Geochronology, Geochemistry and Geological Significance of Cumulates in Qingshuiquan Region, South Altyn Tagh
-
摘要:
为探讨清水泉地区堆晶岩成岩时代和区域地质构造,选择沿阿尔金南缘主断裂南侧分布的清水泉堆晶辉长岩开展完成了LA−ICP−MS 锆石定年,对堆晶纯橄岩、辉石岩和辉长岩开展了全岩地球化学研究。堆晶辉长岩年龄为(464.8±1.3)Ma,岩石地球化学结果表明:清水泉堆晶岩主量元素具低TiO2 含量,高Mg# 值的特点。纯橄岩、辉石岩和辉长岩稀土元素配分曲线呈现“平坦型”,与富集型大洋中脊玄武岩(E−MORB)配分一致。综合清水泉堆晶岩地化特征和区域地质构造背景认为:清水泉堆晶岩为同源岩浆分异演化的产物,其形成于伸展的构造背景,表明阿尔金南缘板块碰撞在中奥陶世已基本结束。
Abstract:In order to discuss the diagenetic age and regional geological structure of the cumulates in Qingshuiquan area, LA−ICP−MS zircon dating was conduct for the cumulates distributed along the south side of the main fault in the southern margin of Altyn Tagh, and the whole−rock geochemistry of the cumulates, pyroxenites, gabbros and diorites was studied. LA−ICP−MS zircon U−Pb dating of the gabbro yielded a mean 206Pb/238U age of (464.8±1.3) Ma. Geochemical analysis indicates that the main elements of Qingshuiquan cumulates are characterized by low TiO2 and high Mg#. The chondrite−normalized REE patterns are “A flat type”, which is consistent with the REE distribution of enriched mid−ocean ridge basalt (E−MORB). According to the geochemical characteristics of Qingshuiquan cumulate rock and the regional geological tectonic background, it is considered that Qingshuiquan cumulate rock is the product of homologous magma differentiation and evolution, which was formed in the extensional tectonic background, indicating that the plate collision in the southern margin of Altun in the early Middle Ordovician has basically ended.
-
Key words:
- cumulates /
- zircon U−Pb ages /
- geochemistry /
- Qingshuiquan
-
图 1 阿尔金构造地质简图(a)(据吴才来等,2014)和清水泉地区地质图(b)
Figure 1.
图 3 阿尔金南缘清水泉堆晶岩Al2O3-CaO-MgO图解(a)(据Coleman,1977)和FAM图解(b)(据Irvine et al.,1971)
Figure 3.
图 4 清水泉堆晶岩稀土配分模式图(a)和微量元素蛛网图(b)(标准化数据Sun et al.,1989)
Figure 4.
图 7 阿尔金南段清水泉堆晶岩源区判别图(据Maurice et al.,2012)
Figure 7.
图 8 阿尔金南段清水泉堆晶岩Y/15–La/10–Nb/8 (a)(据Cabanis et al.,1989)及 Nb/Zr–Th/Zr 构造背景判别图(b)(据孙书勤等,2007)
Figure 8.
表 1 阿尔金南缘清水泉堆晶岩主量元素(%)及微量元素(10−6)化学组成表
Table 1. Major (%) and trace (10−6) elelments data of of cumulate from Qingshuiquan area, southern margin of Altyn tagh
样品 C0 C10 C14 C5 C6 C7 C8 K1 FC1 FC4 FC16 岩石 纯橄岩 辉石岩 辉长岩 SiO2 37.36 38.02 38.33 38.48 40.98 38.07 37.94 46.63 46.67 48.19 49.45 TiO2 0.18 0.21 0.11 0.09 0.11 0.13 0.05 0.15 0.41 0.13 0.05 Al2O3 3.11 7.43 2.43 3.55 5.4 2.15 3.03 3.98 13.26 17.6 2.75 Fe2O3 7.71 4.66 8.56 7.19 5.42 7.55 4.35 4.59 3.72 1.78 3.63 FeO 5.62 5.85 4.56 5.07 3.55 5.13 4.51 5.05 6.04 2.8 4.37 TFeO 12.55 10.04 12.26 11.53 8.42 11.92 8.42 9.18 9.38 4.4 7.63 MnO 0.17 0.16 0.16 0.14 0.14 0.16 0.12 0.16 0.18 0.12 0.14 MgO 33.05 28.22 33.97 33.78 31.95 32.32 33.82 18.45 14.56 11.47 25.49 CaO 1.52 5.17 0.68 1.47 3.7 2.32 2.85 18.01 9.82 13.52 8.13 K2O 0.08 0.04 0.01 0.06 0.11 0.06 0.04 0.07 0.41 0.84 0.01 Na2O 0.1 0.22 0.03 0.19 0.37 0.12 0.12 0.15 2.33 1.41 0.61 P2O5 0.03 0.01 0.02 0.02 0.03 0.02 0.02 0.01 0.04 0.02 0.01 LOL 11.05 10 11.14 9.95 8.25 11.98 13.14 2.75 2.53 2.1 5.33 H2O+ 7.4 5.84 8.84 5.62 5.09 4.63 5.37 1.66 1.44 0.99 2.06 Total 99.98 99.99 100 99.99 100.01 100.01 99.99 100 99.97 99.98 99.97 La 0.79 0.84 0.85 0.77 0.72 0.78 0.71 0.46 2.01 0.87 0.98 Ce 1.83 1.86 1.71 1.79 1.54 1.7 1.72 1.21 5.15 2.3 2.63 Pr 0.2 0.22 0.21 0.22 0.18 0.219 0.24 0.19 0.77 0.34 0.4 Nd 1.01 1.07 0.89 1.09 0.98 0.994 1.12 0.9 3.74 1.71 2.1 Sm 0.29 0.31 0.25 0.26 0.27 0.256 0.29 0.3 1.12 0.53 0.62 Eu 0.061 0.079 0.054 0.065 0.071 0.073 0.059 0.09 0.57 0.32 0.35 Gd 0.43 0.41 0.32 0.3 0.36 0.305 0.32 0.41 1.51 0.64 0.61 Tb 0.079 0.072 0.061 0.059 0.063 0.055 0.054 0.08 0.25 0.11 0.12 Dy 0.48 0.48 0.4 0.41 0.46 0.373 0.38 0.53 1.82 0.81 0.79 Ho 0.11 0.1 0.085 0.09 0.1 0.082 0.09 0.13 0.4 0.18 0.17 Er 0.29 0.3 0.23 0.26 0.29 0.23 0.24 0.32 1.1 0.52 0.5 Tm 0.047 0.042 0.034 0.045 0.05 0.036 0.039 0.05 0.18 0.085 0.077 Yb 0.29 0.27 0.22 0.29 0.29 0.231 0.26 0.31 1.25 0.55 0.5 Lu 0.044 0.042 0.035 0.041 0.046 0.035 0.037 0.05 0.18 0.085 0.079 Y 3.04 2.84 2.28 2.59 2.86 2.34 2.39 3.07 10.4 4.91 4.2 Cu 8.32 8.96 36.6 20.7 31.1 40.3 30.6 26.2 41 9.43 68.2 Pb 1.46 15.1 15.4 5.33 3.59 9.6 2.73 74.8 9.42 6.29 11.9 Zn 61.8 61.5 78.7 68.1 59.8 85 46.2 43.8 103 30.6 62.5 续表1 样品 C0 C10 C14 C5 C6 C7 C8 K1 FC1 FC4 FC16 岩石 纯橄岩 辉石岩 辉长岩 Cr 2360 2690 2300 1380 3440 1700 1470 2100 1100 1370 4850 Ni 1390 1090 1430 1330 1250 1300 1330 185 392 259 1940 Co 119 94.8 133 123 93.6 112 109 63.9 57.4 33.7 98.8 Rb 2.9 2.41 1.33 2.32 4.46 2.03 1.21 1.71 10.1 43.1 0.64 Cs 0.18 0.17 0.085 0.066 0.16 0.12 0.054 0.11 0.25 0.66 0.067 Sr 18.5 49.9 26.3 22.5 23.7 46.9 31.7 10.9 416 225 253.7 Ba 20.5 48.8 51.7 24.6 31 28.1 17.9 11.4 144 207 16.7 V 50.2 113 48.9 61.9 71 56.6 36.2 308 207 126 49.5 Sc 11.3 14.6 9.23 9.59 8.17 9.62 7.16 87.6 18 24.8 3.22 Nb 1 1.08 1.09 0.58 0.63 0.7 0.64 0.45 1.23 0.43 0.43 Ta 0.21 0.65 0.58 0.31 0.32 0.29 0.22 0.31 0.24 0.18 0.2 Zr 3.09 2.34 2.86 2.502 2.525 2.593 2.39 3.27 10.9 5.32 3.15 Hf 0.23 0.1 0.13 0.11 0.15 0.18 0.158 0.17 0.358 0.15 0.13 U 0.11 0.11 0.17 0.11 0.09 0.15 0.13 0.1 0.39 0.156 0.19 Th 0.37 0.26 0.16 0.2 0.16 0.28 0.17 0.19 0.31 0.18 0.098 Mg# 82.6 83.5 83.3 84.0 87.2 83.0 87.8 78.3 73.6 82.4 85.7 δCe 1.08 1.02 0.95 1.03 1 0.98 1 0.98 1 1.02 1.01 δEu 0.53 0.68 0.58 0.71 0.7 0.8 0.59 0.78 1.34 1.68 1.72 (La/Yb)N 1.84 2.10 2.60 1.79 1.67 2.28 1.84 1.00 1.08 1.07 1.32 REE 5.95 6.10 5.35 5.69 5.42 5.37 5.56 5.03 20.05 9.05 9.93 LREE 4.18 4.38 3.96 4.20 3.76 4.02 4.14 3.15 13.36 6.07 7.08 HREE 1.77 1.72 1.39 1.50 1.66 1.35 1.42 1.88 6.69 2.98 2.85 LREE/HREE 2.36 2.55 2.86 2.81 2.27 2.98 2.91 1.68 2.00 2.04 2.49 表 2 阿尔金南缘清水泉堆晶辉长岩锆石LA–ICP–MS U–Pb分析结果表
Table 2. LA–ICP–MS U–Pb analysis results of zircons from Qingshuiquan area, southern margin of Altyn tagh
编号 含量(10−6) 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 59 22 64 0.0567 0.0008 0.5883 0.0066 0.0752 0.0004 0.0237 0.0002 478 16 470 4 467 2 2 72 176 189 0.0562 0.0007 0.5776 0.0049 0.0744 0.0004 0.0241 0.0001 461 11 463 3 463 2 3 46 43 112 0.0541 0.0006 0.5568 0.0044 0.0746 0.0003 0.0219 0.0001 374 10 449 3 464 2 4 75 88 184 0.0541 0.0007 0.5559 0.0056 0.0744 0.0004 0.0239 0.0001 376 14 449 4 463 2 5 91 148 232 0.0577 0.0006 0.5933 0.0038 0.0746 0.0003 0.0219 0.0001 518 7 473 2 464 2 6 67 97 168 0.0604 0.0009 0.6232 0.0071 0.0748 0.0004 0.0277 0.0002 619 16 492 4 465 2 7 149 319 399 0.0564 0.0007 0.5861 0.0054 0.0754 0.0004 0.0247 0.0001 468 12 468 3 469 2 8 64 24 68 0.0596 0.0009 0.6136 0.0081 0.0749 0.0004 0.0243 0.0002 478 43 466 7 464 2 9 152 220 394 0.0511 0.0006 0.5275 0.0043 0.0751 0.0003 0.0204 0.0001 244 11 430 3 467 2 10 87 188 383 0.0521 0.0006 0.5334 0.0040 0.0745 0.0003 0.0190 0.0001 291 9 434 3 463 2 11 47 43 104 0.0490 0.0009 0.4960 0.0078 0.0737 0.0004 0.0191 0.0001 148 27 409 5 458 2 12 115 175 76 0.0555 0.0006 0.5717 0.0036 0.0750 0.0003 0.0216 0.0001 433 7 459 2 466 2 表 3 阿南构造混杂岩带中早古生代岩浆事件统计表
Table 3. The dataing result of main magma events in the South Altyn Tagh
构造
位置地区 岩性 年龄(Ma) 构造背景 来源 阿南
构造
混杂
岩带长沙沟 辉石橄榄岩 510.6±1.4 洋脊扩张和洋壳俯冲消减 郭金城等,2014 花岗闪长岩 503±1.7 康磊等,2014 约马克其 辉长岩 500.7±1.9 李向民等,2009 鱼目泉 花岗岩 497 碰撞造山和陆壳深俯冲 孙吉明等,2012 茫崖 二长花岗岩 472.1±1.1 康磊等,2016 石英闪长岩 469±6 后碰撞初始伸展阶段 吴才来等,2014 长沙沟 镁铁质−超镁铁质岩体 467±1 马中平,2009 清水泉 堆晶辉长岩 464±1.3 本文 斜长角闪岩 461±4 王立社,2016a 斜长花岗岩 451~465 王立社,2016b 迪木那里克 钾长花岗岩 452.8±3.1 杨文强等,2012 塔特勒克布拉克 二长花岗岩 462±2 碰撞造山后初期抬升 曹玉亭等,2010 片麻状花岗岩 451±1.7 康磊等,2013 玉素普阿勒克 似斑状钾长花岗岩 424 造山后伸展阶段 王超等,2008 茫崖柴水沟、长春沟 二长花岗岩、正长花岗岩 404±5、406±4 吴才来等,2014 411±5、406±3 吐拉 碱厂花岗岩 385.2±8.1 吴锁平等,2007 -
[1] 曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271
CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical Zircon U-Pb Dating and Hf Isotope Compositions Studies for Tatelekebulake Granite in South AItyn Tagh[J]. Acta Petrobgica Sinica, 2010, 26(11): 3259-3271.
[2] 董俊, 黄华良, 尹建华, 等. 东昆仑石头坑德镁铁-超镁铁质岩地质特征及成矿条件分析[J]. 西北地质, 2017, 50(02): 49-60 doi: 10.3969/j.issn.1009-6248.2017.02.005
DONG Jun, HUANG Hualiang, YI Jianhua, et al. Geological Characteristics of the Shitoukengde Mafic-ultramafic Rocks in East Kunlun and Related Metallogenic Conditions[J]. Northwestern Geology, 2017, 50(02): 49-60. doi: 10.3969/j.issn.1009-6248.2017.02.005
[3] 郭金城, 徐旭明, 陈海燕, 等. 新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义[J]. 西北地质, 2014, 47(4): 170-177 doi: 10.3969/j.issn.1009-6248.2014.04.018
GUO Jincheng, XU Xuming, CHEN Haiyan, et al. Zircon U-Pb Age and Geological Implications of Ultramafic Rocks in Changshagou, Altun Area, Xinjiang Province[J]. Northwestern Geology, 2014, 47(4): 170-177. doi: 10.3969/j.issn.1009-6248.2014.04.018
[4] 高栋, 吴才来, 郜源红, 等. 南阿尔金玉苏普阿勒克塔格花岗岩体锆石U-Pb年代学、地球化学特征及地质意义[J]. 地球科学, 2019, 44(11): 3812-3828.
GAO Dong, WU Cailai, HAO Yuanhong, et al. Zircon U-Pb geochronology, geochemistry of the Yusupuleke granite pluton in south Altyn and its geological implications[J]. Earth Science, 2019, 44(11): 3812-3828.
[5] 校培喜, 高晓峰, 康磊, 等. 阿尔金-东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014
JIAO Peixi, GAO Xiaofeng, KANG Lei, et al. Study on the Geological Background of the Metallogenic Belt in the Western Section of Altun-East Kunlun[M]. Beijing: Geological Publishing House, 2014.
[6] 康磊, 校培喜, 高晓峰, 等. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因: 对阿尔金南缘早古生代构造-岩浆演化的启示[J]. 岩石学报, 2016, 32(06): 1731-1748
KANG Lei, JIAO Peixi, GAO Xiaofeng, et al. Chronology, Geochemistry and Petrogenesis of Monzonitic Granite and Quartz Diorite in Mangai Area: Its Inspiration to Early Paleozoic Tectonic-magmatic Evolution of the Southern Altyn Tagh[J]. Acta Petrologica Sinica, 2016, 32(06): 1731-1748.
[7] 康磊. 南阿尔金高压—超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D]. 西安: 西北大学, 2014
KANG Lei. Early Paleozoic Multi-stage Granitic Magmatism and the Geological Significance in the South Altyn Tagh HP-UHP Metamorphic Belt[D]. Xi’an: Northwest University, 2014.
[8] 康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(09): 3039-3048
KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, Zircon U-Pb Age and Its Geological Significance of the Gneissic Granite from the Eastern Segment of the Tatelekebulake Somposite Granite in the South Altyn Tagh[J]. Acta Petrologica Sinica, 2013, 29(09): 3039-3048.
[9] 侯红星, 张蜀冀, 胡新茁, 等. 华北克拉通怀安县西洋河地区高压基性麻粒岩锆石U-Pb同位素年龄及地球化学特征[J]. 西北地质, 2022, 55(4): 240-254.
HOU Hongxing, ZHANG Shuji, HU Xinzhuo, et al. Geochemical Characteristics and Zircon U-Pb Isotope Age of the High-pressure Basic Granulite in the Xiyanghe Area of the North China Craton[J]. Northwestern Geology, 2022, 55(4): 240-254.
[10] 刘良, 康磊, 曹玉亭, 等. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学: 地球科学, 2015, 45(08): 1126-1137
LIU Liang, KANG Lei, CAO Yuting, et al. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn[J], NW China. Science China: Earth Sciences, 2015, 45(08): 1126-1137.
[11] 刘良, 车自成, 王焰, 等. 阿尔金高压变质岩带的特征及其构造意义[J]. 岩石学报, 1999, (01): 58-65.
LIU Liang, CHE Zicheng, WANG Yan, et al. The Petrological Characters and Geotectonic Setting of High-pressure Metamorphic Rock Belts in Altun Mountains[J]. Acta Petrologica Sinica, 1999, 15(1): 57-64.
[12] 刘军, 息朝庄, 黄波, 等. 柴达木西北缘大通沟南山北闪长岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2022, 55(2): 93-105.
LIU Jun, XI Chaozhuang, HUANG Bo, et al. Geochronology, Geochemistry and Geological Significance of Thediorite in Datonggou Nanshanbei, Northwestern Qaidam Basin[J]. Northwestern Geology, 2022, 55(2): 93−105.
[13] 刘永顺, 于海峰, 辛后田, 等. 阿尔金山地区构造单元划分和前寒武纪重要地质事件[J]. 地质通报, 2009, 28(10): 1430-1438 doi: 10.3969/j.issn.1671-2552.2009.10.009
LIU YongShun, YU Haifeng, XIN Houtian, et al. Tectonic Units Division and Precambrian Significant Geological Events in Altyn Tagh Mountain, China[J]. Geological Bulletin of China, 2009, 28(10): 1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009
[14] 李向民, 马中平, 孙吉明, 等. 阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究[J]. 岩石学报, 2009, 25(04): 862-872
LI Xiangmin, MA ZhongPing, SUN Jiming, et al. Characteristics and Age Study about the Yuemakeqi Mafic-ultramagic Rock in the Southern Altyn Fault[J]. Acta Petrologica Sinica, 2009, 25(04): 862-872.
[15] 马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义—岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(04): 793-804
MA Zhongping, LI Xiangmin, SUN Jiming, et al. Discovery of Layered Mafic-ultramafic Intrusion in Changshagou, Altyn Tagh, and Its Geological Implication: A Pilot Study on Its Petrological and Geochemical Characteristics[J]. Acta Petrologica Sinica, 2009, 25(04): 793-804.
[16] 孙吉明, 马中平, 唐卓, 等. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义[J]. 地质学报, 2012, 86(02): 247-257 doi: 10.3969/j.issn.0001-5717.2012.02.004
SUN JiMing, MA Zhongping, TANG Zhuo, et al. LA-ICP-MS Zircon Dating of the Yumuquan Magma Mixing Granite in the Southern Altyn Tagh and Its Tectonic Significance[J]. Acta Geologica Sinica, 2012, 86(02): 247-257. doi: 10.3969/j.issn.0001-5717.2012.02.004
[17] 孙书勤, 张成江, 赵松江. 大陆板内构造环境的微量元素判别[J]. 大地构造与成矿学, 2007, 31(01): 104-109 doi: 10.3969/j.issn.1001-1552.2007.01.012
SUN Shuqin, ZHANG Chengiang, ZHAO Songjiang. Identification of the tectonic settings for continental intraplate by trace elements[J]. Geotectonica et Metallogenia, 2007, 31(1): 104-109. doi: 10.3969/j.issn.1001-1552.2007.01.012
[18] 王立社, 杨鹏飞, 段星星, 等. 阿尔金南缘中段清水泉斜长花岗岩同位素年龄及成因研究[J]. 岩石学报, 2016a, 32(03): 759-774
WANG Lishe, YANG Pengfei, DUAN Xingxing, et al. Isotopic Age and Genesis of Plagiogranite from Qingshuiquan Area in the Middle of South Altyn Tagh[J]. Acta Petrologica Sinica, 2016, 32(03): 759-774.
[19] 王立社, 李智明, 杨鹏飞, 等. 阿尔金清水泉斜长角闪岩同位素定年及其地球化学特征[J]. 大地构造与成矿学, 2016b, 40(04): 839-852
WANG Lishe, LI Zhiming, YANG Pengfei, et al. Isotopic Age and Geochemical Characteristics of Qingshuiquan Amphibolite in South Altyn Tagh[J]. Geotectonica et Metallogenia, 2016b, 40(04): 839-852.
[20] 王超, 刘良, 张安达, 等. 阿尔金造山带南缘岩浆混合作用: 玉苏普阿勒克塔格岩体岩石学和地球化学证据[J]. 岩石学报, 2008, 24(12): 2809-2819
WANG Chao, LIU Liang, ZHANG Anda, et al. Geochemistry and Petrography of Early Paleozoic Yusupuleke Tagh Rapakivi-textured Granite Complex, South Altyn: An Example for Magma Mixing[J]. Acta Petrologica Sinica, 2008, 24(12): 2809-2819.
[21] 吴才来, 郜源红, 雷敏, 等. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J]. 岩石学报, 2014, 30(08): 2297-2323
WU Cailai, GAO Yuanhong, LEI Min, et al. Zircon SHRIMP U-Pb Dating, Lu-Hf Isotopic Characteristics and Petrogenesis of the Palaeozoic Granites in Mangya Area, Southern Altun, NW China[J]. Acta Petrologica Sinica, 2014, 30(8): 2297-2323.
[22] 吴锁平, 吴才来, 陈其龙. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J]. 地质通报, 2007, 26(10): 1385-1392 doi: 10.3969/j.issn.1671-2552.2007.10.016
WU Suoping, WU Cailai, Chen Qilong. Characteristics and Tectonic Setting of the Tula Aluminous A- type Granite at theSouth Side of the Altyn Tagh Fault, NW China[J]. Geological Bulletin of China, 2007, 26(10): 1385-1392. doi: 10.3969/j.issn.1671-2552.2007.10.016
[23] 许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, (03): 193-205 doi: 10.3321/j.issn:0001-5717.1999.03.001
XU Zhiqin, YANG Jinsui, ZHANG Jianxin, et al. A Comparison Between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-slip Fault and the Mechanism of Lithospheric Shearing[J]. Acta Geologica Sinica, 1999, (03): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001
[24] 杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139-4150
YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, Geochronology and Zircon Hf Isotopes of the Dimunalike Granite in South Altyn Tagn and Its Geological Significance[J]. Acta Petrologica Sinica, 2012, 28(12): 4139-4150.
[25] 张若愚, 曾忠诚, 陈宁, 等. 阿尔金造山带南缘中―晚奥陶世正长花岗岩的发现及其地质意义[J]. 地质通报, 2018, 37(04): 545-558
ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, et al. The Discovery of Middle-Late Ordovician Syenogranite on the Southern Margin of Altun Orogenic Belt and Its Geological Significance[J]. Geological Bulletin of China, 2018, 37(4): 545-558.
[26] Cabanis B, Lecolle M. Le Diagramme La/10-Y/15-N/8: Un Outil Pour La Discrimination Des Séries Volcaniques et La Mise en Évidence Des Processus De Mélange et/ou de Contamination Crustale[J]. C R Acad Sci Ser II, 1989, 309: 2023-2029.
[27] Coleman R G. Ophiolite-Ancient Oceanic Lithosphere?[M]. Berlin: Springger Verlag, 1977.
[28] Dilek, Yildirim. Collision tectonics of the Mediterranean region: causes and consequences[J]. Collision Tectonics of the Mediterranean Region: Causes and Consequences. Geological Society of America Special Paper, 2006, 409(1): 1-13.
[29] Donnelly K E, Goldstein S L, Langmuir S H, et al. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3): 347-366.
[30] Feng R, Kerrich R. Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada: Implications for Provenance and Tectonic Setting[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1061-1081. doi: 10.1016/0016-7037(90)90439-R
[31] Hirschmann M M, Stolpe E M. A Possible Role for Garnet Pyroxenite in the Origin of the “Garnet Signature” in MORB[J]. Contribtions to Mineralogy and Petrology, 1996, 124(2): 185-208. doi: 10.1007/s004100050184
[32] Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journel of Earth Science, 1971, 8: 523-548. doi: 10.1139/e71-055
[33] Ludwig K R. Isoplot: A Geochronological Toolkit for Microsoft Excel[J]. California, Berkeley: Berkeley Geochronol Center Spec Publ, 2003, 4: 1-71.
[34] Li Y S, Zhang J X, Yu S Y, et al. Origin of Early Paleozoic Garnet Peridotite and Associated Garnet Pyroxenite in the South Altyn Tagh, NW China: Constraints from Geochemistry, SHRIMP U-Pb Zircon Dating and Hf Isotopes[J]. Journal of Asian Earth Sciences, 2015, 100: 60-67. doi: 10.1016/j.jseaes.2015.01.004
[35] Liu L, Wang C, Cao Y T, et al. Geochronology of Multi-stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China[J]. Lithos, 2012, 136-139: 10-26. doi: 10.1016/j.lithos.2011.09.014
[36] Maurice A E, Basta F F, Khiamy A A. Neoproterozoic nascent island arc volcanism from the Nubian Shield of Egypt: magma genesis and generation of continental crust in intra-oceanic arcs[J]. Lithos, 2012, 132: 1-20.
[37] Niu Y L, Regelous M, Wendt I J, et al. Geochemistry of Near-EPR Seamounts: Importance of Source vs. Process and the Origin of Enriched Mantle Component[J]. Earth and Planetary Science Letters, 2002, 199(3): 327-345
[38] Polat A, Hofmann A W, Rosing M T. Boninite-like Volcanic Rocks in the 3.7-3.8Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-oceanic Subduction Zone Processes in the Early Earth[J]. Chemical Geology, 2002, 184: 231-254. doi: 10.1016/S0009-2541(01)00363-1
[39] Roex A. Source regions of mid-ocean ridge basalts: evidence for enrichment processes[J]. Mantle Metasomatism, 1987: 389-422.
[40] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mmantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[41] Wang C, Liu L, Yang W Q, et al. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China[J]. Precambrian Research, 2013, 230: 193-208. doi: 10.1016/j.precamres.2013.02.003