105黄铜矿0.90
    AEPy-4黄铁矿−6.66A91黄铜矿−2.60
    A1-1方铅矿−0.50Dai et al.,2019A113黄铁矿−0.40
    A2方铅矿−1.10A112黄铁矿0.60
    A7-1方铅矿−1.10A115黄铁矿0.20
    A9-1方铅矿−0.90AQL01方铅矿1.30
    A23方铅矿−0.80AQL02方铅矿−4.70
    A31-1方铅矿−1.50AQL07方铅矿−3.70
    A60-1方铅矿−7.10AQL16方铅矿−2.60
    A1-2闪锌矿0.90AQL01闪锌矿−4.20
    A4闪锌矿0.80AQL02闪锌矿−0.10
    A7-2闪锌矿0.50AQL07闪锌矿−2.50
    A9-2闪锌矿0.80AQL16闪锌矿−2.20
    下载: 导出CSV

    表 4  阿尔恰勒Pb–Zn–Cu矿床矿石中硫化物Pb同位素组成

    Table 4.  Pb isotope compositions of sulfides of ores from the Arqiale Pb–Zn–Cu deposit

    样号矿物206Pb/204Pb207Pb/204Pb208Pb/204PbμωTh/U来源
    AE-81-13方铅矿18.26715.56738.0659.4135.463.65Peng et al., 2022
    AE-81-14方铅矿18.26615.56638.0599.4135.423.64
    AE-81-15方铅矿18.26215.56138.0499.4035.363.64
    AE-81-16方铅矿18.26915.56738.0629.4135.433.64
    AE-81-17方铅矿18.26615.56538.0589.4135.413.64
    A2方铅矿18.29015.64338.2949.5636.983.74Dai et al.,2019
    A7-1方铅矿18.27715.62838.2429.5336.703.73
    A9-1方铅矿18.29815.65038.3149.5737.093.75
    A23方铅矿18.30515.65638.3389.5937.213.76
    A31-1方铅矿18.22715.55237.9969.3935.253.63
    A60-1方铅矿18.31815.65938.3489.5937.213.76
    A1-1闪锌矿18.28615.63538.2829.5536.883.74
    A1-2闪锌矿18.27215.61438.2019.5136.433.71
    A4闪锌矿18.28215.63338.2629.5436.803.73
    A7-2闪锌矿18.30015.65138.3199.5837.113.75
    A31-2闪锌矿18.27315.61038.1909.5036.343.70
    A45闪锌矿18.29515.61538.2049.5136.323.70
    A52闪锌矿18.27015.59238.1349.4635.963.68
    A53闪锌矿18.28515.61338.2049.5036.363.70
    A54闪锌矿18.26615.59938.1599.4836.143.69
    A60-2闪锌矿18.32415.66738.3659.6137.323.76
    A63闪锌矿18.99015.60038.4919.4133.793.48
    A82闪锌矿18.47315.72338.7209.7038.493.84
    A56黄铜矿18.31415.67038.3819.6137.473.77
    A69黄铜矿18.28715.57738.0689.4335.453.64
    A105黄铜矿18.30815.66838.3729.6137.453.77
    A91黄铜矿18.30015.65138.3179.5837.103.75
    A113黄铁矿21.51815.94638.18210.7928.832.59
    A112黄铁矿18.31915.64738.3319.5737.023.74
    A115黄铁矿18.31015.57938.0709.4335.363.63
    下载: 导出CSV
  • 安玉伟, 莫江平, 王夏杰. 新疆阿尔恰勒铅锌矿成因和找矿前景[J]. 矿床地质, 2012, S1: 247-248 doi: 10.16111/j.0258-7106.2012.s1.126

    AN Yuwei, MO Jiangping, WANG Xiajie. Genesis and prospecting prospect of the Arqiale Pb-Zn deposit in Xinjiang[J]. Mineral Deposits, 2012, S1: 247-248. doi: 10.16111/j.0258-7106.2012.s1.126

    安玉伟, 王夏杰. 新疆阿尔恰勒铅锌矿成矿模式[J]. 矿产与地质, 2013, 27(2): 102-105.

    AN Yuwei and WANG Xiajie. Metallogenic model of Aerqiale Pb-Zn deposit in Xinjiang[J]. Mineral Resources and Geology, 2013, 27(2): 102-105.

    代俊峰. 新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用[D]. 北京: 中国地质大学(北京), 2019, 1-170.

    DAI Junfeng. Skarn type lead-zinc mineralization in Late Paleozoic island arc environment, Xinjiang, Tianshan[D]. Beijing: China University of Geosiences (Beijing), 2019, 1-170.

    邓明国, 陈伟, 王学武, 等. 滇西芦子园远程矽卡岩Pb-Zn-Fe(Cu)多金属矿床流体包裹体初探及矿床成因探讨[J]. 岩石学报, 2018, 34(05): 1239-1257

    DENG Mingguo, CHEN Wei, WANG Xuewu, et al. Fluid inclusion and ore genesis of the Luziyuan distal skarn Pb-Zn-Fe ( -Cu) poly-metallic deposit, West Yunnan, SW China[J]. Acta Petrologica Sinica, 2018, 34(05): 1239-1257.

    高俊. 西南天山板块构造及造山运动动力学[D]. 北京: 中国地质科学院, 1993, 1-90.

    GAO Jun. Plate tectonics and geodynamics of orogenesis of the Southwest Tianshan Mountains[D]. Beijing: Chinese Academy of Geological Sciences, 1993, 1-90.

    高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28: 1804-1816

    GAO Jun, QIAN Qing, LONG Lingli et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China. 2009, 28(12): 1804-1816

    胡耀华. 西天山伊什基里克西段矿床成因类型及找矿方向探讨[J]. 新疆有色金属, 2016, S1: 1-4 doi: 10.16206/j.cnki.65-1136/tg.2016.s.001

    HU Yaohua. Discussion on genetic types and prospecting direction of the Western Section of Yishjilik deposit in western Tianshan mountains[J]. Xinjiang Non-ferrous Metals, 2016, S1: 1-4. doi: 10.16206/j.cnki.65-1136/tg.2016.s.001

    李俊明. 新疆昭苏县阿尔恰勒铅锌矿床成矿流体研究[D]. 北京:中国地质大学(北京), 2019

    LI Junming. Study on Ore-Forming Fluids of the Arqiale Lead-Zinc Deposit in Zhaosu, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2019.

    李永军, 庞振甲, 栾新东, 等. 西天山特克斯达坂花岗岩基的解体及钼找矿意义[J]. 大地构造与成矿学, 2007, 31(4): 435-440.

    LI Yongjun, PANG Zhenjia, LUAN Xindong, et al. Distribution of Tekesidaban granitic batholith and its significance for Mo prospecting, Western Tianshan Mountains[J]. Geotectonica et Metallogenia, 2007, 31(4): 435-440.

    李永军, 辜平阳, 庞振甲, 等. 西天山特克斯达坂库勒萨依序列埃达克岩的确立及钼找矿意义[J]. 岩石学报, 2008, 24(12): 2713-2719.

    LI Yongjun, Gu Pingyang, PANG Zhenjia, et al. Identification of the adakite rocks of Kulesayi series and its significance of Mo prospecting in the Tekesidaban of western Tianshan[J]. Acta Petrologica Sinica, 2008, 24(12): 2713-2719.

    李永胜, 张帮禄, 公凡影, 等. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据[J]. 岩石学报, 2021, 37(06): 1847-1866 doi: 10.18654/1000-0569/2021.06.13

    LI Yongsheng, ZHANG Banglu, GONG Fanying, et al. Genesis of the giant Kangjiawan lead-zinc ore deposit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope[J]. Acta Petrologica Sinica, 2021, 37(6): 1847–1866. doi: 10.18654/1000-0569/2021.06.13

    刘斌, 沈昆. 流体包裹体热力学[M]. 北京: 地质出版社, 1999, 1-289

    LIU Bin and SHEN Kun. Fluid inclusion thermophysics[M]. Beijing: Geological Publishing House, 1999, 1-289.

    牛佳, 郑义, 周永章, 等. 桂中盘龙铅锌矿流体包裹体特征及其对钦杭成矿带热水喷流-改造成矿作用的指示[J]. 岩石学报, 2017, 33(03): 753-766

    NIU Jia, ZHENG Yi, ZHOU Yongzhang, et al. A fluid inclusions study of the Panlong lead-zinc deposit and its implication for genesis[J]. Acta Petrologica Sinica, 2017, 33(3): 753-766

    牛旭宁. 西藏蒙亚啊铅锌矿床成因与找矿方向研究[D]. 北京:中国地质大学(北京), 2019.

    NIU Xuning. The genesis and prospecting direction of the Mengyaa Pb-Zn Deposit in Tibet[D]. Beijing: China University of Geosciences(Beijing). 2019.

    秦来勇, 莫江平, 徐庆鸿, 等. 新疆阿尔恰勒铅锌矿床地质特征及找矿潜力分析. 矿产勘查, 2012, 3: 319-324

    QIN Laiyong, MO Jiangping, XU Qinghong, et al. Geological characteristics and prospecting potential analysis of Arqiale Pb-Zn deposit in Xinjiang[J]. Mineral Exploration, 2012, 3: 319-324.

    魏虎, 张英宁. 2013. 新疆伊什基里克西段铜多金属成矿地质条件及找矿方向[J]. 新疆地质, 31: 172-178.

    WEI Hu, ZHANG Yingning. Ore-Forming Conditions and Exploration Direction of Copper-Polymetallic Deposits in the West Yishijilike Region, Xinjian[J]. Xinjiang Geology, 2013, 31: 172-178.

    温春齐, 多吉. 矿床研究方法[M]. 成都: 四川科学技术出版社, 2009, 1–230.

    WEN Chunqi and DUO Ji. Methods of deposit research[M]. Chengdu: Sichuan Science and Technology Press, 2009, 1–230.

    张海坤, 胡鹏 , 曹亮, 等. 印度尼西亚戴里Sedex型铅锌矿集区成矿流体特征及成矿物质来源: 流体包裹体及同位素地球化学证据[J]. 地质科技通报. 2020, 39(03): 170–177.

    ZHANG Haikun, HU Peng, CAO Liang, et al. Characteristics of mineralization fluids and mineralization material sources of the Sedex type Dairi Pb-Zn ore concentration area in Indonesia: Evidence from fluid inclusions and isotopic geochemistry[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 170–177.

    朱烨. 新疆昭苏县阿尔恰勒铅锌矿地质特征及找矿预测[D]. 桂林:桂林理工大学, 2018.

    ZHU Ye. Geological Features and Ore-Prospecting Prediction of Aerqiale Lead-Zinc Deposit in Zhaosu County, Xinjiang[D]. Guilin: Guilin University of Technology, 2018.

    朱志敏, 赵振华, 熊小林. 西天山特克斯北中酸性火成岩地球化学特征及成因意义[J]. 岩石学报, 2012, 28(7): 2145-2157.

    ZHU Zhimin, ZHAO Zhenhua, XIONG Xiaolin. Geochemistry and geodynamics of intermediate-acid igneous rocks in northern Tekesi[J]. Western Tianshan Mountains. Acta Petrologica Sinica, 2012, 28 (7): 2145–2157.

    Andrew A, Godwin CI, Sinclair AJ. Mixing line isochrons: A new interpretation of galena lead isotope data from southeastern British Columbia[J]. Economic Geology, 1984, 79: (5): 919-932.

    Boveiri Konari M, Rastad E, Peter J M. A sub-seafloor hydrothermal syn-sedimentary to early diagenetic origin for the Gushfil Zn-Pb-(Ag-Ba) deposit, south Esfahan[J]. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 2017, 194(1), 61–90. doi: 10.1127/njma/2016/0041

    Bao Z H, Cai K D, Sun M, et al. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China[J]. Journal of Asian Earth Science, 2018, 153: 100–117.

    Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2835-2846 doi: 10.1016/0016-7037(90)90018-G

    Chen F C, Deng J, Shu Q H, et al. Geology, fluid inclusion and stable isotopes (O, S) of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China[J]. Ore Geology Reviews, 2017, 90: 913~927. doi: 10.1016/j.oregeorev.2016.10.013

    Claypool G E, Holser W T, Kaplan L R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9

    Dai J F, Xue C J, Chi G X, et al. Geological, geochronological and geochemical characteristics and genesis of the Arqiale skarn Zn-Pb deposit, Western Tianshan, Northwest China[J]. Ore Geology Reviews, 2019, 106: 79~96. doi: 10.1016/j.oregeorev.2019.01.020

    Deer W A, Howie R A, Zussman J. An Introduction to the Rock Forming Minerals[J]. 3rd Edition. Longman, London: London the Mineralogical Society, 2013, 150~151.

    Doe B R, Zartman R E. Plumbotectonics: The phanerozoic. In: Barnes H L (ed. ). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley and Sons, 1979, 22–70.

    Ehya F. The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran: isotope (C, O, S, Pb) geochemistry and ore genesis[J]. Mineralogy and Petrology, 2014, 108, 123–136. doi: 10.1007/s00710-013-0279-1

    Gao J, Long L, Klemd R, et al. Tectonic evolution of the South Tianshan Orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98: 1221-1238. doi: 10.1007/s00531-008-0370-8

    Glorie S, De Grave J, Buslov M M, et al. Formation and Palaeozoic evolution of the Gorny-Altai-Mongolia Suture Zone (South Siberia): Zircon U/Pb Constraints on the igneous record[J]. Gondwana Research, 2011, 20: 465-484. doi: 10.1016/j.gr.2011.03.003

    Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1): 197-202 doi: 10.2113/gsecongeo.83.1.197

    Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370: 519. doi: 10.1038/370519a0

    Hoefs J. Stable isotope geochemistry. sixth edition ed[M]. Berlin Heidelberg: Springer-Verlag, 2009, 285.

    Hoefs J. Stable isotope geochemistry[M]. Berlin: Springer-Verlag. 1997.

    Leach D L, Bradley D C, Huston D, et al. Sediment-Hosted Lead-Zinc Deposits in Earth History[J]. Economic Geology, 2010, 105 (3), 593–625. doi: 10.2113/gsecongeo.105.3.593

    Leach D L, Marsh E, Emsbo P, et al. Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska [J]. Economic Geology, 2004, 99: 1449-1480 doi: 10.2113/gsecongeo.99.7.1449

    Leach D L, Sangster D F, Kelley K D, et al. Sediment-hosted lead-zinc deposits: A global perspective[J]. Economic Geology 100th Anniversary Volume, 2005, 561-607.

    Long L, Gao J, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: implications for continental growth in the Southwestern Central Asian Orogenic Belt[J]. Lithos, 2011, 126 (3-4): 321–340.

    Lin L, Qian Q, Wang Y, et al. Gabbroic pluton in the Dahalajunshan Formation volcanic rocks from northern Zhaosu, Western Tianshan: Age, geochemistry and geological implications[J]. Acta Petrologica Sinica, 2015, 31, 1749-1760.

    Massawe R J, Lentz D R. Petrogenesis and U–Pb (titanite) age of Cu–Ag skarn mineralization in the McKenzie Gulch area, northern New Brunswick, Canada[J]. Journal of Geochemical Exploration, 2022, 232, 106902 doi: 10.1016/j.gexplo.2021.106902

    Meinert L D. , Dipple G M, Nicolesu W. World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, and Richards JP (eds.)[J]. Economic Geology 100th Anniversary Volume, 2005, 299–336.

    Ohmoto H, Rye R O. Isotopes of sulfur and carbon. In: Barnes H L[J]. Geochemistry of Hydrothermal Deposits, 1979, 2nd Edition. New York: John Wiley and Sons: 509–611.

    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67: 551-578. doi: 10.2113/gsecongeo.67.5.551

    Peng Y W, Zou H, Leon B, et al. A newly identified Permian distal skarn deposit in the Western Tianshan, China: New evidence from geology, garnet U-Pb geochronology and S-Pb-C-H-O isotopes of the Arqiale Pb Zn Cu deposit[J]. Ore Geology Reviews, 2022, 143: 104754. doi: 10.1016/j.oregeorev.2022.104754

    Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow[M]. Longman Scientific and Technical Press, 1993, 306–308.

    Rajabi A, Rastad E, Canet C, et al. The Early Cambrian Chahmir shalehosted Zn–Pb deposit, Central Iran: an example of vent-proximal SEDEX mineralization[J]. Mineralium Deposita, 2015, 50, 571–590. doi: 10.1007/s00126-014-0556-x

    Samson I M, Russell M J. Genesis of the Silvermines zinc lead-barite deposit, Ireland: Fluid inclusion and stable isotope evidence[J]. Economic Geology, 1987, 82: 371-394. doi: 10.2113/gsecongeo.82.2.371

    Serguei G S, Sergey G K, Svetlana S D, et al. Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia[J]. Ore Geology Reviews, 2019, 112: 103039. doi: 10.1016/j.oregeorev.2019.103039

    Sheppard S M F. Characterization and isotopic variations in natural waters[J]. Reviews in Mineralogy, 1986, 16: 165-183.

    Shu Q H, Chang Z S, Mavrogenes J. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: an example at the Haobugao Zn–Pb skarn[J]. China Geology, 2021, 49.

    Sun G T, Zhou J X, Luo K, et al. New insights into the hydrothermal evolution of skarn deposits: A case study of the Dongzhongla Pb-Zn deposit in Tibet, SW China[J]. Journal of Asian Earth Sciences, 2020, 191, 104215. doi: 10.1016/j.jseaes.2019.104215

    Su W B, Cai K D, Sun M, et al. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance[J]. Lithos, 2018, 310-311: 241–254.

    Taylor H P. The Application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69: 843–883.

    Vezzoni S, Dini A, Sergio Rocchi S. Reverse telescoping in a distal skarn system(Campiglia Marittima, Italy)[J]. Ore Geology Reviews, 2016, 77, 176–193. doi: 10.1016/j.oregeorev.2016.03.001

    Wang C M, Deng J, Carranza EJM et al. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China[J]. Ore Geology Reviews, 2014, 56: 327-351. doi: 10.1016/j.oregeorev.2013.06.004

    Wilkinson JJ. Fluid inclusions in hydrothermal ore deposits[J]. Lithos, 2001, 55(1-4): 229~272. doi: 10.1016/S0024-4937(00)00047-5

    Xiao W, Windley B F, Allen M B, et al. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage[J]. Gondwana Research, 2013, 23: 1316-1341. doi: 10.1016/j.gr.2012.01.012

    Xu R, Lia W C, Deng M G, et al. Genesis of the superlarge Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit in western Yunnan (SW China): Insights from ore geology and C-H-O-S isotopes[J]. Ore Geology Reviews, 2019, 109: 944-955.

    Xu X Y, Wang H L, Li P, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati(Narati) area In western Tianshan, Xinjiang, China: implications for Paleozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2013, 72: 33-62. doi: 10.1016/j.jseaes.2012.11.023

    Yu J, Li N, Qi N, et al. Carboniferous-Permian Tectonic Transition Envisaged in Two Magmatic Episodes at the Kuruer Cu-Au Deposit, Western Tianshan (NW China)[J]. Journal of Asian Earth Sciences, 2018, 153: 395-411. doi: 10.1016/j.jseaes.2017.07.048

    Zartman RE and Doe BR. Plumbotectonics: The model[J]. Tectonophysics, 1981, 175(1-2): 135-162.

    Zaw K, Peters S G, Cromie P, et al. Nature, diversity of deposit types and metallogenic relations of South China[J]. Ore Geology Reviews, 2007, 31, 3-47. doi: 10.1016/j.oregeorev.2005.10.006

    Zhao C T, Sun J G, Chu X L, et al. Metallogeny of the Ergu Fe-Zn polymetallic deposit, central Lesser Xing’an Range, NE China: Evidence from skarn mineralogy, fluid inclusions and H-O-S-Pb isotopes[J]. Ore Geology Reviews, 2021, 135 104227.

    Zhu X Y, Zhen S M, Cheng X Y, et al. The sulfur-lead isotope geochemistry of MVT Pb-Zn deposits in Devonian system in South China[J]. Acta Geologica Sinica-English Edition, 2017, 91, 213–231.

  • 加载中

(11)

(4)

计量
  • 文章访问数:  1290
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2022-07-18
修回日期:  2022-08-20
录用日期:  2022-10-12
刊出日期:  2023-02-20

目录