Geochronology, Geochemistry and Geological Significance of Cumulates in Qingshuiquan Region, South Altyn Tagh
-
摘要:
为探讨清水泉地区堆晶岩成岩时代和区域地质构造,选择沿阿尔金南缘主断裂南侧分布的清水泉堆晶辉长岩开展完成了LA−ICP−MS 锆石定年,对堆晶纯橄岩、辉石岩和辉长岩开展了全岩地球化学研究。堆晶辉长岩年龄为(464.8±1.3)Ma,岩石地球化学结果表明:清水泉堆晶岩主量元素具低TiO2 含量,高Mg# 值的特点。纯橄岩、辉石岩和辉长岩稀土元素配分曲线呈现“平坦型”,与富集型大洋中脊玄武岩(E−MORB)配分一致。综合清水泉堆晶岩地化特征和区域地质构造背景认为:清水泉堆晶岩为同源岩浆分异演化的产物,其形成于伸展的构造背景,表明阿尔金南缘板块碰撞在中奥陶世已基本结束。
Abstract:In order to discuss the diagenetic age and regional geological structure of the cumulates in Qingshuiquan area, LA−ICP−MS zircon dating was conduct for the cumulates distributed along the south side of the main fault in the southern margin of Altyn Tagh, and the whole−rock geochemistry of the cumulates, pyroxenites, gabbros and diorites was studied. LA−ICP−MS zircon U−Pb dating of the gabbro yielded a mean 206Pb/238U age of (464.8±1.3) Ma. Geochemical analysis indicates that the main elements of Qingshuiquan cumulates are characterized by low TiO2 and high Mg#. The chondrite−normalized REE patterns are “A flat type”, which is consistent with the REE distribution of enriched mid−ocean ridge basalt (E−MORB). According to the geochemical characteristics of Qingshuiquan cumulate rock and the regional geological tectonic background, it is considered that Qingshuiquan cumulate rock is the product of homologous magma differentiation and evolution, which was formed in the extensional tectonic background, indicating that the plate collision in the southern margin of Altun in the early Middle Ordovician has basically ended.
-
Key words:
- cumulates /
- zircon U−Pb ages /
- geochemistry /
- Qingshuiquan
-
阿尔金造山带位于新疆、青海和甘肃三省交界处,是中国西北主要大地构造单元(塔里木、柴达木以及昆仑、天山、柴北缘、北祁连和北山构造带)的衔接地带,也是青藏高原北部一条重要的应力释放线(刘良等,1999;校培喜等,2014)。前人研究表明,阿尔金造山带经历了太古代古老地壳形成和多期岩浆活动、古元古代(2 500~1 800 Ma)强烈改造和中基性岩浆侵入、新元古代(1 000~800 Ma)碰撞造山和大规模的岩浆活动(刘永顺等,2009;Wang et al.,2013)、早古生代古板块(或地块)之间相互俯冲−碰撞及中新生代走滑断裂系的改造。阿尔金山南缘主断裂是中亚大陆内一条非常重要的走滑断裂带。前人已围绕其开展了大量研究,初步厘定了区内俯冲碰撞的4个阶段,分别对应约为 517 Ma 时阿南洋壳的俯冲(刘良等,2015)、500~480 Ma 时地壳加厚(曹玉亭等,2010;Liu et al.,2012;康磊,2014;Li et al.,2015)、约 450 Ma 时碰撞挤压向伸展的转化(吴才来等,2014;张若愚等,2018)以及约 为420~380 Ma 时伸展作用(高栋,2019)。这些研究在揭示阿尔金陆壳深俯冲和折返过程的基础上探讨了阿尔金造山带完整的演化过程,以及其对应的岩浆活动、洋陆转化及岩石圈演化等关键问题。
清水泉地区位于阿尔金南缘中西段,马中平等(2009)对清水泉及其南部长沙沟的超镁铁质-铁镁质岩体开展研究,认为形成于约465 Ma的长沙沟镁铁质−超铁镁质层状杂岩体形成于后碰撞伸展阶段。王立社等(2016a,2016b)对清水泉区内斜长花岗岩及与其伴生的斜长角闪岩开展相关研究,认为区内的斜长花岗岩形成于465~451 Ma,属于基性岩浆结晶分异形成的“I”型花岗岩;斜长角闪岩形成于(461±4)Ma;斜长花岗岩和斜长角闪岩均产于板内伸展环境。然而,受阿尔金清水区地区自然地理条件恶劣和交通条件差等限制,清水泉一带出露的堆晶岩研究程度相对较低。因此,笔者以清水泉堆晶岩为研究对象,综合地表和钻探岩心样品,开展完成了岩石学、地球化学及年代学方面的研究,限定其形成时代、岩石成因及形成的构造环境,为阿尔金南缘区域构造演化研究提供新的科学支持。
1. 区域地质背景
阿尔金山坐落于青藏高原北缘,呈东西向分别与祁连山和昆仑山相连,分隔塔里木板块与柴达木微板块,属于不同构造层次、不同时期、不同构造环境下形成的地质体组成的复合造山带。其自北向南可依次划分为阿北变质地体、红柳沟−拉配泉构造混杂岩带、阿中米兰−金雁山地块(阿中地块)和阿南茫崖构造混杂岩带4个构造单元(刘良等,1999;许志琴等,1999)(图1a)。位于阿中地块与东昆仑造山带之间的阿南茫崖构造混杂岩带是它们的构造拼合带。阿南茫崖构造混杂岩带呈北东东至北东向沿阿尔金主断裂展布,阿南茫崖构造混杂岩主要由构造块体与变形基质组成。构造块体由蚀变橄榄岩、辉长岩、玄武岩、硅质岩、石英片岩、白云质大理岩、斜长片麻岩、砂岩、含砾砂岩等组成,成分十分复杂。蚀变橄榄岩和玄武岩等构成蛇绿岩套组合,目前尚未在在区内发现完整的层序。构造块体大小混杂且差异极大,最大岩片可达上千米,最小者仅数10 cm。岩块数量差异较大,总体呈现“块体多,基质少”和西多东少等特点,属于典型的构造混杂岩带。
图 1. 阿尔金构造地质简图(a)(据吴才来等,2014)和清水泉地区地质图(b)Figure 1. (a) The geological sketch maps of Altyn tagh and (b) Qingshuiquan in area阿尔金清水泉地处阿南茫崖构造混杂岩带中西段(图1a)。以阿尔金南缘断裂为接,断裂北侧为一套低绿片岩相变质碎屑岩−碳酸盐建造的索尔库里群平洼沟组和冰沟南组。断裂南侧由奥陶纪镁铁质-超镁铁质岩体、寒武纪花岗片麻岩、青白口纪中酸性侵入体、古元古代阿尔金岩群等组成;研究区最南部为一套由泥岩、砂岩、含砾砂岩为主的油沙山组和干沟柴组(图1b)。清水泉堆晶岩沿阿尔金南缘断裂南侧呈东西向展布,东西约为15 km,南北约为2 km,面积大约为25 km2,主要由纯橄岩、辉石岩、辉长岩等岩性组成。
2. 岩相学特征
笔者以清水泉堆晶岩为研究对象,采样位置如图1b 所示。清水泉堆晶岩与其南部围岩寒武纪花岗片麻岩呈构造接触(图2a),在地表露头和深部钻孔中均可见似层状构造,暗色矿物和浅色矿物交替堆积,局部可见韵律结构(图2b)。此外,堆晶岩表现出明显的曾受到强烈构造动力变质作用特征,糜棱岩化发育,可观察到明显的强变形带和弱变形域。强变形带内原岩矿物被压碎成碎斑和碎基,其中碎基多呈条带状集合体与碎斑呈定向排列,弱变形域尺度从数毫米级到数十米级均有产出,原岩结构和构造仍可观察到(图2c)。
图 2. 阿尔金南缘清水泉堆晶岩野外及镜下照片a. 堆晶岩与围岩呈断层接触; b. 堆晶岩中辉长岩韵律结构; c. 堆晶岩中辉长岩强变形带内矿物呈定向排列; d. 堆晶辉石岩与辉长岩接触界限(突变); e. 蛇纹石化纯橄岩; f. 阳起石化辉石岩; g. 蚀变辉长岩; h.辉长岩中细粒绿帘石与黄铁矿共生; i.辉石岩和辉长岩分界(过渡);ol. 橄榄石;Aug 辉石;Act. 阳起石;Pl. 斜长石;Bt. 黑云母;Py. 黄铁矿Figure 2. Field photographs and micrographs of cumulate from Qingshuiquan, southern margin of Altyn tagh纯橄岩呈灰黑色,块状构造,不等粒结构。主要由橄榄石(>85%)、辉石(~5%)、金属矿物(~8%)等组成,橄榄石呈粒状,粒径大小不等,蛇纹石化强烈(图2e)。辉石岩呈灰白色,块状构造,粒状结构,主要由单斜辉石(60%~65%),斜方辉石(30%~35%)和不透明矿物(<5%)组成。岩石蚀变强烈,大部分辉石已阳起石化,不透明矿物呈星点浸染状分布,主要为磁铁矿(5%~10%)、钛铁矿(<5%),少量金红石可能与后期的气水热液作用关系密切,早先形成的钛铁矿在热液作用中发生溶解,溶解物通过水解作用生成金红石(图2f)。辉长岩呈灰白–灰黑色,似条带状构造,与辉石岩界限清晰(图2d)。原岩已强烈蚀变,辉石蚀变为角闪石、绿帘石、绿泥石等,或为纤状角闪石与碳酸盐集合体;斜长石蚀变为钠黝帘石、绢云母交代呈假像或残余结构。镜下鉴定推测,原岩中辉石约占35%~40%,长石占55%~60%,不透明矿物占 3%,其他副矿物占2%(图2g~图2i)。
3. 分析方法
全岩主微量元素分析测试工作在中国地质调查局西安地质调查中心完成,采用熔片 X 射线荧光光谱法(XRF)测定主量元素,并选择化学法测定和等离子光谱开展检测校对。采用 XRF 熔片和酸溶等离子质谱(ICP–MS)法测定锶、钒、铬、钴、镍、钡、钍、铀、铌、钽、铪、锆等微量元素,采用 ICP–MS 法测定稀土元素。测试过程中采用3个国家标准样(GSR6、GSR4、GSR11)和2个平行样品保证样品分析质量。
锆石U–Pb测年采用激光剥蚀电感耦合等离子质谱仪(LA–ICP–MS),相关测试在西北大学大陆动力学国家重点实验室完成。按照相关标准操作规程,采用单点剥蚀方式,剥蚀直径为30 μm,剥蚀深度为20~40 μm。使用人工合成的硅酸盐玻璃标准参考物质NITST610进行仪器最佳化。锆石年龄计算采用国际标准锆石91500进行矫正,同时以29Si 作为内标进行同位素矫正。数据处理由Glitter软件完成,锆石谐和图及加权年龄图绘制采用ISOPLOT(V3.0)(Ludwig,2003)宏程序获得。
4. 分析结果
4.1 地球化学
清水泉堆晶岩主量元素含量总体变化范围较大,与岩相学特征基本一致。SiO2 、TiO2和Al2O3 含量在纯橄岩、辉石岩、辉长岩中依次增加;SiO2含量分别为 37.36%~40.98%,46.63%,46.67%~49.45%;Al2O3 含量分别为2.15%~7.43%,3.98%,2.75%~17.6%;TiO2 含量整体较低,一般约为 0.1%(表1)。TFeO、MgO、Mg# 在纯橄岩、辉石岩、辉长岩依次降低,且清水泉堆晶岩总体上具有较高的 Mg# 值,其分别为 82.6~87.8、78.0、73.6~85.7。在Al2O3-CaO-MgO(图3a)及FAM(图3b)三角图中,清水泉堆晶岩样品的投影点基本落入镁铁质-超镁铁质堆晶岩区,反映了岩石的堆晶成因,与野外特征基本符合。
表 1. 阿尔金南缘清水泉堆晶岩主量元素(%)及微量元素(10−6)化学组成表Table 1. Major (%) and trace (10−6) elelments data of of cumulate from Qingshuiquan area, southern margin of Altyn tagh样品 C0 C10 C14 C5 C6 C7 C8 K1 FC1 FC4 FC16 岩石 纯橄岩 辉石岩 辉长岩 SiO2 37.36 38.02 38.33 38.48 40.98 38.07 37.94 46.63 46.67 48.19 49.45 TiO2 0.18 0.21 0.11 0.09 0.11 0.13 0.05 0.15 0.41 0.13 0.05 Al2O3 3.11 7.43 2.43 3.55 5.4 2.15 3.03 3.98 13.26 17.6 2.75 Fe2O3 7.71 4.66 8.56 7.19 5.42 7.55 4.35 4.59 3.72 1.78 3.63 FeO 5.62 5.85 4.56 5.07 3.55 5.13 4.51 5.05 6.04 2.8 4.37 TFeO 12.55 10.04 12.26 11.53 8.42 11.92 8.42 9.18 9.38 4.4 7.63 MnO 0.17 0.16 0.16 0.14 0.14 0.16 0.12 0.16 0.18 0.12 0.14 MgO 33.05 28.22 33.97 33.78 31.95 32.32 33.82 18.45 14.56 11.47 25.49 CaO 1.52 5.17 0.68 1.47 3.7 2.32 2.85 18.01 9.82 13.52 8.13 K2O 0.08 0.04 0.01 0.06 0.11 0.06 0.04 0.07 0.41 0.84 0.01 Na2O 0.1 0.22 0.03 0.19 0.37 0.12 0.12 0.15 2.33 1.41 0.61 P2O5 0.03 0.01 0.02 0.02 0.03 0.02 0.02 0.01 0.04 0.02 0.01 LOL 11.05 10 11.14 9.95 8.25 11.98 13.14 2.75 2.53 2.1 5.33 H2O+ 7.4 5.84 8.84 5.62 5.09 4.63 5.37 1.66 1.44 0.99 2.06 Total 99.98 99.99 100 99.99 100.01 100.01 99.99 100 99.97 99.98 99.97 La 0.79 0.84 0.85 0.77 0.72 0.78 0.71 0.46 2.01 0.87 0.98 Ce 1.83 1.86 1.71 1.79 1.54 1.7 1.72 1.21 5.15 2.3 2.63 Pr 0.2 0.22 0.21 0.22 0.18 0.219 0.24 0.19 0.77 0.34 0.4 Nd 1.01 1.07 0.89 1.09 0.98 0.994 1.12 0.9 3.74 1.71 2.1 Sm 0.29 0.31 0.25 0.26 0.27 0.256 0.29 0.3 1.12 0.53 0.62 Eu 0.061 0.079 0.054 0.065 0.071 0.073 0.059 0.09 0.57 0.32 0.35 Gd 0.43 0.41 0.32 0.3 0.36 0.305 0.32 0.41 1.51 0.64 0.61 Tb 0.079 0.072 0.061 0.059 0.063 0.055 0.054 0.08 0.25 0.11 0.12 Dy 0.48 0.48 0.4 0.41 0.46 0.373 0.38 0.53 1.82 0.81 0.79 Ho 0.11 0.1 0.085 0.09 0.1 0.082 0.09 0.13 0.4 0.18 0.17 Er 0.29 0.3 0.23 0.26 0.29 0.23 0.24 0.32 1.1 0.52 0.5 Tm 0.047 0.042 0.034 0.045 0.05 0.036 0.039 0.05 0.18 0.085 0.077 Yb 0.29 0.27 0.22 0.29 0.29 0.231 0.26 0.31 1.25 0.55 0.5 Lu 0.044 0.042 0.035 0.041 0.046 0.035 0.037 0.05 0.18 0.085 0.079 Y 3.04 2.84 2.28 2.59 2.86 2.34 2.39 3.07 10.4 4.91 4.2 Cu 8.32 8.96 36.6 20.7 31.1 40.3 30.6 26.2 41 9.43 68.2 Pb 1.46 15.1 15.4 5.33 3.59 9.6 2.73 74.8 9.42 6.29 11.9 Zn 61.8 61.5 78.7 68.1 59.8 85 46.2 43.8 103 30.6 62.5 续表1 样品 C0 C10 C14 C5 C6 C7 C8 K1 FC1 FC4 FC16 岩石 纯橄岩 辉石岩 辉长岩 Cr 2360 2690 2300 1380 3440 1700 1470 2100 1100 1370 4850 Ni 1390 1090 1430 1330 1250 1300 1330 185 392 259 1940 Co 119 94.8 133 123 93.6 112 109 63.9 57.4 33.7 98.8 Rb 2.9 2.41 1.33 2.32 4.46 2.03 1.21 1.71 10.1 43.1 0.64 Cs 0.18 0.17 0.085 0.066 0.16 0.12 0.054 0.11 0.25 0.66 0.067 Sr 18.5 49.9 26.3 22.5 23.7 46.9 31.7 10.9 416 225 253.7 Ba 20.5 48.8 51.7 24.6 31 28.1 17.9 11.4 144 207 16.7 V 50.2 113 48.9 61.9 71 56.6 36.2 308 207 126 49.5 Sc 11.3 14.6 9.23 9.59 8.17 9.62 7.16 87.6 18 24.8 3.22 Nb 1 1.08 1.09 0.58 0.63 0.7 0.64 0.45 1.23 0.43 0.43 Ta 0.21 0.65 0.58 0.31 0.32 0.29 0.22 0.31 0.24 0.18 0.2 Zr 3.09 2.34 2.86 2.502 2.525 2.593 2.39 3.27 10.9 5.32 3.15 Hf 0.23 0.1 0.13 0.11 0.15 0.18 0.158 0.17 0.358 0.15 0.13 U 0.11 0.11 0.17 0.11 0.09 0.15 0.13 0.1 0.39 0.156 0.19 Th 0.37 0.26 0.16 0.2 0.16 0.28 0.17 0.19 0.31 0.18 0.098 Mg# 82.6 83.5 83.3 84.0 87.2 83.0 87.8 78.3 73.6 82.4 85.7 δCe 1.08 1.02 0.95 1.03 1 0.98 1 0.98 1 1.02 1.01 δEu 0.53 0.68 0.58 0.71 0.7 0.8 0.59 0.78 1.34 1.68 1.72 (La/Yb)N 1.84 2.10 2.60 1.79 1.67 2.28 1.84 1.00 1.08 1.07 1.32 REE 5.95 6.10 5.35 5.69 5.42 5.37 5.56 5.03 20.05 9.05 9.93 LREE 4.18 4.38 3.96 4.20 3.76 4.02 4.14 3.15 13.36 6.07 7.08 HREE 1.77 1.72 1.39 1.50 1.66 1.35 1.42 1.88 6.69 2.98 2.85 LREE/HREE 2.36 2.55 2.86 2.81 2.27 2.98 2.91 1.68 2.00 2.04 2.49 清水泉堆晶岩稀土元素配分曲线表现出“平坦型”的配分模式(图4a)。其中,纯橄岩、辉石岩和辉长岩的稀土元素含量(∑REE)较低,分别为 5.35×10−6~6.10×10−6、5.03×10−6和9.05×10−6~20.05×10−6;(La/Yb)N分别为1.69~2.62、1.1和1.07~1.33。纯橄岩和辉石岩具弱 Eu 负异常,δEu值分别为 0.53~0.79、0.79,其Eu 的负异常可能是受 Eu 在橄榄石中低配分系数所控制;辉长岩表现出正 Eu 异常,δEu值为1.34~1.71,其Eu 正异常可能为辉长岩中斜长石的堆晶的所致。
图 4. 清水泉堆晶岩稀土配分模式图(a)和微量元素蛛网图(b)(标准化数据Sun et al.,1989)Figure 4. (a) Chondrite–normalized REE patterns and (b) primitive mantle–normalized trace element spider diagrams在原始地幔标准化的微量元素配分曲线中(图4b),纯橄岩La、Sm表现为正异常,Nd、Zr及Ti表现为负异常。辉石岩及辉长岩均表现为富集U、Ta及Sr,亏损K、Nb、Zr,并且辉长岩样品整体亏损Ti。此外,大离子亲石元素 Rb、Ba、Th 等变化系数较大且规律性不强,这可能与堆晶岩受到后期蚀变作用有关。
4.2 锆石U−Pb年龄
笔者对堆晶辉长岩样品进行LA−ICP−MC锆石U−Pb测年。阴极发光图像(CL)显示(图5a),锆石呈灰白色、深灰色,形态为短柱状、不规则浑圆状,晶形以半自形为主,部分呈四方双锥和复四方双锥的自形晶,粒度大小不一,主要为100~400 μm,长宽比为1∶1~1∶3。锆石整体晶形较好,具有比较明显的振荡环带和扇形环带,未见新生环带,Th、U 含量变化大,Th 含量为22×10−6~319×10−6,U 含量为64×10−6~399×10−6,Th/U为0.3~2.3。锆石颗粒亮度变化不大,仅个别锆石颗粒呈现 中部较亮,边部较暗,可能与颗粒中U含量分布不均匀关系密切。
辉长岩中锆石LA−ICP−MS U−Pb测年的12个数据(表2),3个测点数据明显偏离锆石 U-Pb 年龄谐和线(测点6、9和11),可能由于其受自辐射损伤(蜕晶化)而使 Pb 丢失所致;剩余 9 个测点均基本落在锆石 U-Pb 年龄谐和图中谐和线上及附近(图6),其206Pb/238U 年龄变化范围介于 463~469 Ma,加权平均年龄为 (464.8±1.3) Ma,MSWD=1.11(图5c),说明该堆晶辉长岩的结晶年龄,其形成时代为中奥陶世。
表 2. 阿尔金南缘清水泉堆晶辉长岩锆石LA–ICP–MS U–Pb分析结果表Table 2. LA–ICP–MS U–Pb analysis results of zircons from Qingshuiquan area, southern margin of Altyn tagh编号 含量(10−6) 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 59 22 64 0.0567 0.0008 0.5883 0.0066 0.0752 0.0004 0.0237 0.0002 478 16 470 4 467 2 2 72 176 189 0.0562 0.0007 0.5776 0.0049 0.0744 0.0004 0.0241 0.0001 461 11 463 3 463 2 3 46 43 112 0.0541 0.0006 0.5568 0.0044 0.0746 0.0003 0.0219 0.0001 374 10 449 3 464 2 4 75 88 184 0.0541 0.0007 0.5559 0.0056 0.0744 0.0004 0.0239 0.0001 376 14 449 4 463 2 5 91 148 232 0.0577 0.0006 0.5933 0.0038 0.0746 0.0003 0.0219 0.0001 518 7 473 2 464 2 6 67 97 168 0.0604 0.0009 0.6232 0.0071 0.0748 0.0004 0.0277 0.0002 619 16 492 4 465 2 7 149 319 399 0.0564 0.0007 0.5861 0.0054 0.0754 0.0004 0.0247 0.0001 468 12 468 3 469 2 8 64 24 68 0.0596 0.0009 0.6136 0.0081 0.0749 0.0004 0.0243 0.0002 478 43 466 7 464 2 9 152 220 394 0.0511 0.0006 0.5275 0.0043 0.0751 0.0003 0.0204 0.0001 244 11 430 3 467 2 10 87 188 383 0.0521 0.0006 0.5334 0.0040 0.0745 0.0003 0.0190 0.0001 291 9 434 3 463 2 11 47 43 104 0.0490 0.0009 0.4960 0.0078 0.0737 0.0004 0.0191 0.0001 148 27 409 5 458 2 12 115 175 76 0.0555 0.0006 0.5717 0.0036 0.0750 0.0003 0.0216 0.0001 433 7 459 2 466 2 5. 讨论
5.1 地壳混染和分离结晶
清水泉堆晶岩全岩地球化学烧失量较高,岩石薄片镜下鉴定发育明显蚀变现象。后期的蚀变过程可能会对清水泉堆晶岩内元素分布产生影响。鉴于此,在以下的讨论中,避免使用容易随流体迁移的活动性较强的Rb、Sr和Ba等大离子亲石元素,优先使用不易受后期蚀变影响的比较稳定的高场强和稀土元素(如Zr、La和Ta等)(Feng et al.,1990;Polat et al.,2002;刘军等,2022;侯红星等,2022)。
一般而言,当上地壳物质混入岩浆后,(Th/Ta)PM、(La/Nb)PM 值会大于2,下地壳物质混入时(Th/Ta)PM 值接近1,(La/Nb)PM 值大于1(Sun et al.,1989),清水泉堆晶岩中纯橄岩、辉石岩和辉长岩的(Th/Ta)PM 值在0.4附近(仅一个为0.8)、(La/Nb)PM 值仅2个样品大于2。当La/Sm 的值大于4.5时,一般指示地壳物质的混染;当其小于2时,则表明地壳物质混染的可能性较低(董俊等,2017),清水泉堆晶岩中纯橄岩 La/Sm 值为2.43~3.05,均值为2.85,辉石岩La/Sm 值为1.53,辉长岩La/Sm 值为1.58~1.79,均值为1.67。
在 Harker 图解上(图6),清水泉堆晶岩(除辉石岩)MgO 与TFeO及相容元素 Ni、Cr 具较好的正相关关系,说明岩浆作用过程中,橄榄石和辉石首先发生了堆积作用;纯橄岩和辉长岩之间 MgO 含量的突变(38.94~11.72),基本大于 80 的 Mg# 值均,佐证了以上观点。MgO 与 Al2O3、CaO 和全碱含量呈负相关关系,辉长岩中的Eu正异常和 Sr 正异常,均表明发生过斜长石的结晶堆积。TiO2、P2O5含量随 MgO 含量变化不明显,说明岩石形成过程中,没有发生明显的钛铁矿物和磷灰石堆积作用。
综上所述,结合清水泉堆晶纯橄岩、辉石岩、辉长岩具相似的稀土、微量元素配分模式,认为清水泉堆晶岩是由深部超镁铁质–镁铁质岩浆向上运移,侵入地壳后通过结晶堆积,逐步形成纯橄岩–辉石岩–辉长岩。同时,在岩浆结晶分异过程中,有部分地壳物质混入,但并不明显。
5.2 岩石成因及构造背景
清水泉堆晶岩稀土元素含量(∑REE)整体较低,纯橄榄、辉石岩及辉长岩具有相似的稀土元素配分曲线,且都为“平坦型”,与富集型大洋中脊玄武岩(E–MORB)相近,不同于正常洋中脊玄武岩(N–MORB)和洋岛玄武岩(OIB)(图4a)。清水泉堆晶岩的 Zr/Y 值为 0.82~2.73 ,平均值为 1.23;Zr/Nb 值为1.69~19.44 ,具有明显的富集地幔(EM)特征(Le Roex,1987)。
在Nb/Yb–Y/Yb图解上(图7),清水泉堆晶岩样品基本落在地幔演化序列内,主要分布在E–MORB附近,部分在N–MORB附近,与稀土和微量元素表现出类似E–MORB的配分模式特征一致,说明其具E–MORB的化学特征。在Y/15–La/10–Nb/8(图8a)构造判别图解上,堆晶辉长岩投入弧后盆地(BABA)区域,其余样品投入大陆玄武岩及富集型大洋中脊玄武岩区域(E–MORB)。在Nb/Zr–Th/Zr(图8b)判别图上,所有样品主要投在陆内初始、陆缘裂谷拉斑玄武岩及大陆拉张玄武岩区域。综上因素,认为清水泉堆晶岩应该形成于陆内拉张环境。
图 7. 阿尔金南段清水泉堆晶岩源区判别图(据Maurice et al.,2012)Figure 7. Source discrimination diagram of Qingshuiquan, southern margin of Altyn taghN-MORB. N 型大洋中脊玄武岩;E-MOEB. E 型大洋中脊玄武岩;WPA. 板内碱性玄武岩;CAB. 钙碱性玄武岩;IAB. 岛弧拉斑玄武岩;BABB. 弧后盆地玄武岩;WPB. 板内玄武岩;Ⅰ. N-MORB; Ⅱ1. 陆缘岛弧火山岩;Ⅱ2.陆缘火山玄武岩;Ⅲ.大洋板内玄武岩海山玄武岩;Ⅳ1.陆内初始、陆缘裂谷拉斑玄武岩;Ⅳ2.大陆拉张玄武岩;Ⅳ3.大陆碰撞玄武岩区;Ⅴ.地幔热柱玄武岩Figure 8. (a) Y/15−La/10−Nb/8 and (b) Nb/Zr−Th/Zr tectonic setting discriminant diagram for Qingshuiquan, southern margin of Altyn tagh富集型洋中脊玄武岩(E–MORB)一般形成于大洋板内或大洋弧后盆地,清水泉堆晶岩形成于陆内拉张的构造体系中,二者构造环境迥异,却表现出类似的地球化学特征,暗示二者可能具有类似的形成机制。富集型洋中脊玄武岩(E–MORB)的成因模型包括:起源于地幔交代作用形成的富集地幔(DM)(Donnelly et al.,2004)、亏损地幔(DM)与富集地幔(EM)混合(Niu et al.,2002;Donnelly et al.,2004)、俯冲大洋地壳再循环形成的石榴子石辉石岩或榴辉岩(Hirschmann et al.,1996)、厚重板块快速俯冲发生板片断裂和拆离形成一个裂隙,下部富集地幔(EM)减压上涌部分熔融而形成(Dilek,2006)等。早寒武世以来,阿南洋壳持续向北俯冲于阿中地块之下,俯冲的洋壳将大洋沉积物带入地幔内,大洋沉积物在地幔中发生了低程度部分熔融作用,形成的熔体与地幔橄榄岩发生地幔交代作用,形成具有E-MORB 地球化学特征的富集地幔岩(Niu et al.,2002)。至奥陶纪中期,伴随地壳加厚,厚重洋壳板块快速俯冲发生板片断裂、拆离或陆壳深俯冲折返形成裂隙,软流圈地幔强烈上涌将富集地幔岩部分熔融,形成了具有E-MORB 特征的清水泉堆晶岩原始岩浆。
早古生代阿尔金南缘处在复杂的构造-岩浆活跃期,前人围绕其开展了大量研究,已经厘定出多期岩浆事件(表3)。其分别代表了阿南洋壳俯冲、地壳加厚、碰撞挤压向伸展转化以及后造山伸展。其中,清水泉地区与超基性岩伴生的基性斜长角闪形成时代为 (461±4) Ma;与其伴生的斜长花岗岩形成时代为 465~451 Ma,为岩浆结晶分异形成的“I”型花岗岩;二者均产于板内伸展环境(王立社,2016a,2016b)。除此之外,阿尔金南缘中西段长沙沟发现的年龄为(467±1)Ma 镁铁质–超镁铁质岩体(马中平等,2009),西段茫崖地区发现的(462±2)Ma的阿卡龙山花岗岩(曹玉亭等,2010),塔特勒克布拉克发现的(451±2)Ma复式花岗岩(康磊等,2013),迪木那里克发现(452.8±3.1)Ma 的 “S” 型花岗岩体(杨文强等,2012),均为阿尔金南缘伸展背景下的岩浆响应。本次对清水泉堆晶辉长岩进行LA−ICP−MS 锆石 U−Pb 定年,获得 (464.8±1.3) Ma 的加权平均年龄值,表明其形成于中奥陶世。综合本次以及前人的研究成果,认为至中奥陶世阿尔金南缘整体构造背景已经开始由碰撞挤压转向伸展。
表 3. 阿南构造混杂岩带中早古生代岩浆事件统计表Table 3. The dataing result of main magma events in the South Altyn Tagh构造
位置地区 岩性 年龄(Ma) 构造背景 来源 阿南
构造
混杂
岩带长沙沟 辉石橄榄岩 510.6±1.4 洋脊扩张和洋壳俯冲消减 郭金城等,2014 花岗闪长岩 503±1.7 康磊等,2014 约马克其 辉长岩 500.7±1.9 李向民等,2009 鱼目泉 花岗岩 497 碰撞造山和陆壳深俯冲 孙吉明等,2012 茫崖 二长花岗岩 472.1±1.1 康磊等,2016 石英闪长岩 469±6 后碰撞初始伸展阶段 吴才来等,2014 长沙沟 镁铁质−超镁铁质岩体 467±1 马中平,2009 清水泉 堆晶辉长岩 464±1.3 本文 斜长角闪岩 461±4 王立社,2016a 斜长花岗岩 451~465 王立社,2016b 迪木那里克 钾长花岗岩 452.8±3.1 杨文强等,2012 塔特勒克布拉克 二长花岗岩 462±2 碰撞造山后初期抬升 曹玉亭等,2010 片麻状花岗岩 451±1.7 康磊等,2013 玉素普阿勒克 似斑状钾长花岗岩 424 造山后伸展阶段 王超等,2008 茫崖柴水沟、长春沟 二长花岗岩、正长花岗岩 404±5、406±4 吴才来等,2014 411±5、406±3 吐拉 碱厂花岗岩 385.2±8.1 吴锁平等,2007 6. 结论
(1)清水泉堆晶岩主要由纯橄岩、辉石岩和辉长岩等组成,辉长岩LA−ICP−MS 锆石U−Pb测年为(464.8±1.3)Ma,形成于中奥陶世。
(2)清水泉堆晶岩为同源岩浆分异演化的产物,原始岩浆经过橄榄石、辉石、斜长石等结晶堆积形成,且遭受地壳混染。
(3)清水泉堆晶岩形成于伸展的构造背景,表明阿尔金南缘板块碰撞在奥陶世已基本结束。
致谢:感谢审稿专家认真审阅了本文,并提出了宝贵的修改意见。
-
图 1 阿尔金构造地质简图(a)(据吴才来等,2014)和清水泉地区地质图(b)
Figure 1.
图 3 阿尔金南缘清水泉堆晶岩Al2O3-CaO-MgO图解(a)(据Coleman,1977)和FAM图解(b)(据Irvine et al.,1971)
Figure 3.
图 4 清水泉堆晶岩稀土配分模式图(a)和微量元素蛛网图(b)(标准化数据Sun et al.,1989)
Figure 4.
图 7 阿尔金南段清水泉堆晶岩源区判别图(据Maurice et al.,2012)
Figure 7.
图 8 阿尔金南段清水泉堆晶岩Y/15–La/10–Nb/8 (a)(据Cabanis et al.,1989)及 Nb/Zr–Th/Zr 构造背景判别图(b)(据孙书勤等,2007)
Figure 8.
表 1 阿尔金南缘清水泉堆晶岩主量元素(%)及微量元素(10−6)化学组成表
Table 1. Major (%) and trace (10−6) elelments data of of cumulate from Qingshuiquan area, southern margin of Altyn tagh
样品 C0 C10 C14 C5 C6 C7 C8 K1 FC1 FC4 FC16 岩石 纯橄岩 辉石岩 辉长岩 SiO2 37.36 38.02 38.33 38.48 40.98 38.07 37.94 46.63 46.67 48.19 49.45 TiO2 0.18 0.21 0.11 0.09 0.11 0.13 0.05 0.15 0.41 0.13 0.05 Al2O3 3.11 7.43 2.43 3.55 5.4 2.15 3.03 3.98 13.26 17.6 2.75 Fe2O3 7.71 4.66 8.56 7.19 5.42 7.55 4.35 4.59 3.72 1.78 3.63 FeO 5.62 5.85 4.56 5.07 3.55 5.13 4.51 5.05 6.04 2.8 4.37 TFeO 12.55 10.04 12.26 11.53 8.42 11.92 8.42 9.18 9.38 4.4 7.63 MnO 0.17 0.16 0.16 0.14 0.14 0.16 0.12 0.16 0.18 0.12 0.14 MgO 33.05 28.22 33.97 33.78 31.95 32.32 33.82 18.45 14.56 11.47 25.49 CaO 1.52 5.17 0.68 1.47 3.7 2.32 2.85 18.01 9.82 13.52 8.13 K2O 0.08 0.04 0.01 0.06 0.11 0.06 0.04 0.07 0.41 0.84 0.01 Na2O 0.1 0.22 0.03 0.19 0.37 0.12 0.12 0.15 2.33 1.41 0.61 P2O5 0.03 0.01 0.02 0.02 0.03 0.02 0.02 0.01 0.04 0.02 0.01 LOL 11.05 10 11.14 9.95 8.25 11.98 13.14 2.75 2.53 2.1 5.33 H2O+ 7.4 5.84 8.84 5.62 5.09 4.63 5.37 1.66 1.44 0.99 2.06 Total 99.98 99.99 100 99.99 100.01 100.01 99.99 100 99.97 99.98 99.97 La 0.79 0.84 0.85 0.77 0.72 0.78 0.71 0.46 2.01 0.87 0.98 Ce 1.83 1.86 1.71 1.79 1.54 1.7 1.72 1.21 5.15 2.3 2.63 Pr 0.2 0.22 0.21 0.22 0.18 0.219 0.24 0.19 0.77 0.34 0.4 Nd 1.01 1.07 0.89 1.09 0.98 0.994 1.12 0.9 3.74 1.71 2.1 Sm 0.29 0.31 0.25 0.26 0.27 0.256 0.29 0.3 1.12 0.53 0.62 Eu 0.061 0.079 0.054 0.065 0.071 0.073 0.059 0.09 0.57 0.32 0.35 Gd 0.43 0.41 0.32 0.3 0.36 0.305 0.32 0.41 1.51 0.64 0.61 Tb 0.079 0.072 0.061 0.059 0.063 0.055 0.054 0.08 0.25 0.11 0.12 Dy 0.48 0.48 0.4 0.41 0.46 0.373 0.38 0.53 1.82 0.81 0.79 Ho 0.11 0.1 0.085 0.09 0.1 0.082 0.09 0.13 0.4 0.18 0.17 Er 0.29 0.3 0.23 0.26 0.29 0.23 0.24 0.32 1.1 0.52 0.5 Tm 0.047 0.042 0.034 0.045 0.05 0.036 0.039 0.05 0.18 0.085 0.077 Yb 0.29 0.27 0.22 0.29 0.29 0.231 0.26 0.31 1.25 0.55 0.5 Lu 0.044 0.042 0.035 0.041 0.046 0.035 0.037 0.05 0.18 0.085 0.079 Y 3.04 2.84 2.28 2.59 2.86 2.34 2.39 3.07 10.4 4.91 4.2 Cu 8.32 8.96 36.6 20.7 31.1 40.3 30.6 26.2 41 9.43 68.2 Pb 1.46 15.1 15.4 5.33 3.59 9.6 2.73 74.8 9.42 6.29 11.9 Zn 61.8 61.5 78.7 68.1 59.8 85 46.2 43.8 103 30.6 62.5 续表1 样品 C0 C10 C14 C5 C6 C7 C8 K1 FC1 FC4 FC16 岩石 纯橄岩 辉石岩 辉长岩 Cr 2360 2690 2300 1380 3440 1700 1470 2100 1100 1370 4850 Ni 1390 1090 1430 1330 1250 1300 1330 185 392 259 1940 Co 119 94.8 133 123 93.6 112 109 63.9 57.4 33.7 98.8 Rb 2.9 2.41 1.33 2.32 4.46 2.03 1.21 1.71 10.1 43.1 0.64 Cs 0.18 0.17 0.085 0.066 0.16 0.12 0.054 0.11 0.25 0.66 0.067 Sr 18.5 49.9 26.3 22.5 23.7 46.9 31.7 10.9 416 225 253.7 Ba 20.5 48.8 51.7 24.6 31 28.1 17.9 11.4 144 207 16.7 V 50.2 113 48.9 61.9 71 56.6 36.2 308 207 126 49.5 Sc 11.3 14.6 9.23 9.59 8.17 9.62 7.16 87.6 18 24.8 3.22 Nb 1 1.08 1.09 0.58 0.63 0.7 0.64 0.45 1.23 0.43 0.43 Ta 0.21 0.65 0.58 0.31 0.32 0.29 0.22 0.31 0.24 0.18 0.2 Zr 3.09 2.34 2.86 2.502 2.525 2.593 2.39 3.27 10.9 5.32 3.15 Hf 0.23 0.1 0.13 0.11 0.15 0.18 0.158 0.17 0.358 0.15 0.13 U 0.11 0.11 0.17 0.11 0.09 0.15 0.13 0.1 0.39 0.156 0.19 Th 0.37 0.26 0.16 0.2 0.16 0.28 0.17 0.19 0.31 0.18 0.098 Mg# 82.6 83.5 83.3 84.0 87.2 83.0 87.8 78.3 73.6 82.4 85.7 δCe 1.08 1.02 0.95 1.03 1 0.98 1 0.98 1 1.02 1.01 δEu 0.53 0.68 0.58 0.71 0.7 0.8 0.59 0.78 1.34 1.68 1.72 (La/Yb)N 1.84 2.10 2.60 1.79 1.67 2.28 1.84 1.00 1.08 1.07 1.32 REE 5.95 6.10 5.35 5.69 5.42 5.37 5.56 5.03 20.05 9.05 9.93 LREE 4.18 4.38 3.96 4.20 3.76 4.02 4.14 3.15 13.36 6.07 7.08 HREE 1.77 1.72 1.39 1.50 1.66 1.35 1.42 1.88 6.69 2.98 2.85 LREE/HREE 2.36 2.55 2.86 2.81 2.27 2.98 2.91 1.68 2.00 2.04 2.49 表 2 阿尔金南缘清水泉堆晶辉长岩锆石LA–ICP–MS U–Pb分析结果表
Table 2. LA–ICP–MS U–Pb analysis results of zircons from Qingshuiquan area, southern margin of Altyn tagh
编号 含量(10−6) 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 59 22 64 0.0567 0.0008 0.5883 0.0066 0.0752 0.0004 0.0237 0.0002 478 16 470 4 467 2 2 72 176 189 0.0562 0.0007 0.5776 0.0049 0.0744 0.0004 0.0241 0.0001 461 11 463 3 463 2 3 46 43 112 0.0541 0.0006 0.5568 0.0044 0.0746 0.0003 0.0219 0.0001 374 10 449 3 464 2 4 75 88 184 0.0541 0.0007 0.5559 0.0056 0.0744 0.0004 0.0239 0.0001 376 14 449 4 463 2 5 91 148 232 0.0577 0.0006 0.5933 0.0038 0.0746 0.0003 0.0219 0.0001 518 7 473 2 464 2 6 67 97 168 0.0604 0.0009 0.6232 0.0071 0.0748 0.0004 0.0277 0.0002 619 16 492 4 465 2 7 149 319 399 0.0564 0.0007 0.5861 0.0054 0.0754 0.0004 0.0247 0.0001 468 12 468 3 469 2 8 64 24 68 0.0596 0.0009 0.6136 0.0081 0.0749 0.0004 0.0243 0.0002 478 43 466 7 464 2 9 152 220 394 0.0511 0.0006 0.5275 0.0043 0.0751 0.0003 0.0204 0.0001 244 11 430 3 467 2 10 87 188 383 0.0521 0.0006 0.5334 0.0040 0.0745 0.0003 0.0190 0.0001 291 9 434 3 463 2 11 47 43 104 0.0490 0.0009 0.4960 0.0078 0.0737 0.0004 0.0191 0.0001 148 27 409 5 458 2 12 115 175 76 0.0555 0.0006 0.5717 0.0036 0.0750 0.0003 0.0216 0.0001 433 7 459 2 466 2 表 3 阿南构造混杂岩带中早古生代岩浆事件统计表
Table 3. The dataing result of main magma events in the South Altyn Tagh
构造
位置地区 岩性 年龄(Ma) 构造背景 来源 阿南
构造
混杂
岩带长沙沟 辉石橄榄岩 510.6±1.4 洋脊扩张和洋壳俯冲消减 郭金城等,2014 花岗闪长岩 503±1.7 康磊等,2014 约马克其 辉长岩 500.7±1.9 李向民等,2009 鱼目泉 花岗岩 497 碰撞造山和陆壳深俯冲 孙吉明等,2012 茫崖 二长花岗岩 472.1±1.1 康磊等,2016 石英闪长岩 469±6 后碰撞初始伸展阶段 吴才来等,2014 长沙沟 镁铁质−超镁铁质岩体 467±1 马中平,2009 清水泉 堆晶辉长岩 464±1.3 本文 斜长角闪岩 461±4 王立社,2016a 斜长花岗岩 451~465 王立社,2016b 迪木那里克 钾长花岗岩 452.8±3.1 杨文强等,2012 塔特勒克布拉克 二长花岗岩 462±2 碰撞造山后初期抬升 曹玉亭等,2010 片麻状花岗岩 451±1.7 康磊等,2013 玉素普阿勒克 似斑状钾长花岗岩 424 造山后伸展阶段 王超等,2008 茫崖柴水沟、长春沟 二长花岗岩、正长花岗岩 404±5、406±4 吴才来等,2014 411±5、406±3 吐拉 碱厂花岗岩 385.2±8.1 吴锁平等,2007 -
[1] 曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271
CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical Zircon U-Pb Dating and Hf Isotope Compositions Studies for Tatelekebulake Granite in South AItyn Tagh[J]. Acta Petrobgica Sinica, 2010, 26(11): 3259-3271.
[2] 董俊, 黄华良, 尹建华, 等. 东昆仑石头坑德镁铁-超镁铁质岩地质特征及成矿条件分析[J]. 西北地质, 2017, 50(02): 49-60 doi: 10.3969/j.issn.1009-6248.2017.02.005
DONG Jun, HUANG Hualiang, YI Jianhua, et al. Geological Characteristics of the Shitoukengde Mafic-ultramafic Rocks in East Kunlun and Related Metallogenic Conditions[J]. Northwestern Geology, 2017, 50(02): 49-60. doi: 10.3969/j.issn.1009-6248.2017.02.005
[3] 郭金城, 徐旭明, 陈海燕, 等. 新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义[J]. 西北地质, 2014, 47(4): 170-177 doi: 10.3969/j.issn.1009-6248.2014.04.018
GUO Jincheng, XU Xuming, CHEN Haiyan, et al. Zircon U-Pb Age and Geological Implications of Ultramafic Rocks in Changshagou, Altun Area, Xinjiang Province[J]. Northwestern Geology, 2014, 47(4): 170-177. doi: 10.3969/j.issn.1009-6248.2014.04.018
[4] 高栋, 吴才来, 郜源红, 等. 南阿尔金玉苏普阿勒克塔格花岗岩体锆石U-Pb年代学、地球化学特征及地质意义[J]. 地球科学, 2019, 44(11): 3812-3828.
GAO Dong, WU Cailai, HAO Yuanhong, et al. Zircon U-Pb geochronology, geochemistry of the Yusupuleke granite pluton in south Altyn and its geological implications[J]. Earth Science, 2019, 44(11): 3812-3828.
[5] 校培喜, 高晓峰, 康磊, 等. 阿尔金-东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014
JIAO Peixi, GAO Xiaofeng, KANG Lei, et al. Study on the Geological Background of the Metallogenic Belt in the Western Section of Altun-East Kunlun[M]. Beijing: Geological Publishing House, 2014.
[6] 康磊, 校培喜, 高晓峰, 等. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因: 对阿尔金南缘早古生代构造-岩浆演化的启示[J]. 岩石学报, 2016, 32(06): 1731-1748
KANG Lei, JIAO Peixi, GAO Xiaofeng, et al. Chronology, Geochemistry and Petrogenesis of Monzonitic Granite and Quartz Diorite in Mangai Area: Its Inspiration to Early Paleozoic Tectonic-magmatic Evolution of the Southern Altyn Tagh[J]. Acta Petrologica Sinica, 2016, 32(06): 1731-1748.
[7] 康磊. 南阿尔金高压—超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D]. 西安: 西北大学, 2014
KANG Lei. Early Paleozoic Multi-stage Granitic Magmatism and the Geological Significance in the South Altyn Tagh HP-UHP Metamorphic Belt[D]. Xi’an: Northwest University, 2014.
[8] 康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(09): 3039-3048
KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, Zircon U-Pb Age and Its Geological Significance of the Gneissic Granite from the Eastern Segment of the Tatelekebulake Somposite Granite in the South Altyn Tagh[J]. Acta Petrologica Sinica, 2013, 29(09): 3039-3048.
[9] 侯红星, 张蜀冀, 胡新茁, 等. 华北克拉通怀安县西洋河地区高压基性麻粒岩锆石U-Pb同位素年龄及地球化学特征[J]. 西北地质, 2022, 55(4): 240-254.
HOU Hongxing, ZHANG Shuji, HU Xinzhuo, et al. Geochemical Characteristics and Zircon U-Pb Isotope Age of the High-pressure Basic Granulite in the Xiyanghe Area of the North China Craton[J]. Northwestern Geology, 2022, 55(4): 240-254.
[10] 刘良, 康磊, 曹玉亭, 等. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学: 地球科学, 2015, 45(08): 1126-1137
LIU Liang, KANG Lei, CAO Yuting, et al. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn[J], NW China. Science China: Earth Sciences, 2015, 45(08): 1126-1137.
[11] 刘良, 车自成, 王焰, 等. 阿尔金高压变质岩带的特征及其构造意义[J]. 岩石学报, 1999, (01): 58-65.
LIU Liang, CHE Zicheng, WANG Yan, et al. The Petrological Characters and Geotectonic Setting of High-pressure Metamorphic Rock Belts in Altun Mountains[J]. Acta Petrologica Sinica, 1999, 15(1): 57-64.
[12] 刘军, 息朝庄, 黄波, 等. 柴达木西北缘大通沟南山北闪长岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2022, 55(2): 93-105.
LIU Jun, XI Chaozhuang, HUANG Bo, et al. Geochronology, Geochemistry and Geological Significance of Thediorite in Datonggou Nanshanbei, Northwestern Qaidam Basin[J]. Northwestern Geology, 2022, 55(2): 93−105.
[13] 刘永顺, 于海峰, 辛后田, 等. 阿尔金山地区构造单元划分和前寒武纪重要地质事件[J]. 地质通报, 2009, 28(10): 1430-1438 doi: 10.3969/j.issn.1671-2552.2009.10.009
LIU YongShun, YU Haifeng, XIN Houtian, et al. Tectonic Units Division and Precambrian Significant Geological Events in Altyn Tagh Mountain, China[J]. Geological Bulletin of China, 2009, 28(10): 1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009
[14] 李向民, 马中平, 孙吉明, 等. 阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究[J]. 岩石学报, 2009, 25(04): 862-872
LI Xiangmin, MA ZhongPing, SUN Jiming, et al. Characteristics and Age Study about the Yuemakeqi Mafic-ultramagic Rock in the Southern Altyn Fault[J]. Acta Petrologica Sinica, 2009, 25(04): 862-872.
[15] 马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义—岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(04): 793-804
MA Zhongping, LI Xiangmin, SUN Jiming, et al. Discovery of Layered Mafic-ultramafic Intrusion in Changshagou, Altyn Tagh, and Its Geological Implication: A Pilot Study on Its Petrological and Geochemical Characteristics[J]. Acta Petrologica Sinica, 2009, 25(04): 793-804.
[16] 孙吉明, 马中平, 唐卓, 等. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义[J]. 地质学报, 2012, 86(02): 247-257 doi: 10.3969/j.issn.0001-5717.2012.02.004
SUN JiMing, MA Zhongping, TANG Zhuo, et al. LA-ICP-MS Zircon Dating of the Yumuquan Magma Mixing Granite in the Southern Altyn Tagh and Its Tectonic Significance[J]. Acta Geologica Sinica, 2012, 86(02): 247-257. doi: 10.3969/j.issn.0001-5717.2012.02.004
[17] 孙书勤, 张成江, 赵松江. 大陆板内构造环境的微量元素判别[J]. 大地构造与成矿学, 2007, 31(01): 104-109 doi: 10.3969/j.issn.1001-1552.2007.01.012
SUN Shuqin, ZHANG Chengiang, ZHAO Songjiang. Identification of the tectonic settings for continental intraplate by trace elements[J]. Geotectonica et Metallogenia, 2007, 31(1): 104-109. doi: 10.3969/j.issn.1001-1552.2007.01.012
[18] 王立社, 杨鹏飞, 段星星, 等. 阿尔金南缘中段清水泉斜长花岗岩同位素年龄及成因研究[J]. 岩石学报, 2016a, 32(03): 759-774
WANG Lishe, YANG Pengfei, DUAN Xingxing, et al. Isotopic Age and Genesis of Plagiogranite from Qingshuiquan Area in the Middle of South Altyn Tagh[J]. Acta Petrologica Sinica, 2016, 32(03): 759-774.
[19] 王立社, 李智明, 杨鹏飞, 等. 阿尔金清水泉斜长角闪岩同位素定年及其地球化学特征[J]. 大地构造与成矿学, 2016b, 40(04): 839-852
WANG Lishe, LI Zhiming, YANG Pengfei, et al. Isotopic Age and Geochemical Characteristics of Qingshuiquan Amphibolite in South Altyn Tagh[J]. Geotectonica et Metallogenia, 2016b, 40(04): 839-852.
[20] 王超, 刘良, 张安达, 等. 阿尔金造山带南缘岩浆混合作用: 玉苏普阿勒克塔格岩体岩石学和地球化学证据[J]. 岩石学报, 2008, 24(12): 2809-2819
WANG Chao, LIU Liang, ZHANG Anda, et al. Geochemistry and Petrography of Early Paleozoic Yusupuleke Tagh Rapakivi-textured Granite Complex, South Altyn: An Example for Magma Mixing[J]. Acta Petrologica Sinica, 2008, 24(12): 2809-2819.
[21] 吴才来, 郜源红, 雷敏, 等. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J]. 岩石学报, 2014, 30(08): 2297-2323
WU Cailai, GAO Yuanhong, LEI Min, et al. Zircon SHRIMP U-Pb Dating, Lu-Hf Isotopic Characteristics and Petrogenesis of the Palaeozoic Granites in Mangya Area, Southern Altun, NW China[J]. Acta Petrologica Sinica, 2014, 30(8): 2297-2323.
[22] 吴锁平, 吴才来, 陈其龙. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J]. 地质通报, 2007, 26(10): 1385-1392 doi: 10.3969/j.issn.1671-2552.2007.10.016
WU Suoping, WU Cailai, Chen Qilong. Characteristics and Tectonic Setting of the Tula Aluminous A- type Granite at theSouth Side of the Altyn Tagh Fault, NW China[J]. Geological Bulletin of China, 2007, 26(10): 1385-1392. doi: 10.3969/j.issn.1671-2552.2007.10.016
[23] 许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, (03): 193-205 doi: 10.3321/j.issn:0001-5717.1999.03.001
XU Zhiqin, YANG Jinsui, ZHANG Jianxin, et al. A Comparison Between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-slip Fault and the Mechanism of Lithospheric Shearing[J]. Acta Geologica Sinica, 1999, (03): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001
[24] 杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139-4150
YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, Geochronology and Zircon Hf Isotopes of the Dimunalike Granite in South Altyn Tagn and Its Geological Significance[J]. Acta Petrologica Sinica, 2012, 28(12): 4139-4150.
[25] 张若愚, 曾忠诚, 陈宁, 等. 阿尔金造山带南缘中―晚奥陶世正长花岗岩的发现及其地质意义[J]. 地质通报, 2018, 37(04): 545-558
ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, et al. The Discovery of Middle-Late Ordovician Syenogranite on the Southern Margin of Altun Orogenic Belt and Its Geological Significance[J]. Geological Bulletin of China, 2018, 37(4): 545-558.
[26] Cabanis B, Lecolle M. Le Diagramme La/10-Y/15-N/8: Un Outil Pour La Discrimination Des Séries Volcaniques et La Mise en Évidence Des Processus De Mélange et/ou de Contamination Crustale[J]. C R Acad Sci Ser II, 1989, 309: 2023-2029.
[27] Coleman R G. Ophiolite-Ancient Oceanic Lithosphere?[M]. Berlin: Springger Verlag, 1977.
[28] Dilek, Yildirim. Collision tectonics of the Mediterranean region: causes and consequences[J]. Collision Tectonics of the Mediterranean Region: Causes and Consequences. Geological Society of America Special Paper, 2006, 409(1): 1-13.
[29] Donnelly K E, Goldstein S L, Langmuir S H, et al. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3): 347-366.
[30] Feng R, Kerrich R. Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada: Implications for Provenance and Tectonic Setting[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1061-1081. doi: 10.1016/0016-7037(90)90439-R
[31] Hirschmann M M, Stolpe E M. A Possible Role for Garnet Pyroxenite in the Origin of the “Garnet Signature” in MORB[J]. Contribtions to Mineralogy and Petrology, 1996, 124(2): 185-208. doi: 10.1007/s004100050184
[32] Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journel of Earth Science, 1971, 8: 523-548. doi: 10.1139/e71-055
[33] Ludwig K R. Isoplot: A Geochronological Toolkit for Microsoft Excel[J]. California, Berkeley: Berkeley Geochronol Center Spec Publ, 2003, 4: 1-71.
[34] Li Y S, Zhang J X, Yu S Y, et al. Origin of Early Paleozoic Garnet Peridotite and Associated Garnet Pyroxenite in the South Altyn Tagh, NW China: Constraints from Geochemistry, SHRIMP U-Pb Zircon Dating and Hf Isotopes[J]. Journal of Asian Earth Sciences, 2015, 100: 60-67. doi: 10.1016/j.jseaes.2015.01.004
[35] Liu L, Wang C, Cao Y T, et al. Geochronology of Multi-stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China[J]. Lithos, 2012, 136-139: 10-26. doi: 10.1016/j.lithos.2011.09.014
[36] Maurice A E, Basta F F, Khiamy A A. Neoproterozoic nascent island arc volcanism from the Nubian Shield of Egypt: magma genesis and generation of continental crust in intra-oceanic arcs[J]. Lithos, 2012, 132: 1-20.
[37] Niu Y L, Regelous M, Wendt I J, et al. Geochemistry of Near-EPR Seamounts: Importance of Source vs. Process and the Origin of Enriched Mantle Component[J]. Earth and Planetary Science Letters, 2002, 199(3): 327-345
[38] Polat A, Hofmann A W, Rosing M T. Boninite-like Volcanic Rocks in the 3.7-3.8Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-oceanic Subduction Zone Processes in the Early Earth[J]. Chemical Geology, 2002, 184: 231-254. doi: 10.1016/S0009-2541(01)00363-1
[39] Roex A. Source regions of mid-ocean ridge basalts: evidence for enrichment processes[J]. Mantle Metasomatism, 1987: 389-422.
[40] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mmantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[41] Wang C, Liu L, Yang W Q, et al. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China[J]. Precambrian Research, 2013, 230: 193-208. doi: 10.1016/j.precamres.2013.02.003
期刊类型引用(2)
1. 陈建中,夏昭德,王驰源,丁海波,张朋,王厚方. 阿尔金-东昆仑造山带铜镍矿成矿地质条件与找矿前景. 新疆地质. 2024(02): 238-243 . 百度学术
2. 高永宝,陈康,王亮,赵辛敏,李艳广,刘明,张龙,王元伟,张毅,刘基. 阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束. 西北地质. 2024(04): 1-20+305 . 本站查看
其他类型引用(0)
-